Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images
Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of...
Ausführliche Beschreibung
Autor*in: |
Toan Duc Nguyen [verfasserIn] Duc-Tai Le [verfasserIn] Junghyun Bum [verfasserIn] Seongho Kim [verfasserIn] Su Jeong Song [verfasserIn] Hyunseung Choo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Diagnostics - MDPI AG, 2012, 14(2024), 1, p 105 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2024 ; number:1, p 105 |
Links: |
---|
DOI / URN: |
10.3390/diagnostics14010105 |
---|
Katalog-ID: |
DOAJ097805904 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097805904 | ||
003 | DE-627 | ||
005 | 20240413194657.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/diagnostics14010105 |2 doi | |
035 | |a (DE-627)DOAJ097805904 | ||
035 | |a (DE-599)DOAJda0b5901e45b4aca951f35f3d91e4e5f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R5-920 | |
100 | 0 | |a Toan Duc Nguyen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931–0.974). Additionally, the paper presents visualizations of the model’s predictions, including confidence scores and heatmaps that highlight the model’s focal points—particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning. | ||
650 | 4 | |a medical image processing | |
650 | 4 | |a deep learning | |
650 | 4 | |a fundus image | |
650 | 4 | |a convolutional neural network | |
650 | 4 | |a vision transformer | |
653 | 0 | |a Medicine (General) | |
700 | 0 | |a Duc-Tai Le |e verfasserin |4 aut | |
700 | 0 | |a Junghyun Bum |e verfasserin |4 aut | |
700 | 0 | |a Seongho Kim |e verfasserin |4 aut | |
700 | 0 | |a Su Jeong Song |e verfasserin |4 aut | |
700 | 0 | |a Hyunseung Choo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Diagnostics |d MDPI AG, 2012 |g 14(2024), 1, p 105 |w (DE-627)718627814 |w (DE-600)2662336-5 |x 20754418 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2024 |g number:1, p 105 |
856 | 4 | 0 | |u https://doi.org/10.3390/diagnostics14010105 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/da0b5901e45b4aca951f35f3d91e4e5f |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-4418/14/1/105 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-4418 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2024 |e 1, p 105 |
author_variant |
t d n tdn d t l dtl j b jb s k sk s j s sjs h c hc |
---|---|
matchkey_str |
article:20754418:2024----::eiadsaeigoiuigeperignlrwd |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
R |
publishDate |
2024 |
allfields |
10.3390/diagnostics14010105 doi (DE-627)DOAJ097805904 (DE-599)DOAJda0b5901e45b4aca951f35f3d91e4e5f DE-627 ger DE-627 rakwb eng R5-920 Toan Duc Nguyen verfasserin aut Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931–0.974). Additionally, the paper presents visualizations of the model’s predictions, including confidence scores and heatmaps that highlight the model’s focal points—particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning. medical image processing deep learning fundus image convolutional neural network vision transformer Medicine (General) Duc-Tai Le verfasserin aut Junghyun Bum verfasserin aut Seongho Kim verfasserin aut Su Jeong Song verfasserin aut Hyunseung Choo verfasserin aut In Diagnostics MDPI AG, 2012 14(2024), 1, p 105 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:14 year:2024 number:1, p 105 https://doi.org/10.3390/diagnostics14010105 kostenfrei https://doaj.org/article/da0b5901e45b4aca951f35f3d91e4e5f kostenfrei https://www.mdpi.com/2075-4418/14/1/105 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1, p 105 |
spelling |
10.3390/diagnostics14010105 doi (DE-627)DOAJ097805904 (DE-599)DOAJda0b5901e45b4aca951f35f3d91e4e5f DE-627 ger DE-627 rakwb eng R5-920 Toan Duc Nguyen verfasserin aut Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931–0.974). Additionally, the paper presents visualizations of the model’s predictions, including confidence scores and heatmaps that highlight the model’s focal points—particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning. medical image processing deep learning fundus image convolutional neural network vision transformer Medicine (General) Duc-Tai Le verfasserin aut Junghyun Bum verfasserin aut Seongho Kim verfasserin aut Su Jeong Song verfasserin aut Hyunseung Choo verfasserin aut In Diagnostics MDPI AG, 2012 14(2024), 1, p 105 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:14 year:2024 number:1, p 105 https://doi.org/10.3390/diagnostics14010105 kostenfrei https://doaj.org/article/da0b5901e45b4aca951f35f3d91e4e5f kostenfrei https://www.mdpi.com/2075-4418/14/1/105 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1, p 105 |
allfields_unstemmed |
10.3390/diagnostics14010105 doi (DE-627)DOAJ097805904 (DE-599)DOAJda0b5901e45b4aca951f35f3d91e4e5f DE-627 ger DE-627 rakwb eng R5-920 Toan Duc Nguyen verfasserin aut Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931–0.974). Additionally, the paper presents visualizations of the model’s predictions, including confidence scores and heatmaps that highlight the model’s focal points—particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning. medical image processing deep learning fundus image convolutional neural network vision transformer Medicine (General) Duc-Tai Le verfasserin aut Junghyun Bum verfasserin aut Seongho Kim verfasserin aut Su Jeong Song verfasserin aut Hyunseung Choo verfasserin aut In Diagnostics MDPI AG, 2012 14(2024), 1, p 105 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:14 year:2024 number:1, p 105 https://doi.org/10.3390/diagnostics14010105 kostenfrei https://doaj.org/article/da0b5901e45b4aca951f35f3d91e4e5f kostenfrei https://www.mdpi.com/2075-4418/14/1/105 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1, p 105 |
allfieldsGer |
10.3390/diagnostics14010105 doi (DE-627)DOAJ097805904 (DE-599)DOAJda0b5901e45b4aca951f35f3d91e4e5f DE-627 ger DE-627 rakwb eng R5-920 Toan Duc Nguyen verfasserin aut Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931–0.974). Additionally, the paper presents visualizations of the model’s predictions, including confidence scores and heatmaps that highlight the model’s focal points—particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning. medical image processing deep learning fundus image convolutional neural network vision transformer Medicine (General) Duc-Tai Le verfasserin aut Junghyun Bum verfasserin aut Seongho Kim verfasserin aut Su Jeong Song verfasserin aut Hyunseung Choo verfasserin aut In Diagnostics MDPI AG, 2012 14(2024), 1, p 105 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:14 year:2024 number:1, p 105 https://doi.org/10.3390/diagnostics14010105 kostenfrei https://doaj.org/article/da0b5901e45b4aca951f35f3d91e4e5f kostenfrei https://www.mdpi.com/2075-4418/14/1/105 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1, p 105 |
allfieldsSound |
10.3390/diagnostics14010105 doi (DE-627)DOAJ097805904 (DE-599)DOAJda0b5901e45b4aca951f35f3d91e4e5f DE-627 ger DE-627 rakwb eng R5-920 Toan Duc Nguyen verfasserin aut Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931–0.974). Additionally, the paper presents visualizations of the model’s predictions, including confidence scores and heatmaps that highlight the model’s focal points—particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning. medical image processing deep learning fundus image convolutional neural network vision transformer Medicine (General) Duc-Tai Le verfasserin aut Junghyun Bum verfasserin aut Seongho Kim verfasserin aut Su Jeong Song verfasserin aut Hyunseung Choo verfasserin aut In Diagnostics MDPI AG, 2012 14(2024), 1, p 105 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:14 year:2024 number:1, p 105 https://doi.org/10.3390/diagnostics14010105 kostenfrei https://doaj.org/article/da0b5901e45b4aca951f35f3d91e4e5f kostenfrei https://www.mdpi.com/2075-4418/14/1/105 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1, p 105 |
language |
English |
source |
In Diagnostics 14(2024), 1, p 105 volume:14 year:2024 number:1, p 105 |
sourceStr |
In Diagnostics 14(2024), 1, p 105 volume:14 year:2024 number:1, p 105 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
medical image processing deep learning fundus image convolutional neural network vision transformer Medicine (General) |
isfreeaccess_bool |
true |
container_title |
Diagnostics |
authorswithroles_txt_mv |
Toan Duc Nguyen @@aut@@ Duc-Tai Le @@aut@@ Junghyun Bum @@aut@@ Seongho Kim @@aut@@ Su Jeong Song @@aut@@ Hyunseung Choo @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
718627814 |
id |
DOAJ097805904 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097805904</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413194657.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/diagnostics14010105</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097805904</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJda0b5901e45b4aca951f35f3d91e4e5f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Toan Duc Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931–0.974). Additionally, the paper presents visualizations of the model’s predictions, including confidence scores and heatmaps that highlight the model’s focal points—particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">medical image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fundus image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vision transformer</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Duc-Tai Le</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junghyun Bum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Seongho Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Su Jeong Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyunseung Choo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Diagnostics</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">14(2024), 1, p 105</subfield><subfield code="w">(DE-627)718627814</subfield><subfield code="w">(DE-600)2662336-5</subfield><subfield code="x">20754418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 105</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/diagnostics14010105</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/da0b5901e45b4aca951f35f3d91e4e5f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4418/14/1/105</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4418</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 105</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Toan Duc Nguyen |
spellingShingle |
Toan Duc Nguyen misc R5-920 misc medical image processing misc deep learning misc fundus image misc convolutional neural network misc vision transformer misc Medicine (General) Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images |
authorStr |
Toan Duc Nguyen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627814 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R5-920 |
illustrated |
Not Illustrated |
issn |
20754418 |
topic_title |
R5-920 Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images medical image processing deep learning fundus image convolutional neural network vision transformer |
topic |
misc R5-920 misc medical image processing misc deep learning misc fundus image misc convolutional neural network misc vision transformer misc Medicine (General) |
topic_unstemmed |
misc R5-920 misc medical image processing misc deep learning misc fundus image misc convolutional neural network misc vision transformer misc Medicine (General) |
topic_browse |
misc R5-920 misc medical image processing misc deep learning misc fundus image misc convolutional neural network misc vision transformer misc Medicine (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Diagnostics |
hierarchy_parent_id |
718627814 |
hierarchy_top_title |
Diagnostics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627814 (DE-600)2662336-5 |
title |
Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images |
ctrlnum |
(DE-627)DOAJ097805904 (DE-599)DOAJda0b5901e45b4aca951f35f3d91e4e5f |
title_full |
Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images |
author_sort |
Toan Duc Nguyen |
journal |
Diagnostics |
journalStr |
Diagnostics |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Toan Duc Nguyen Duc-Tai Le Junghyun Bum Seongho Kim Su Jeong Song Hyunseung Choo |
container_volume |
14 |
class |
R5-920 |
format_se |
Elektronische Aufsätze |
author-letter |
Toan Duc Nguyen |
doi_str_mv |
10.3390/diagnostics14010105 |
author2-role |
verfasserin |
title_sort |
retinal disease diagnosis using deep learning on ultra-wide-field fundus images |
callnumber |
R5-920 |
title_auth |
Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images |
abstract |
Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931–0.974). Additionally, the paper presents visualizations of the model’s predictions, including confidence scores and heatmaps that highlight the model’s focal points—particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning. |
abstractGer |
Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931–0.974). Additionally, the paper presents visualizations of the model’s predictions, including confidence scores and heatmaps that highlight the model’s focal points—particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning. |
abstract_unstemmed |
Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931–0.974). Additionally, the paper presents visualizations of the model’s predictions, including confidence scores and heatmaps that highlight the model’s focal points—particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 105 |
title_short |
Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images |
url |
https://doi.org/10.3390/diagnostics14010105 https://doaj.org/article/da0b5901e45b4aca951f35f3d91e4e5f https://www.mdpi.com/2075-4418/14/1/105 https://doaj.org/toc/2075-4418 |
remote_bool |
true |
author2 |
Duc-Tai Le Junghyun Bum Seongho Kim Su Jeong Song Hyunseung Choo |
author2Str |
Duc-Tai Le Junghyun Bum Seongho Kim Su Jeong Song Hyunseung Choo |
ppnlink |
718627814 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/diagnostics14010105 |
callnumber-a |
R5-920 |
up_date |
2024-07-03T13:53:49Z |
_version_ |
1803566269338746880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097805904</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413194657.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/diagnostics14010105</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097805904</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJda0b5901e45b4aca951f35f3d91e4e5f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Toan Duc Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931–0.974). Additionally, the paper presents visualizations of the model’s predictions, including confidence scores and heatmaps that highlight the model’s focal points—particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">medical image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fundus image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vision transformer</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Duc-Tai Le</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junghyun Bum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Seongho Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Su Jeong Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyunseung Choo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Diagnostics</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">14(2024), 1, p 105</subfield><subfield code="w">(DE-627)718627814</subfield><subfield code="w">(DE-600)2662336-5</subfield><subfield code="x">20754418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 105</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/diagnostics14010105</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/da0b5901e45b4aca951f35f3d91e4e5f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4418/14/1/105</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4418</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 105</subfield></datafield></record></collection>
|
score |
7.40166 |