Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences
This paper focuses on the mechanical behaviour, seismic application in steel frame connections and steel structure of shape memory alloy (SMA) plates. This study commenced by examining the hysteretic response of SMA plates subjected to cyclic tension tests, considering two different loading paths. S...
Ausführliche Beschreibung
Autor*in: |
Yun Huang [verfasserIn] Guojun Xu [verfasserIn] Yali Zhang [verfasserIn] Zhongfa Zhou [verfasserIn] Ke Ke [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Case Studies in Construction Materials - Elsevier, 2017, 20(2024), Seite e02875- |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2024 ; pages:e02875- |
Links: |
---|
DOI / URN: |
10.1016/j.cscm.2024.e02875 |
---|
Katalog-ID: |
DOAJ097494801 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097494801 | ||
003 | DE-627 | ||
005 | 20240413184230.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cscm.2024.e02875 |2 doi | |
035 | |a (DE-627)DOAJ097494801 | ||
035 | |a (DE-599)DOAJdb38996d6f0940b4bbbd823b1abddf91 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Yun Huang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper focuses on the mechanical behaviour, seismic application in steel frame connections and steel structure of shape memory alloy (SMA) plates. This study commenced by examining the hysteretic response of SMA plates subjected to cyclic tension tests, considering two different loading paths. Subsequently, a self-centring steel frame connection equipped with SMA plates and washers (SC-PW) was examined via quasi-static cyclic loading tests, and comparatively satisfactory self-centring behaviour was observed. However, the degradation of the initial stiffness of the SC-PW due to an initial imperfection was observed. An improvement strategy was proposed to overcome the degradation of the hysteretic behaviour (e.g., initial stiffness) of the SC-PW. Disc springs with a larger stiffness and preloads were introduced to overcome the degradation of the initial stiffness of the SC-PW, and the validation was confirmed via detailed finite element (FE) analyses. To improve the computation efficiency, a simplified FE model was developed to reproduce the hysteretic responses of the connection. Based on the simplified FE model, a six-storey prototype structure, i.e., a self-centring hybrid steel frame (SCHSF), equipped with the improved connection was developed, and the structural dynamic responses were investigated via nonlinear response history analyses, where mainshock–aftershock sequences were considered. The influence of the SMA material properties on the seismic behaviour of the prototype structure was investigated. | ||
650 | 4 | |a Shape memory alloy plate | |
650 | 4 | |a Self-centring connection | |
650 | 4 | |a Disc spring | |
650 | 4 | |a Hybrid steel frame | |
650 | 4 | |a Mainshock-aftershock sequences | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Guojun Xu |e verfasserin |4 aut | |
700 | 0 | |a Yali Zhang |e verfasserin |4 aut | |
700 | 0 | |a Zhongfa Zhou |e verfasserin |4 aut | |
700 | 0 | |a Ke Ke |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Case Studies in Construction Materials |d Elsevier, 2017 |g 20(2024), Seite e02875- |w (DE-627)774106875 |w (DE-600)2745449-6 |x 22145095 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2024 |g pages:e02875- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.cscm.2024.e02875 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/db38996d6f0940b4bbbd823b1abddf91 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2214509524000263 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2214-5095 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2024 |h e02875- |
author_variant |
y h yh g x gx y z yz z z zz k k kk |
---|---|
matchkey_str |
article:22145095:2024----::esibhvorfefetigyrdtefaeeupewtsaltsnem |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TA |
publishDate |
2024 |
allfields |
10.1016/j.cscm.2024.e02875 doi (DE-627)DOAJ097494801 (DE-599)DOAJdb38996d6f0940b4bbbd823b1abddf91 DE-627 ger DE-627 rakwb eng TA401-492 Yun Huang verfasserin aut Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper focuses on the mechanical behaviour, seismic application in steel frame connections and steel structure of shape memory alloy (SMA) plates. This study commenced by examining the hysteretic response of SMA plates subjected to cyclic tension tests, considering two different loading paths. Subsequently, a self-centring steel frame connection equipped with SMA plates and washers (SC-PW) was examined via quasi-static cyclic loading tests, and comparatively satisfactory self-centring behaviour was observed. However, the degradation of the initial stiffness of the SC-PW due to an initial imperfection was observed. An improvement strategy was proposed to overcome the degradation of the hysteretic behaviour (e.g., initial stiffness) of the SC-PW. Disc springs with a larger stiffness and preloads were introduced to overcome the degradation of the initial stiffness of the SC-PW, and the validation was confirmed via detailed finite element (FE) analyses. To improve the computation efficiency, a simplified FE model was developed to reproduce the hysteretic responses of the connection. Based on the simplified FE model, a six-storey prototype structure, i.e., a self-centring hybrid steel frame (SCHSF), equipped with the improved connection was developed, and the structural dynamic responses were investigated via nonlinear response history analyses, where mainshock–aftershock sequences were considered. The influence of the SMA material properties on the seismic behaviour of the prototype structure was investigated. Shape memory alloy plate Self-centring connection Disc spring Hybrid steel frame Mainshock-aftershock sequences Materials of engineering and construction. Mechanics of materials Guojun Xu verfasserin aut Yali Zhang verfasserin aut Zhongfa Zhou verfasserin aut Ke Ke verfasserin aut In Case Studies in Construction Materials Elsevier, 2017 20(2024), Seite e02875- (DE-627)774106875 (DE-600)2745449-6 22145095 nnns volume:20 year:2024 pages:e02875- https://doi.org/10.1016/j.cscm.2024.e02875 kostenfrei https://doaj.org/article/db38996d6f0940b4bbbd823b1abddf91 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214509524000263 kostenfrei https://doaj.org/toc/2214-5095 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 20 2024 e02875- |
spelling |
10.1016/j.cscm.2024.e02875 doi (DE-627)DOAJ097494801 (DE-599)DOAJdb38996d6f0940b4bbbd823b1abddf91 DE-627 ger DE-627 rakwb eng TA401-492 Yun Huang verfasserin aut Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper focuses on the mechanical behaviour, seismic application in steel frame connections and steel structure of shape memory alloy (SMA) plates. This study commenced by examining the hysteretic response of SMA plates subjected to cyclic tension tests, considering two different loading paths. Subsequently, a self-centring steel frame connection equipped with SMA plates and washers (SC-PW) was examined via quasi-static cyclic loading tests, and comparatively satisfactory self-centring behaviour was observed. However, the degradation of the initial stiffness of the SC-PW due to an initial imperfection was observed. An improvement strategy was proposed to overcome the degradation of the hysteretic behaviour (e.g., initial stiffness) of the SC-PW. Disc springs with a larger stiffness and preloads were introduced to overcome the degradation of the initial stiffness of the SC-PW, and the validation was confirmed via detailed finite element (FE) analyses. To improve the computation efficiency, a simplified FE model was developed to reproduce the hysteretic responses of the connection. Based on the simplified FE model, a six-storey prototype structure, i.e., a self-centring hybrid steel frame (SCHSF), equipped with the improved connection was developed, and the structural dynamic responses were investigated via nonlinear response history analyses, where mainshock–aftershock sequences were considered. The influence of the SMA material properties on the seismic behaviour of the prototype structure was investigated. Shape memory alloy plate Self-centring connection Disc spring Hybrid steel frame Mainshock-aftershock sequences Materials of engineering and construction. Mechanics of materials Guojun Xu verfasserin aut Yali Zhang verfasserin aut Zhongfa Zhou verfasserin aut Ke Ke verfasserin aut In Case Studies in Construction Materials Elsevier, 2017 20(2024), Seite e02875- (DE-627)774106875 (DE-600)2745449-6 22145095 nnns volume:20 year:2024 pages:e02875- https://doi.org/10.1016/j.cscm.2024.e02875 kostenfrei https://doaj.org/article/db38996d6f0940b4bbbd823b1abddf91 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214509524000263 kostenfrei https://doaj.org/toc/2214-5095 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 20 2024 e02875- |
allfields_unstemmed |
10.1016/j.cscm.2024.e02875 doi (DE-627)DOAJ097494801 (DE-599)DOAJdb38996d6f0940b4bbbd823b1abddf91 DE-627 ger DE-627 rakwb eng TA401-492 Yun Huang verfasserin aut Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper focuses on the mechanical behaviour, seismic application in steel frame connections and steel structure of shape memory alloy (SMA) plates. This study commenced by examining the hysteretic response of SMA plates subjected to cyclic tension tests, considering two different loading paths. Subsequently, a self-centring steel frame connection equipped with SMA plates and washers (SC-PW) was examined via quasi-static cyclic loading tests, and comparatively satisfactory self-centring behaviour was observed. However, the degradation of the initial stiffness of the SC-PW due to an initial imperfection was observed. An improvement strategy was proposed to overcome the degradation of the hysteretic behaviour (e.g., initial stiffness) of the SC-PW. Disc springs with a larger stiffness and preloads were introduced to overcome the degradation of the initial stiffness of the SC-PW, and the validation was confirmed via detailed finite element (FE) analyses. To improve the computation efficiency, a simplified FE model was developed to reproduce the hysteretic responses of the connection. Based on the simplified FE model, a six-storey prototype structure, i.e., a self-centring hybrid steel frame (SCHSF), equipped with the improved connection was developed, and the structural dynamic responses were investigated via nonlinear response history analyses, where mainshock–aftershock sequences were considered. The influence of the SMA material properties on the seismic behaviour of the prototype structure was investigated. Shape memory alloy plate Self-centring connection Disc spring Hybrid steel frame Mainshock-aftershock sequences Materials of engineering and construction. Mechanics of materials Guojun Xu verfasserin aut Yali Zhang verfasserin aut Zhongfa Zhou verfasserin aut Ke Ke verfasserin aut In Case Studies in Construction Materials Elsevier, 2017 20(2024), Seite e02875- (DE-627)774106875 (DE-600)2745449-6 22145095 nnns volume:20 year:2024 pages:e02875- https://doi.org/10.1016/j.cscm.2024.e02875 kostenfrei https://doaj.org/article/db38996d6f0940b4bbbd823b1abddf91 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214509524000263 kostenfrei https://doaj.org/toc/2214-5095 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 20 2024 e02875- |
allfieldsGer |
10.1016/j.cscm.2024.e02875 doi (DE-627)DOAJ097494801 (DE-599)DOAJdb38996d6f0940b4bbbd823b1abddf91 DE-627 ger DE-627 rakwb eng TA401-492 Yun Huang verfasserin aut Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper focuses on the mechanical behaviour, seismic application in steel frame connections and steel structure of shape memory alloy (SMA) plates. This study commenced by examining the hysteretic response of SMA plates subjected to cyclic tension tests, considering two different loading paths. Subsequently, a self-centring steel frame connection equipped with SMA plates and washers (SC-PW) was examined via quasi-static cyclic loading tests, and comparatively satisfactory self-centring behaviour was observed. However, the degradation of the initial stiffness of the SC-PW due to an initial imperfection was observed. An improvement strategy was proposed to overcome the degradation of the hysteretic behaviour (e.g., initial stiffness) of the SC-PW. Disc springs with a larger stiffness and preloads were introduced to overcome the degradation of the initial stiffness of the SC-PW, and the validation was confirmed via detailed finite element (FE) analyses. To improve the computation efficiency, a simplified FE model was developed to reproduce the hysteretic responses of the connection. Based on the simplified FE model, a six-storey prototype structure, i.e., a self-centring hybrid steel frame (SCHSF), equipped with the improved connection was developed, and the structural dynamic responses were investigated via nonlinear response history analyses, where mainshock–aftershock sequences were considered. The influence of the SMA material properties on the seismic behaviour of the prototype structure was investigated. Shape memory alloy plate Self-centring connection Disc spring Hybrid steel frame Mainshock-aftershock sequences Materials of engineering and construction. Mechanics of materials Guojun Xu verfasserin aut Yali Zhang verfasserin aut Zhongfa Zhou verfasserin aut Ke Ke verfasserin aut In Case Studies in Construction Materials Elsevier, 2017 20(2024), Seite e02875- (DE-627)774106875 (DE-600)2745449-6 22145095 nnns volume:20 year:2024 pages:e02875- https://doi.org/10.1016/j.cscm.2024.e02875 kostenfrei https://doaj.org/article/db38996d6f0940b4bbbd823b1abddf91 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214509524000263 kostenfrei https://doaj.org/toc/2214-5095 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 20 2024 e02875- |
allfieldsSound |
10.1016/j.cscm.2024.e02875 doi (DE-627)DOAJ097494801 (DE-599)DOAJdb38996d6f0940b4bbbd823b1abddf91 DE-627 ger DE-627 rakwb eng TA401-492 Yun Huang verfasserin aut Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper focuses on the mechanical behaviour, seismic application in steel frame connections and steel structure of shape memory alloy (SMA) plates. This study commenced by examining the hysteretic response of SMA plates subjected to cyclic tension tests, considering two different loading paths. Subsequently, a self-centring steel frame connection equipped with SMA plates and washers (SC-PW) was examined via quasi-static cyclic loading tests, and comparatively satisfactory self-centring behaviour was observed. However, the degradation of the initial stiffness of the SC-PW due to an initial imperfection was observed. An improvement strategy was proposed to overcome the degradation of the hysteretic behaviour (e.g., initial stiffness) of the SC-PW. Disc springs with a larger stiffness and preloads were introduced to overcome the degradation of the initial stiffness of the SC-PW, and the validation was confirmed via detailed finite element (FE) analyses. To improve the computation efficiency, a simplified FE model was developed to reproduce the hysteretic responses of the connection. Based on the simplified FE model, a six-storey prototype structure, i.e., a self-centring hybrid steel frame (SCHSF), equipped with the improved connection was developed, and the structural dynamic responses were investigated via nonlinear response history analyses, where mainshock–aftershock sequences were considered. The influence of the SMA material properties on the seismic behaviour of the prototype structure was investigated. Shape memory alloy plate Self-centring connection Disc spring Hybrid steel frame Mainshock-aftershock sequences Materials of engineering and construction. Mechanics of materials Guojun Xu verfasserin aut Yali Zhang verfasserin aut Zhongfa Zhou verfasserin aut Ke Ke verfasserin aut In Case Studies in Construction Materials Elsevier, 2017 20(2024), Seite e02875- (DE-627)774106875 (DE-600)2745449-6 22145095 nnns volume:20 year:2024 pages:e02875- https://doi.org/10.1016/j.cscm.2024.e02875 kostenfrei https://doaj.org/article/db38996d6f0940b4bbbd823b1abddf91 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214509524000263 kostenfrei https://doaj.org/toc/2214-5095 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 20 2024 e02875- |
language |
English |
source |
In Case Studies in Construction Materials 20(2024), Seite e02875- volume:20 year:2024 pages:e02875- |
sourceStr |
In Case Studies in Construction Materials 20(2024), Seite e02875- volume:20 year:2024 pages:e02875- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Shape memory alloy plate Self-centring connection Disc spring Hybrid steel frame Mainshock-aftershock sequences Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Case Studies in Construction Materials |
authorswithroles_txt_mv |
Yun Huang @@aut@@ Guojun Xu @@aut@@ Yali Zhang @@aut@@ Zhongfa Zhou @@aut@@ Ke Ke @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
774106875 |
id |
DOAJ097494801 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097494801</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413184230.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cscm.2024.e02875</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097494801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdb38996d6f0940b4bbbd823b1abddf91</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper focuses on the mechanical behaviour, seismic application in steel frame connections and steel structure of shape memory alloy (SMA) plates. This study commenced by examining the hysteretic response of SMA plates subjected to cyclic tension tests, considering two different loading paths. Subsequently, a self-centring steel frame connection equipped with SMA plates and washers (SC-PW) was examined via quasi-static cyclic loading tests, and comparatively satisfactory self-centring behaviour was observed. However, the degradation of the initial stiffness of the SC-PW due to an initial imperfection was observed. An improvement strategy was proposed to overcome the degradation of the hysteretic behaviour (e.g., initial stiffness) of the SC-PW. Disc springs with a larger stiffness and preloads were introduced to overcome the degradation of the initial stiffness of the SC-PW, and the validation was confirmed via detailed finite element (FE) analyses. To improve the computation efficiency, a simplified FE model was developed to reproduce the hysteretic responses of the connection. Based on the simplified FE model, a six-storey prototype structure, i.e., a self-centring hybrid steel frame (SCHSF), equipped with the improved connection was developed, and the structural dynamic responses were investigated via nonlinear response history analyses, where mainshock–aftershock sequences were considered. The influence of the SMA material properties on the seismic behaviour of the prototype structure was investigated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shape memory alloy plate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-centring connection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disc spring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid steel frame</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mainshock-aftershock sequences</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guojun Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yali Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongfa Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ke Ke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Case Studies in Construction Materials</subfield><subfield code="d">Elsevier, 2017</subfield><subfield code="g">20(2024), Seite e02875-</subfield><subfield code="w">(DE-627)774106875</subfield><subfield code="w">(DE-600)2745449-6</subfield><subfield code="x">22145095</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:e02875-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cscm.2024.e02875</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/db38996d6f0940b4bbbd823b1abddf91</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2214509524000263</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2214-5095</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2024</subfield><subfield code="h">e02875-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yun Huang |
spellingShingle |
Yun Huang misc TA401-492 misc Shape memory alloy plate misc Self-centring connection misc Disc spring misc Hybrid steel frame misc Mainshock-aftershock sequences misc Materials of engineering and construction. Mechanics of materials Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences |
authorStr |
Yun Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)774106875 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
22145095 |
topic_title |
TA401-492 Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences Shape memory alloy plate Self-centring connection Disc spring Hybrid steel frame Mainshock-aftershock sequences |
topic |
misc TA401-492 misc Shape memory alloy plate misc Self-centring connection misc Disc spring misc Hybrid steel frame misc Mainshock-aftershock sequences misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc Shape memory alloy plate misc Self-centring connection misc Disc spring misc Hybrid steel frame misc Mainshock-aftershock sequences misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc Shape memory alloy plate misc Self-centring connection misc Disc spring misc Hybrid steel frame misc Mainshock-aftershock sequences misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Case Studies in Construction Materials |
hierarchy_parent_id |
774106875 |
hierarchy_top_title |
Case Studies in Construction Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)774106875 (DE-600)2745449-6 |
title |
Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences |
ctrlnum |
(DE-627)DOAJ097494801 (DE-599)DOAJdb38996d6f0940b4bbbd823b1abddf91 |
title_full |
Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences |
author_sort |
Yun Huang |
journal |
Case Studies in Construction Materials |
journalStr |
Case Studies in Construction Materials |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Yun Huang Guojun Xu Yali Zhang Zhongfa Zhou Ke Ke |
container_volume |
20 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Yun Huang |
doi_str_mv |
10.1016/j.cscm.2024.e02875 |
author2-role |
verfasserin |
title_sort |
seismic behaviour of self-centring hybrid steel frames equipped with sma plates under mainshock–aftershock sequences |
callnumber |
TA401-492 |
title_auth |
Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences |
abstract |
This paper focuses on the mechanical behaviour, seismic application in steel frame connections and steel structure of shape memory alloy (SMA) plates. This study commenced by examining the hysteretic response of SMA plates subjected to cyclic tension tests, considering two different loading paths. Subsequently, a self-centring steel frame connection equipped with SMA plates and washers (SC-PW) was examined via quasi-static cyclic loading tests, and comparatively satisfactory self-centring behaviour was observed. However, the degradation of the initial stiffness of the SC-PW due to an initial imperfection was observed. An improvement strategy was proposed to overcome the degradation of the hysteretic behaviour (e.g., initial stiffness) of the SC-PW. Disc springs with a larger stiffness and preloads were introduced to overcome the degradation of the initial stiffness of the SC-PW, and the validation was confirmed via detailed finite element (FE) analyses. To improve the computation efficiency, a simplified FE model was developed to reproduce the hysteretic responses of the connection. Based on the simplified FE model, a six-storey prototype structure, i.e., a self-centring hybrid steel frame (SCHSF), equipped with the improved connection was developed, and the structural dynamic responses were investigated via nonlinear response history analyses, where mainshock–aftershock sequences were considered. The influence of the SMA material properties on the seismic behaviour of the prototype structure was investigated. |
abstractGer |
This paper focuses on the mechanical behaviour, seismic application in steel frame connections and steel structure of shape memory alloy (SMA) plates. This study commenced by examining the hysteretic response of SMA plates subjected to cyclic tension tests, considering two different loading paths. Subsequently, a self-centring steel frame connection equipped with SMA plates and washers (SC-PW) was examined via quasi-static cyclic loading tests, and comparatively satisfactory self-centring behaviour was observed. However, the degradation of the initial stiffness of the SC-PW due to an initial imperfection was observed. An improvement strategy was proposed to overcome the degradation of the hysteretic behaviour (e.g., initial stiffness) of the SC-PW. Disc springs with a larger stiffness and preloads were introduced to overcome the degradation of the initial stiffness of the SC-PW, and the validation was confirmed via detailed finite element (FE) analyses. To improve the computation efficiency, a simplified FE model was developed to reproduce the hysteretic responses of the connection. Based on the simplified FE model, a six-storey prototype structure, i.e., a self-centring hybrid steel frame (SCHSF), equipped with the improved connection was developed, and the structural dynamic responses were investigated via nonlinear response history analyses, where mainshock–aftershock sequences were considered. The influence of the SMA material properties on the seismic behaviour of the prototype structure was investigated. |
abstract_unstemmed |
This paper focuses on the mechanical behaviour, seismic application in steel frame connections and steel structure of shape memory alloy (SMA) plates. This study commenced by examining the hysteretic response of SMA plates subjected to cyclic tension tests, considering two different loading paths. Subsequently, a self-centring steel frame connection equipped with SMA plates and washers (SC-PW) was examined via quasi-static cyclic loading tests, and comparatively satisfactory self-centring behaviour was observed. However, the degradation of the initial stiffness of the SC-PW due to an initial imperfection was observed. An improvement strategy was proposed to overcome the degradation of the hysteretic behaviour (e.g., initial stiffness) of the SC-PW. Disc springs with a larger stiffness and preloads were introduced to overcome the degradation of the initial stiffness of the SC-PW, and the validation was confirmed via detailed finite element (FE) analyses. To improve the computation efficiency, a simplified FE model was developed to reproduce the hysteretic responses of the connection. Based on the simplified FE model, a six-storey prototype structure, i.e., a self-centring hybrid steel frame (SCHSF), equipped with the improved connection was developed, and the structural dynamic responses were investigated via nonlinear response history analyses, where mainshock–aftershock sequences were considered. The influence of the SMA material properties on the seismic behaviour of the prototype structure was investigated. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences |
url |
https://doi.org/10.1016/j.cscm.2024.e02875 https://doaj.org/article/db38996d6f0940b4bbbd823b1abddf91 http://www.sciencedirect.com/science/article/pii/S2214509524000263 https://doaj.org/toc/2214-5095 |
remote_bool |
true |
author2 |
Guojun Xu Yali Zhang Zhongfa Zhou Ke Ke |
author2Str |
Guojun Xu Yali Zhang Zhongfa Zhou Ke Ke |
ppnlink |
774106875 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cscm.2024.e02875 |
callnumber-a |
TA401-492 |
up_date |
2024-07-04T01:28:32.522Z |
_version_ |
1803609977678462977 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097494801</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413184230.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cscm.2024.e02875</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097494801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdb38996d6f0940b4bbbd823b1abddf91</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper focuses on the mechanical behaviour, seismic application in steel frame connections and steel structure of shape memory alloy (SMA) plates. This study commenced by examining the hysteretic response of SMA plates subjected to cyclic tension tests, considering two different loading paths. Subsequently, a self-centring steel frame connection equipped with SMA plates and washers (SC-PW) was examined via quasi-static cyclic loading tests, and comparatively satisfactory self-centring behaviour was observed. However, the degradation of the initial stiffness of the SC-PW due to an initial imperfection was observed. An improvement strategy was proposed to overcome the degradation of the hysteretic behaviour (e.g., initial stiffness) of the SC-PW. Disc springs with a larger stiffness and preloads were introduced to overcome the degradation of the initial stiffness of the SC-PW, and the validation was confirmed via detailed finite element (FE) analyses. To improve the computation efficiency, a simplified FE model was developed to reproduce the hysteretic responses of the connection. Based on the simplified FE model, a six-storey prototype structure, i.e., a self-centring hybrid steel frame (SCHSF), equipped with the improved connection was developed, and the structural dynamic responses were investigated via nonlinear response history analyses, where mainshock–aftershock sequences were considered. The influence of the SMA material properties on the seismic behaviour of the prototype structure was investigated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shape memory alloy plate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-centring connection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disc spring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid steel frame</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mainshock-aftershock sequences</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guojun Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yali Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongfa Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ke Ke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Case Studies in Construction Materials</subfield><subfield code="d">Elsevier, 2017</subfield><subfield code="g">20(2024), Seite e02875-</subfield><subfield code="w">(DE-627)774106875</subfield><subfield code="w">(DE-600)2745449-6</subfield><subfield code="x">22145095</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:e02875-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cscm.2024.e02875</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/db38996d6f0940b4bbbd823b1abddf91</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2214509524000263</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2214-5095</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2024</subfield><subfield code="h">e02875-</subfield></datafield></record></collection>
|
score |
7.4012766 |