Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting
Offshore wind farms are becoming a pivotal solution to address the increasing energy demand worldwide and reduce carbon emissions to achieve a sustainable energy sector. Considering the higher operational and maintenance cost of offshore wind farms, it is important to make a good maintenance plan to...
Ausführliche Beschreibung
Autor*in: |
Xue Zhou [verfasserIn] Yajian Ke [verfasserIn] Jianhui Zhu [verfasserIn] Weiwei Cui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sustainability - MDPI AG, 2009, 16(2023), 1, p 333 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2023 ; number:1, p 333 |
Links: |
---|
DOI / URN: |
10.3390/su16010333 |
---|
Katalog-ID: |
DOAJ097765643 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097765643 | ||
003 | DE-627 | ||
005 | 20240413194011.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/su16010333 |2 doi | |
035 | |a (DE-627)DOAJ097765643 | ||
035 | |a (DE-599)DOAJ8d2532decbf041ad9acb0b0ea5a79866 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD194-195 | |
050 | 0 | |a TJ807-830 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Xue Zhou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Offshore wind farms are becoming a pivotal solution to address the increasing energy demand worldwide and reduce carbon emissions to achieve a sustainable energy sector. Considering the higher operational and maintenance cost of offshore wind farms, it is important to make a good maintenance plan to guarantee the system’s reliability and reduce the total cost related to maintenance activities at the same time. Because maintenance planning is a long-term decision problem and the wind force is random, long-term wind force prediction is needed to help managers evaluate the loss caused by maintenances to be executed in the future. However, long-term wind force prediction is naturally complicated, which is much harder than the short-term (e.g., day-ahead) prediction widely investigated in the literature. In order to overcome this difficulty, we design a deep learning framework combining variational mode decomposition, a convolution neural network, long short-term memory network, and full-connected network. Using the public data from the city of Leeds, the prediction accuracy of the above framework is validated by comparing it with other prediction techniques. Then, the predicted wind force is input into the established optimization model determining preventive maintenances during a predefined period. Because the uncertainty of wind force is replaced by the prediction value, the optimization model can be established as a mixed-integer linear programing model, which only contains limited variables and can be solved quickly. Lastly, an abundance of numerical experiments are conducted to validate the effectiveness of the proposed optimization model, based on which some managerial insights are provided to the managers of offshore wind farms about the optimal operations and maintenance strategy. The research outcome will greatly promote the development of the wind power industry in the future. | ||
650 | 4 | |a offshore wind farm | |
650 | 4 | |a maintenance planning | |
650 | 4 | |a optimization | |
650 | 4 | |a deep learning | |
653 | 0 | |a Environmental effects of industries and plants | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Yajian Ke |e verfasserin |4 aut | |
700 | 0 | |a Jianhui Zhu |e verfasserin |4 aut | |
700 | 0 | |a Weiwei Cui |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sustainability |d MDPI AG, 2009 |g 16(2023), 1, p 333 |w (DE-627)610604120 |w (DE-600)2518383-7 |x 20711050 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2023 |g number:1, p 333 |
856 | 4 | 0 | |u https://doi.org/10.3390/su16010333 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8d2532decbf041ad9acb0b0ea5a79866 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2071-1050/16/1/333 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-1050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2023 |e 1, p 333 |
author_variant |
x z xz y k yk j z jz w c wc |
---|---|
matchkey_str |
article:20711050:2023----::utialoeainnmitnneffsoeidambsdn |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TD |
publishDate |
2023 |
allfields |
10.3390/su16010333 doi (DE-627)DOAJ097765643 (DE-599)DOAJ8d2532decbf041ad9acb0b0ea5a79866 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Xue Zhou verfasserin aut Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Offshore wind farms are becoming a pivotal solution to address the increasing energy demand worldwide and reduce carbon emissions to achieve a sustainable energy sector. Considering the higher operational and maintenance cost of offshore wind farms, it is important to make a good maintenance plan to guarantee the system’s reliability and reduce the total cost related to maintenance activities at the same time. Because maintenance planning is a long-term decision problem and the wind force is random, long-term wind force prediction is needed to help managers evaluate the loss caused by maintenances to be executed in the future. However, long-term wind force prediction is naturally complicated, which is much harder than the short-term (e.g., day-ahead) prediction widely investigated in the literature. In order to overcome this difficulty, we design a deep learning framework combining variational mode decomposition, a convolution neural network, long short-term memory network, and full-connected network. Using the public data from the city of Leeds, the prediction accuracy of the above framework is validated by comparing it with other prediction techniques. Then, the predicted wind force is input into the established optimization model determining preventive maintenances during a predefined period. Because the uncertainty of wind force is replaced by the prediction value, the optimization model can be established as a mixed-integer linear programing model, which only contains limited variables and can be solved quickly. Lastly, an abundance of numerical experiments are conducted to validate the effectiveness of the proposed optimization model, based on which some managerial insights are provided to the managers of offshore wind farms about the optimal operations and maintenance strategy. The research outcome will greatly promote the development of the wind power industry in the future. offshore wind farm maintenance planning optimization deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Yajian Ke verfasserin aut Jianhui Zhu verfasserin aut Weiwei Cui verfasserin aut In Sustainability MDPI AG, 2009 16(2023), 1, p 333 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:16 year:2023 number:1, p 333 https://doi.org/10.3390/su16010333 kostenfrei https://doaj.org/article/8d2532decbf041ad9acb0b0ea5a79866 kostenfrei https://www.mdpi.com/2071-1050/16/1/333 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1, p 333 |
spelling |
10.3390/su16010333 doi (DE-627)DOAJ097765643 (DE-599)DOAJ8d2532decbf041ad9acb0b0ea5a79866 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Xue Zhou verfasserin aut Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Offshore wind farms are becoming a pivotal solution to address the increasing energy demand worldwide and reduce carbon emissions to achieve a sustainable energy sector. Considering the higher operational and maintenance cost of offshore wind farms, it is important to make a good maintenance plan to guarantee the system’s reliability and reduce the total cost related to maintenance activities at the same time. Because maintenance planning is a long-term decision problem and the wind force is random, long-term wind force prediction is needed to help managers evaluate the loss caused by maintenances to be executed in the future. However, long-term wind force prediction is naturally complicated, which is much harder than the short-term (e.g., day-ahead) prediction widely investigated in the literature. In order to overcome this difficulty, we design a deep learning framework combining variational mode decomposition, a convolution neural network, long short-term memory network, and full-connected network. Using the public data from the city of Leeds, the prediction accuracy of the above framework is validated by comparing it with other prediction techniques. Then, the predicted wind force is input into the established optimization model determining preventive maintenances during a predefined period. Because the uncertainty of wind force is replaced by the prediction value, the optimization model can be established as a mixed-integer linear programing model, which only contains limited variables and can be solved quickly. Lastly, an abundance of numerical experiments are conducted to validate the effectiveness of the proposed optimization model, based on which some managerial insights are provided to the managers of offshore wind farms about the optimal operations and maintenance strategy. The research outcome will greatly promote the development of the wind power industry in the future. offshore wind farm maintenance planning optimization deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Yajian Ke verfasserin aut Jianhui Zhu verfasserin aut Weiwei Cui verfasserin aut In Sustainability MDPI AG, 2009 16(2023), 1, p 333 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:16 year:2023 number:1, p 333 https://doi.org/10.3390/su16010333 kostenfrei https://doaj.org/article/8d2532decbf041ad9acb0b0ea5a79866 kostenfrei https://www.mdpi.com/2071-1050/16/1/333 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1, p 333 |
allfields_unstemmed |
10.3390/su16010333 doi (DE-627)DOAJ097765643 (DE-599)DOAJ8d2532decbf041ad9acb0b0ea5a79866 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Xue Zhou verfasserin aut Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Offshore wind farms are becoming a pivotal solution to address the increasing energy demand worldwide and reduce carbon emissions to achieve a sustainable energy sector. Considering the higher operational and maintenance cost of offshore wind farms, it is important to make a good maintenance plan to guarantee the system’s reliability and reduce the total cost related to maintenance activities at the same time. Because maintenance planning is a long-term decision problem and the wind force is random, long-term wind force prediction is needed to help managers evaluate the loss caused by maintenances to be executed in the future. However, long-term wind force prediction is naturally complicated, which is much harder than the short-term (e.g., day-ahead) prediction widely investigated in the literature. In order to overcome this difficulty, we design a deep learning framework combining variational mode decomposition, a convolution neural network, long short-term memory network, and full-connected network. Using the public data from the city of Leeds, the prediction accuracy of the above framework is validated by comparing it with other prediction techniques. Then, the predicted wind force is input into the established optimization model determining preventive maintenances during a predefined period. Because the uncertainty of wind force is replaced by the prediction value, the optimization model can be established as a mixed-integer linear programing model, which only contains limited variables and can be solved quickly. Lastly, an abundance of numerical experiments are conducted to validate the effectiveness of the proposed optimization model, based on which some managerial insights are provided to the managers of offshore wind farms about the optimal operations and maintenance strategy. The research outcome will greatly promote the development of the wind power industry in the future. offshore wind farm maintenance planning optimization deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Yajian Ke verfasserin aut Jianhui Zhu verfasserin aut Weiwei Cui verfasserin aut In Sustainability MDPI AG, 2009 16(2023), 1, p 333 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:16 year:2023 number:1, p 333 https://doi.org/10.3390/su16010333 kostenfrei https://doaj.org/article/8d2532decbf041ad9acb0b0ea5a79866 kostenfrei https://www.mdpi.com/2071-1050/16/1/333 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1, p 333 |
allfieldsGer |
10.3390/su16010333 doi (DE-627)DOAJ097765643 (DE-599)DOAJ8d2532decbf041ad9acb0b0ea5a79866 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Xue Zhou verfasserin aut Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Offshore wind farms are becoming a pivotal solution to address the increasing energy demand worldwide and reduce carbon emissions to achieve a sustainable energy sector. Considering the higher operational and maintenance cost of offshore wind farms, it is important to make a good maintenance plan to guarantee the system’s reliability and reduce the total cost related to maintenance activities at the same time. Because maintenance planning is a long-term decision problem and the wind force is random, long-term wind force prediction is needed to help managers evaluate the loss caused by maintenances to be executed in the future. However, long-term wind force prediction is naturally complicated, which is much harder than the short-term (e.g., day-ahead) prediction widely investigated in the literature. In order to overcome this difficulty, we design a deep learning framework combining variational mode decomposition, a convolution neural network, long short-term memory network, and full-connected network. Using the public data from the city of Leeds, the prediction accuracy of the above framework is validated by comparing it with other prediction techniques. Then, the predicted wind force is input into the established optimization model determining preventive maintenances during a predefined period. Because the uncertainty of wind force is replaced by the prediction value, the optimization model can be established as a mixed-integer linear programing model, which only contains limited variables and can be solved quickly. Lastly, an abundance of numerical experiments are conducted to validate the effectiveness of the proposed optimization model, based on which some managerial insights are provided to the managers of offshore wind farms about the optimal operations and maintenance strategy. The research outcome will greatly promote the development of the wind power industry in the future. offshore wind farm maintenance planning optimization deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Yajian Ke verfasserin aut Jianhui Zhu verfasserin aut Weiwei Cui verfasserin aut In Sustainability MDPI AG, 2009 16(2023), 1, p 333 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:16 year:2023 number:1, p 333 https://doi.org/10.3390/su16010333 kostenfrei https://doaj.org/article/8d2532decbf041ad9acb0b0ea5a79866 kostenfrei https://www.mdpi.com/2071-1050/16/1/333 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1, p 333 |
allfieldsSound |
10.3390/su16010333 doi (DE-627)DOAJ097765643 (DE-599)DOAJ8d2532decbf041ad9acb0b0ea5a79866 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Xue Zhou verfasserin aut Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Offshore wind farms are becoming a pivotal solution to address the increasing energy demand worldwide and reduce carbon emissions to achieve a sustainable energy sector. Considering the higher operational and maintenance cost of offshore wind farms, it is important to make a good maintenance plan to guarantee the system’s reliability and reduce the total cost related to maintenance activities at the same time. Because maintenance planning is a long-term decision problem and the wind force is random, long-term wind force prediction is needed to help managers evaluate the loss caused by maintenances to be executed in the future. However, long-term wind force prediction is naturally complicated, which is much harder than the short-term (e.g., day-ahead) prediction widely investigated in the literature. In order to overcome this difficulty, we design a deep learning framework combining variational mode decomposition, a convolution neural network, long short-term memory network, and full-connected network. Using the public data from the city of Leeds, the prediction accuracy of the above framework is validated by comparing it with other prediction techniques. Then, the predicted wind force is input into the established optimization model determining preventive maintenances during a predefined period. Because the uncertainty of wind force is replaced by the prediction value, the optimization model can be established as a mixed-integer linear programing model, which only contains limited variables and can be solved quickly. Lastly, an abundance of numerical experiments are conducted to validate the effectiveness of the proposed optimization model, based on which some managerial insights are provided to the managers of offshore wind farms about the optimal operations and maintenance strategy. The research outcome will greatly promote the development of the wind power industry in the future. offshore wind farm maintenance planning optimization deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Yajian Ke verfasserin aut Jianhui Zhu verfasserin aut Weiwei Cui verfasserin aut In Sustainability MDPI AG, 2009 16(2023), 1, p 333 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:16 year:2023 number:1, p 333 https://doi.org/10.3390/su16010333 kostenfrei https://doaj.org/article/8d2532decbf041ad9acb0b0ea5a79866 kostenfrei https://www.mdpi.com/2071-1050/16/1/333 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1, p 333 |
language |
English |
source |
In Sustainability 16(2023), 1, p 333 volume:16 year:2023 number:1, p 333 |
sourceStr |
In Sustainability 16(2023), 1, p 333 volume:16 year:2023 number:1, p 333 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
offshore wind farm maintenance planning optimization deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Sustainability |
authorswithroles_txt_mv |
Xue Zhou @@aut@@ Yajian Ke @@aut@@ Jianhui Zhu @@aut@@ Weiwei Cui @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
610604120 |
id |
DOAJ097765643 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097765643</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413194011.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su16010333</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097765643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8d2532decbf041ad9acb0b0ea5a79866</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xue Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Offshore wind farms are becoming a pivotal solution to address the increasing energy demand worldwide and reduce carbon emissions to achieve a sustainable energy sector. Considering the higher operational and maintenance cost of offshore wind farms, it is important to make a good maintenance plan to guarantee the system’s reliability and reduce the total cost related to maintenance activities at the same time. Because maintenance planning is a long-term decision problem and the wind force is random, long-term wind force prediction is needed to help managers evaluate the loss caused by maintenances to be executed in the future. However, long-term wind force prediction is naturally complicated, which is much harder than the short-term (e.g., day-ahead) prediction widely investigated in the literature. In order to overcome this difficulty, we design a deep learning framework combining variational mode decomposition, a convolution neural network, long short-term memory network, and full-connected network. Using the public data from the city of Leeds, the prediction accuracy of the above framework is validated by comparing it with other prediction techniques. Then, the predicted wind force is input into the established optimization model determining preventive maintenances during a predefined period. Because the uncertainty of wind force is replaced by the prediction value, the optimization model can be established as a mixed-integer linear programing model, which only contains limited variables and can be solved quickly. Lastly, an abundance of numerical experiments are conducted to validate the effectiveness of the proposed optimization model, based on which some managerial insights are provided to the managers of offshore wind farms about the optimal operations and maintenance strategy. The research outcome will greatly promote the development of the wind power industry in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">offshore wind farm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maintenance planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yajian Ke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianhui Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weiwei Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">16(2023), 1, p 333</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 333</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su16010333</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8d2532decbf041ad9acb0b0ea5a79866</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/16/1/333</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 333</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xue Zhou |
spellingShingle |
Xue Zhou misc TD194-195 misc TJ807-830 misc GE1-350 misc offshore wind farm misc maintenance planning misc optimization misc deep learning misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting |
authorStr |
Xue Zhou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604120 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD194-195 |
illustrated |
Not Illustrated |
issn |
20711050 |
topic_title |
TD194-195 TJ807-830 GE1-350 Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting offshore wind farm maintenance planning optimization deep learning |
topic |
misc TD194-195 misc TJ807-830 misc GE1-350 misc offshore wind farm misc maintenance planning misc optimization misc deep learning misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_unstemmed |
misc TD194-195 misc TJ807-830 misc GE1-350 misc offshore wind farm misc maintenance planning misc optimization misc deep learning misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_browse |
misc TD194-195 misc TJ807-830 misc GE1-350 misc offshore wind farm misc maintenance planning misc optimization misc deep learning misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainability |
hierarchy_parent_id |
610604120 |
hierarchy_top_title |
Sustainability |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604120 (DE-600)2518383-7 |
title |
Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting |
ctrlnum |
(DE-627)DOAJ097765643 (DE-599)DOAJ8d2532decbf041ad9acb0b0ea5a79866 |
title_full |
Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting |
author_sort |
Xue Zhou |
journal |
Sustainability |
journalStr |
Sustainability |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Xue Zhou Yajian Ke Jianhui Zhu Weiwei Cui |
container_volume |
16 |
class |
TD194-195 TJ807-830 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Xue Zhou |
doi_str_mv |
10.3390/su16010333 |
author2-role |
verfasserin |
title_sort |
sustainable operation and maintenance of offshore wind farms based on the deep wind forecasting |
callnumber |
TD194-195 |
title_auth |
Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting |
abstract |
Offshore wind farms are becoming a pivotal solution to address the increasing energy demand worldwide and reduce carbon emissions to achieve a sustainable energy sector. Considering the higher operational and maintenance cost of offshore wind farms, it is important to make a good maintenance plan to guarantee the system’s reliability and reduce the total cost related to maintenance activities at the same time. Because maintenance planning is a long-term decision problem and the wind force is random, long-term wind force prediction is needed to help managers evaluate the loss caused by maintenances to be executed in the future. However, long-term wind force prediction is naturally complicated, which is much harder than the short-term (e.g., day-ahead) prediction widely investigated in the literature. In order to overcome this difficulty, we design a deep learning framework combining variational mode decomposition, a convolution neural network, long short-term memory network, and full-connected network. Using the public data from the city of Leeds, the prediction accuracy of the above framework is validated by comparing it with other prediction techniques. Then, the predicted wind force is input into the established optimization model determining preventive maintenances during a predefined period. Because the uncertainty of wind force is replaced by the prediction value, the optimization model can be established as a mixed-integer linear programing model, which only contains limited variables and can be solved quickly. Lastly, an abundance of numerical experiments are conducted to validate the effectiveness of the proposed optimization model, based on which some managerial insights are provided to the managers of offshore wind farms about the optimal operations and maintenance strategy. The research outcome will greatly promote the development of the wind power industry in the future. |
abstractGer |
Offshore wind farms are becoming a pivotal solution to address the increasing energy demand worldwide and reduce carbon emissions to achieve a sustainable energy sector. Considering the higher operational and maintenance cost of offshore wind farms, it is important to make a good maintenance plan to guarantee the system’s reliability and reduce the total cost related to maintenance activities at the same time. Because maintenance planning is a long-term decision problem and the wind force is random, long-term wind force prediction is needed to help managers evaluate the loss caused by maintenances to be executed in the future. However, long-term wind force prediction is naturally complicated, which is much harder than the short-term (e.g., day-ahead) prediction widely investigated in the literature. In order to overcome this difficulty, we design a deep learning framework combining variational mode decomposition, a convolution neural network, long short-term memory network, and full-connected network. Using the public data from the city of Leeds, the prediction accuracy of the above framework is validated by comparing it with other prediction techniques. Then, the predicted wind force is input into the established optimization model determining preventive maintenances during a predefined period. Because the uncertainty of wind force is replaced by the prediction value, the optimization model can be established as a mixed-integer linear programing model, which only contains limited variables and can be solved quickly. Lastly, an abundance of numerical experiments are conducted to validate the effectiveness of the proposed optimization model, based on which some managerial insights are provided to the managers of offshore wind farms about the optimal operations and maintenance strategy. The research outcome will greatly promote the development of the wind power industry in the future. |
abstract_unstemmed |
Offshore wind farms are becoming a pivotal solution to address the increasing energy demand worldwide and reduce carbon emissions to achieve a sustainable energy sector. Considering the higher operational and maintenance cost of offshore wind farms, it is important to make a good maintenance plan to guarantee the system’s reliability and reduce the total cost related to maintenance activities at the same time. Because maintenance planning is a long-term decision problem and the wind force is random, long-term wind force prediction is needed to help managers evaluate the loss caused by maintenances to be executed in the future. However, long-term wind force prediction is naturally complicated, which is much harder than the short-term (e.g., day-ahead) prediction widely investigated in the literature. In order to overcome this difficulty, we design a deep learning framework combining variational mode decomposition, a convolution neural network, long short-term memory network, and full-connected network. Using the public data from the city of Leeds, the prediction accuracy of the above framework is validated by comparing it with other prediction techniques. Then, the predicted wind force is input into the established optimization model determining preventive maintenances during a predefined period. Because the uncertainty of wind force is replaced by the prediction value, the optimization model can be established as a mixed-integer linear programing model, which only contains limited variables and can be solved quickly. Lastly, an abundance of numerical experiments are conducted to validate the effectiveness of the proposed optimization model, based on which some managerial insights are provided to the managers of offshore wind farms about the optimal operations and maintenance strategy. The research outcome will greatly promote the development of the wind power industry in the future. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 333 |
title_short |
Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting |
url |
https://doi.org/10.3390/su16010333 https://doaj.org/article/8d2532decbf041ad9acb0b0ea5a79866 https://www.mdpi.com/2071-1050/16/1/333 https://doaj.org/toc/2071-1050 |
remote_bool |
true |
author2 |
Yajian Ke Jianhui Zhu Weiwei Cui |
author2Str |
Yajian Ke Jianhui Zhu Weiwei Cui |
ppnlink |
610604120 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/su16010333 |
callnumber-a |
TD194-195 |
up_date |
2024-07-03T13:39:26.058Z |
_version_ |
1803565364482670592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097765643</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413194011.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su16010333</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097765643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8d2532decbf041ad9acb0b0ea5a79866</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xue Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Offshore wind farms are becoming a pivotal solution to address the increasing energy demand worldwide and reduce carbon emissions to achieve a sustainable energy sector. Considering the higher operational and maintenance cost of offshore wind farms, it is important to make a good maintenance plan to guarantee the system’s reliability and reduce the total cost related to maintenance activities at the same time. Because maintenance planning is a long-term decision problem and the wind force is random, long-term wind force prediction is needed to help managers evaluate the loss caused by maintenances to be executed in the future. However, long-term wind force prediction is naturally complicated, which is much harder than the short-term (e.g., day-ahead) prediction widely investigated in the literature. In order to overcome this difficulty, we design a deep learning framework combining variational mode decomposition, a convolution neural network, long short-term memory network, and full-connected network. Using the public data from the city of Leeds, the prediction accuracy of the above framework is validated by comparing it with other prediction techniques. Then, the predicted wind force is input into the established optimization model determining preventive maintenances during a predefined period. Because the uncertainty of wind force is replaced by the prediction value, the optimization model can be established as a mixed-integer linear programing model, which only contains limited variables and can be solved quickly. Lastly, an abundance of numerical experiments are conducted to validate the effectiveness of the proposed optimization model, based on which some managerial insights are provided to the managers of offshore wind farms about the optimal operations and maintenance strategy. The research outcome will greatly promote the development of the wind power industry in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">offshore wind farm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maintenance planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yajian Ke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianhui Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weiwei Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">16(2023), 1, p 333</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 333</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su16010333</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8d2532decbf041ad9acb0b0ea5a79866</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/16/1/333</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 333</subfield></datafield></record></collection>
|
score |
7.4001513 |