Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames
AbstractThe objective of this study was to investigate the mechanism of soot formation in biodiesel by analyzing the combustion of individual components. The paper presents a numerical analysis of the effect of preheat temperatures on nucleation rates, coagulation rates, and soot volume fraction in...
Ausführliche Beschreibung
Autor*in: |
Royston Mwikathi Kiraithe [verfasserIn] Josephat Kipyegon Tanui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Cogent Engineering - Taylor & Francis Group, 2014, 11(2024), 1 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2024 ; number:1 |
Links: |
---|
DOI / URN: |
10.1080/23311916.2023.2300552 |
---|
Katalog-ID: |
DOAJ097400912 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097400912 | ||
003 | DE-627 | ||
005 | 20240413182802.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/23311916.2023.2300552 |2 doi | |
035 | |a (DE-627)DOAJ097400912 | ||
035 | |a (DE-599)DOAJb02d9086291240f7804058183de71446 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Royston Mwikathi Kiraithe |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a AbstractThe objective of this study was to investigate the mechanism of soot formation in biodiesel by analyzing the combustion of individual components. The paper presents a numerical analysis of the effect of preheat temperatures on nucleation rates, coagulation rates, and soot volume fraction in methyl linolenate (MLe) co-flow flame. In this work, Moss-Brooke’s soot model and a reduced kinetic mechanism containing 177 chemical species and 2904 chemical reactions were used to simulate the pyrolysis and combustion of MLe. A laminar jet flame with inlet velocities of 0.4 m/s was studied. The preheat temperature of the fuel was varied between 300 and 450 K. The burner walls were stationary and no-slip conditions were applied. The pressure outlet had Neumann boundary conditions and the tangential velocity was set to zero at the wall. It was established that an increase in fuel preheat temperatures causes an increase in nucleation rates and the amount of soot due to accelerated fuel pyrolysis, improved diffusion, acceleration from buoyancy, and earlier formation of PAHs. It was discovered that increasing the fuel preheat temperature had a greater impact on soot formation along the centerline than on the wing. | ||
650 | 4 | |a Methyl linolenate | |
650 | 4 | |a jet-flame | |
650 | 4 | |a co-flow | |
650 | 4 | |a soot formation | |
650 | 4 | |a biodiesel | |
650 | 4 | |a preheating | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Josephat Kipyegon Tanui |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Cogent Engineering |d Taylor & Francis Group, 2014 |g 11(2024), 1 |w (DE-627)797835229 |w (DE-600)2785989-7 |x 23311916 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2024 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.1080/23311916.2023.2300552 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b02d9086291240f7804058183de71446 |z kostenfrei |
856 | 4 | 0 | |u https://www.tandfonline.com/doi/10.1080/23311916.2023.2300552 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2331-1916 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2024 |e 1 |
author_variant |
r m k rmk j k t jkt |
---|---|
matchkey_str |
article:23311916:2024----::fetofepeeteprtrosofrainnehlioea |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TA |
publishDate |
2024 |
allfields |
10.1080/23311916.2023.2300552 doi (DE-627)DOAJ097400912 (DE-599)DOAJb02d9086291240f7804058183de71446 DE-627 ger DE-627 rakwb eng TA1-2040 Royston Mwikathi Kiraithe verfasserin aut Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier AbstractThe objective of this study was to investigate the mechanism of soot formation in biodiesel by analyzing the combustion of individual components. The paper presents a numerical analysis of the effect of preheat temperatures on nucleation rates, coagulation rates, and soot volume fraction in methyl linolenate (MLe) co-flow flame. In this work, Moss-Brooke’s soot model and a reduced kinetic mechanism containing 177 chemical species and 2904 chemical reactions were used to simulate the pyrolysis and combustion of MLe. A laminar jet flame with inlet velocities of 0.4 m/s was studied. The preheat temperature of the fuel was varied between 300 and 450 K. The burner walls were stationary and no-slip conditions were applied. The pressure outlet had Neumann boundary conditions and the tangential velocity was set to zero at the wall. It was established that an increase in fuel preheat temperatures causes an increase in nucleation rates and the amount of soot due to accelerated fuel pyrolysis, improved diffusion, acceleration from buoyancy, and earlier formation of PAHs. It was discovered that increasing the fuel preheat temperature had a greater impact on soot formation along the centerline than on the wing. Methyl linolenate jet-flame co-flow soot formation biodiesel preheating Engineering (General). Civil engineering (General) Josephat Kipyegon Tanui verfasserin aut In Cogent Engineering Taylor & Francis Group, 2014 11(2024), 1 (DE-627)797835229 (DE-600)2785989-7 23311916 nnns volume:11 year:2024 number:1 https://doi.org/10.1080/23311916.2023.2300552 kostenfrei https://doaj.org/article/b02d9086291240f7804058183de71446 kostenfrei https://www.tandfonline.com/doi/10.1080/23311916.2023.2300552 kostenfrei https://doaj.org/toc/2331-1916 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 |
spelling |
10.1080/23311916.2023.2300552 doi (DE-627)DOAJ097400912 (DE-599)DOAJb02d9086291240f7804058183de71446 DE-627 ger DE-627 rakwb eng TA1-2040 Royston Mwikathi Kiraithe verfasserin aut Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier AbstractThe objective of this study was to investigate the mechanism of soot formation in biodiesel by analyzing the combustion of individual components. The paper presents a numerical analysis of the effect of preheat temperatures on nucleation rates, coagulation rates, and soot volume fraction in methyl linolenate (MLe) co-flow flame. In this work, Moss-Brooke’s soot model and a reduced kinetic mechanism containing 177 chemical species and 2904 chemical reactions were used to simulate the pyrolysis and combustion of MLe. A laminar jet flame with inlet velocities of 0.4 m/s was studied. The preheat temperature of the fuel was varied between 300 and 450 K. The burner walls were stationary and no-slip conditions were applied. The pressure outlet had Neumann boundary conditions and the tangential velocity was set to zero at the wall. It was established that an increase in fuel preheat temperatures causes an increase in nucleation rates and the amount of soot due to accelerated fuel pyrolysis, improved diffusion, acceleration from buoyancy, and earlier formation of PAHs. It was discovered that increasing the fuel preheat temperature had a greater impact on soot formation along the centerline than on the wing. Methyl linolenate jet-flame co-flow soot formation biodiesel preheating Engineering (General). Civil engineering (General) Josephat Kipyegon Tanui verfasserin aut In Cogent Engineering Taylor & Francis Group, 2014 11(2024), 1 (DE-627)797835229 (DE-600)2785989-7 23311916 nnns volume:11 year:2024 number:1 https://doi.org/10.1080/23311916.2023.2300552 kostenfrei https://doaj.org/article/b02d9086291240f7804058183de71446 kostenfrei https://www.tandfonline.com/doi/10.1080/23311916.2023.2300552 kostenfrei https://doaj.org/toc/2331-1916 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 |
allfields_unstemmed |
10.1080/23311916.2023.2300552 doi (DE-627)DOAJ097400912 (DE-599)DOAJb02d9086291240f7804058183de71446 DE-627 ger DE-627 rakwb eng TA1-2040 Royston Mwikathi Kiraithe verfasserin aut Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier AbstractThe objective of this study was to investigate the mechanism of soot formation in biodiesel by analyzing the combustion of individual components. The paper presents a numerical analysis of the effect of preheat temperatures on nucleation rates, coagulation rates, and soot volume fraction in methyl linolenate (MLe) co-flow flame. In this work, Moss-Brooke’s soot model and a reduced kinetic mechanism containing 177 chemical species and 2904 chemical reactions were used to simulate the pyrolysis and combustion of MLe. A laminar jet flame with inlet velocities of 0.4 m/s was studied. The preheat temperature of the fuel was varied between 300 and 450 K. The burner walls were stationary and no-slip conditions were applied. The pressure outlet had Neumann boundary conditions and the tangential velocity was set to zero at the wall. It was established that an increase in fuel preheat temperatures causes an increase in nucleation rates and the amount of soot due to accelerated fuel pyrolysis, improved diffusion, acceleration from buoyancy, and earlier formation of PAHs. It was discovered that increasing the fuel preheat temperature had a greater impact on soot formation along the centerline than on the wing. Methyl linolenate jet-flame co-flow soot formation biodiesel preheating Engineering (General). Civil engineering (General) Josephat Kipyegon Tanui verfasserin aut In Cogent Engineering Taylor & Francis Group, 2014 11(2024), 1 (DE-627)797835229 (DE-600)2785989-7 23311916 nnns volume:11 year:2024 number:1 https://doi.org/10.1080/23311916.2023.2300552 kostenfrei https://doaj.org/article/b02d9086291240f7804058183de71446 kostenfrei https://www.tandfonline.com/doi/10.1080/23311916.2023.2300552 kostenfrei https://doaj.org/toc/2331-1916 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 |
allfieldsGer |
10.1080/23311916.2023.2300552 doi (DE-627)DOAJ097400912 (DE-599)DOAJb02d9086291240f7804058183de71446 DE-627 ger DE-627 rakwb eng TA1-2040 Royston Mwikathi Kiraithe verfasserin aut Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier AbstractThe objective of this study was to investigate the mechanism of soot formation in biodiesel by analyzing the combustion of individual components. The paper presents a numerical analysis of the effect of preheat temperatures on nucleation rates, coagulation rates, and soot volume fraction in methyl linolenate (MLe) co-flow flame. In this work, Moss-Brooke’s soot model and a reduced kinetic mechanism containing 177 chemical species and 2904 chemical reactions were used to simulate the pyrolysis and combustion of MLe. A laminar jet flame with inlet velocities of 0.4 m/s was studied. The preheat temperature of the fuel was varied between 300 and 450 K. The burner walls were stationary and no-slip conditions were applied. The pressure outlet had Neumann boundary conditions and the tangential velocity was set to zero at the wall. It was established that an increase in fuel preheat temperatures causes an increase in nucleation rates and the amount of soot due to accelerated fuel pyrolysis, improved diffusion, acceleration from buoyancy, and earlier formation of PAHs. It was discovered that increasing the fuel preheat temperature had a greater impact on soot formation along the centerline than on the wing. Methyl linolenate jet-flame co-flow soot formation biodiesel preheating Engineering (General). Civil engineering (General) Josephat Kipyegon Tanui verfasserin aut In Cogent Engineering Taylor & Francis Group, 2014 11(2024), 1 (DE-627)797835229 (DE-600)2785989-7 23311916 nnns volume:11 year:2024 number:1 https://doi.org/10.1080/23311916.2023.2300552 kostenfrei https://doaj.org/article/b02d9086291240f7804058183de71446 kostenfrei https://www.tandfonline.com/doi/10.1080/23311916.2023.2300552 kostenfrei https://doaj.org/toc/2331-1916 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 |
allfieldsSound |
10.1080/23311916.2023.2300552 doi (DE-627)DOAJ097400912 (DE-599)DOAJb02d9086291240f7804058183de71446 DE-627 ger DE-627 rakwb eng TA1-2040 Royston Mwikathi Kiraithe verfasserin aut Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier AbstractThe objective of this study was to investigate the mechanism of soot formation in biodiesel by analyzing the combustion of individual components. The paper presents a numerical analysis of the effect of preheat temperatures on nucleation rates, coagulation rates, and soot volume fraction in methyl linolenate (MLe) co-flow flame. In this work, Moss-Brooke’s soot model and a reduced kinetic mechanism containing 177 chemical species and 2904 chemical reactions were used to simulate the pyrolysis and combustion of MLe. A laminar jet flame with inlet velocities of 0.4 m/s was studied. The preheat temperature of the fuel was varied between 300 and 450 K. The burner walls were stationary and no-slip conditions were applied. The pressure outlet had Neumann boundary conditions and the tangential velocity was set to zero at the wall. It was established that an increase in fuel preheat temperatures causes an increase in nucleation rates and the amount of soot due to accelerated fuel pyrolysis, improved diffusion, acceleration from buoyancy, and earlier formation of PAHs. It was discovered that increasing the fuel preheat temperature had a greater impact on soot formation along the centerline than on the wing. Methyl linolenate jet-flame co-flow soot formation biodiesel preheating Engineering (General). Civil engineering (General) Josephat Kipyegon Tanui verfasserin aut In Cogent Engineering Taylor & Francis Group, 2014 11(2024), 1 (DE-627)797835229 (DE-600)2785989-7 23311916 nnns volume:11 year:2024 number:1 https://doi.org/10.1080/23311916.2023.2300552 kostenfrei https://doaj.org/article/b02d9086291240f7804058183de71446 kostenfrei https://www.tandfonline.com/doi/10.1080/23311916.2023.2300552 kostenfrei https://doaj.org/toc/2331-1916 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 |
language |
English |
source |
In Cogent Engineering 11(2024), 1 volume:11 year:2024 number:1 |
sourceStr |
In Cogent Engineering 11(2024), 1 volume:11 year:2024 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Methyl linolenate jet-flame co-flow soot formation biodiesel preheating Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Cogent Engineering |
authorswithroles_txt_mv |
Royston Mwikathi Kiraithe @@aut@@ Josephat Kipyegon Tanui @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
797835229 |
id |
DOAJ097400912 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097400912</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413182802.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/23311916.2023.2300552</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097400912</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb02d9086291240f7804058183de71446</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Royston Mwikathi Kiraithe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">AbstractThe objective of this study was to investigate the mechanism of soot formation in biodiesel by analyzing the combustion of individual components. The paper presents a numerical analysis of the effect of preheat temperatures on nucleation rates, coagulation rates, and soot volume fraction in methyl linolenate (MLe) co-flow flame. In this work, Moss-Brooke’s soot model and a reduced kinetic mechanism containing 177 chemical species and 2904 chemical reactions were used to simulate the pyrolysis and combustion of MLe. A laminar jet flame with inlet velocities of 0.4 m/s was studied. The preheat temperature of the fuel was varied between 300 and 450 K. The burner walls were stationary and no-slip conditions were applied. The pressure outlet had Neumann boundary conditions and the tangential velocity was set to zero at the wall. It was established that an increase in fuel preheat temperatures causes an increase in nucleation rates and the amount of soot due to accelerated fuel pyrolysis, improved diffusion, acceleration from buoyancy, and earlier formation of PAHs. It was discovered that increasing the fuel preheat temperature had a greater impact on soot formation along the centerline than on the wing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methyl linolenate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">jet-flame</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">co-flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soot formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biodiesel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">preheating</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Josephat Kipyegon Tanui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cogent Engineering</subfield><subfield code="d">Taylor & Francis Group, 2014</subfield><subfield code="g">11(2024), 1</subfield><subfield code="w">(DE-627)797835229</subfield><subfield code="w">(DE-600)2785989-7</subfield><subfield code="x">23311916</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/23311916.2023.2300552</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b02d9086291240f7804058183de71446</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/10.1080/23311916.2023.2300552</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2331-1916</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Royston Mwikathi Kiraithe |
spellingShingle |
Royston Mwikathi Kiraithe misc TA1-2040 misc Methyl linolenate misc jet-flame misc co-flow misc soot formation misc biodiesel misc preheating misc Engineering (General). Civil engineering (General) Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames |
authorStr |
Royston Mwikathi Kiraithe |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)797835229 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
23311916 |
topic_title |
TA1-2040 Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames Methyl linolenate jet-flame co-flow soot formation biodiesel preheating |
topic |
misc TA1-2040 misc Methyl linolenate misc jet-flame misc co-flow misc soot formation misc biodiesel misc preheating misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc Methyl linolenate misc jet-flame misc co-flow misc soot formation misc biodiesel misc preheating misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc Methyl linolenate misc jet-flame misc co-flow misc soot formation misc biodiesel misc preheating misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cogent Engineering |
hierarchy_parent_id |
797835229 |
hierarchy_top_title |
Cogent Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)797835229 (DE-600)2785989-7 |
title |
Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames |
ctrlnum |
(DE-627)DOAJ097400912 (DE-599)DOAJb02d9086291240f7804058183de71446 |
title_full |
Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames |
author_sort |
Royston Mwikathi Kiraithe |
journal |
Cogent Engineering |
journalStr |
Cogent Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Royston Mwikathi Kiraithe Josephat Kipyegon Tanui |
container_volume |
11 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Royston Mwikathi Kiraithe |
doi_str_mv |
10.1080/23311916.2023.2300552 |
author2-role |
verfasserin |
title_sort |
effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames |
callnumber |
TA1-2040 |
title_auth |
Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames |
abstract |
AbstractThe objective of this study was to investigate the mechanism of soot formation in biodiesel by analyzing the combustion of individual components. The paper presents a numerical analysis of the effect of preheat temperatures on nucleation rates, coagulation rates, and soot volume fraction in methyl linolenate (MLe) co-flow flame. In this work, Moss-Brooke’s soot model and a reduced kinetic mechanism containing 177 chemical species and 2904 chemical reactions were used to simulate the pyrolysis and combustion of MLe. A laminar jet flame with inlet velocities of 0.4 m/s was studied. The preheat temperature of the fuel was varied between 300 and 450 K. The burner walls were stationary and no-slip conditions were applied. The pressure outlet had Neumann boundary conditions and the tangential velocity was set to zero at the wall. It was established that an increase in fuel preheat temperatures causes an increase in nucleation rates and the amount of soot due to accelerated fuel pyrolysis, improved diffusion, acceleration from buoyancy, and earlier formation of PAHs. It was discovered that increasing the fuel preheat temperature had a greater impact on soot formation along the centerline than on the wing. |
abstractGer |
AbstractThe objective of this study was to investigate the mechanism of soot formation in biodiesel by analyzing the combustion of individual components. The paper presents a numerical analysis of the effect of preheat temperatures on nucleation rates, coagulation rates, and soot volume fraction in methyl linolenate (MLe) co-flow flame. In this work, Moss-Brooke’s soot model and a reduced kinetic mechanism containing 177 chemical species and 2904 chemical reactions were used to simulate the pyrolysis and combustion of MLe. A laminar jet flame with inlet velocities of 0.4 m/s was studied. The preheat temperature of the fuel was varied between 300 and 450 K. The burner walls were stationary and no-slip conditions were applied. The pressure outlet had Neumann boundary conditions and the tangential velocity was set to zero at the wall. It was established that an increase in fuel preheat temperatures causes an increase in nucleation rates and the amount of soot due to accelerated fuel pyrolysis, improved diffusion, acceleration from buoyancy, and earlier formation of PAHs. It was discovered that increasing the fuel preheat temperature had a greater impact on soot formation along the centerline than on the wing. |
abstract_unstemmed |
AbstractThe objective of this study was to investigate the mechanism of soot formation in biodiesel by analyzing the combustion of individual components. The paper presents a numerical analysis of the effect of preheat temperatures on nucleation rates, coagulation rates, and soot volume fraction in methyl linolenate (MLe) co-flow flame. In this work, Moss-Brooke’s soot model and a reduced kinetic mechanism containing 177 chemical species and 2904 chemical reactions were used to simulate the pyrolysis and combustion of MLe. A laminar jet flame with inlet velocities of 0.4 m/s was studied. The preheat temperature of the fuel was varied between 300 and 450 K. The burner walls were stationary and no-slip conditions were applied. The pressure outlet had Neumann boundary conditions and the tangential velocity was set to zero at the wall. It was established that an increase in fuel preheat temperatures causes an increase in nucleation rates and the amount of soot due to accelerated fuel pyrolysis, improved diffusion, acceleration from buoyancy, and earlier formation of PAHs. It was discovered that increasing the fuel preheat temperature had a greater impact on soot formation along the centerline than on the wing. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames |
url |
https://doi.org/10.1080/23311916.2023.2300552 https://doaj.org/article/b02d9086291240f7804058183de71446 https://www.tandfonline.com/doi/10.1080/23311916.2023.2300552 https://doaj.org/toc/2331-1916 |
remote_bool |
true |
author2 |
Josephat Kipyegon Tanui |
author2Str |
Josephat Kipyegon Tanui |
ppnlink |
797835229 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/23311916.2023.2300552 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-04T01:04:02.067Z |
_version_ |
1803608435792543744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097400912</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413182802.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/23311916.2023.2300552</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097400912</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb02d9086291240f7804058183de71446</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Royston Mwikathi Kiraithe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">AbstractThe objective of this study was to investigate the mechanism of soot formation in biodiesel by analyzing the combustion of individual components. The paper presents a numerical analysis of the effect of preheat temperatures on nucleation rates, coagulation rates, and soot volume fraction in methyl linolenate (MLe) co-flow flame. In this work, Moss-Brooke’s soot model and a reduced kinetic mechanism containing 177 chemical species and 2904 chemical reactions were used to simulate the pyrolysis and combustion of MLe. A laminar jet flame with inlet velocities of 0.4 m/s was studied. The preheat temperature of the fuel was varied between 300 and 450 K. The burner walls were stationary and no-slip conditions were applied. The pressure outlet had Neumann boundary conditions and the tangential velocity was set to zero at the wall. It was established that an increase in fuel preheat temperatures causes an increase in nucleation rates and the amount of soot due to accelerated fuel pyrolysis, improved diffusion, acceleration from buoyancy, and earlier formation of PAHs. It was discovered that increasing the fuel preheat temperature had a greater impact on soot formation along the centerline than on the wing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methyl linolenate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">jet-flame</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">co-flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soot formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biodiesel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">preheating</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Josephat Kipyegon Tanui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cogent Engineering</subfield><subfield code="d">Taylor & Francis Group, 2014</subfield><subfield code="g">11(2024), 1</subfield><subfield code="w">(DE-627)797835229</subfield><subfield code="w">(DE-600)2785989-7</subfield><subfield code="x">23311916</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/23311916.2023.2300552</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b02d9086291240f7804058183de71446</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/10.1080/23311916.2023.2300552</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2331-1916</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.400943 |