Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field
This paper investigated the reflection of plane waves at the interface of dipolar gradient elastic solids under the control of an external magnetic field. This study focused on the increasing influence of the microstructural effect as the incident wavelength approaches the characteristic length of t...
Ausführliche Beschreibung
Autor*in: |
Wanrong Pei [verfasserIn] Tongde Wu [verfasserIn] Zhiwen Wang [verfasserIn] Yunlei Jiang [verfasserIn] Chuanping Zhou [verfasserIn] Rougang Zhou [verfasserIn] Yongping Gong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 14(2023), 1, p 376 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2023 ; number:1, p 376 |
Links: |
---|
DOI / URN: |
10.3390/app14010376 |
---|
Katalog-ID: |
DOAJ097811335 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097811335 | ||
003 | DE-627 | ||
005 | 20240413194754.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app14010376 |2 doi | |
035 | |a (DE-627)DOAJ097811335 | ||
035 | |a (DE-599)DOAJe3bd59840abc4fd3a7e2ed25b7dab122 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Wanrong Pei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper investigated the reflection of plane waves at the interface of dipolar gradient elastic solids under the control of an external magnetic field. This study focused on the increasing influence of the microstructural effect as the incident wavelength approaches the characteristic length of the microstructure or at higher frequencies. Initially, the dispersion equation for the propagation of elastic waves was derived from the dipole strain gradient theory and Maxwell’s electromagnetic theory. Subsequently, the amplitude ratios of various reflected waves to incident P-waves and incident SV-waves were calculated based on the interface conditions. Finally, the numerical results were used to discuss the impact of the external magnetic field and microstructural characteristic length on the propagation of the reflected wave. It was observed that the microstructural effect generated new wave modes and introduced dispersion characteristics into the elastic waves. Conversely, the external magnetic field primarily influences the amplitude of the elastic wave propagation via the Lorentz force without creating new wave modes or affecting the dispersion properties of the elastic wave in the dipolar gradient elastic solid. | ||
650 | 4 | |a dipole strain gradient | |
650 | 4 | |a microstructural effect | |
650 | 4 | |a Lorentz force | |
650 | 4 | |a reflection | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Tongde Wu |e verfasserin |4 aut | |
700 | 0 | |a Zhiwen Wang |e verfasserin |4 aut | |
700 | 0 | |a Yunlei Jiang |e verfasserin |4 aut | |
700 | 0 | |a Chuanping Zhou |e verfasserin |4 aut | |
700 | 0 | |a Rougang Zhou |e verfasserin |4 aut | |
700 | 0 | |a Yongping Gong |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 14(2023), 1, p 376 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2023 |g number:1, p 376 |
856 | 4 | 0 | |u https://doi.org/10.3390/app14010376 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e3bd59840abc4fd3a7e2ed25b7dab122 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/14/1/376 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2023 |e 1, p 376 |
author_variant |
w p wp t w tw z w zw y j yj c z cz r z rz y g yg |
---|---|
matchkey_str |
article:20763417:2023----::elcinflsiwvsnioagainhlsaeneteotoo |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.3390/app14010376 doi (DE-627)DOAJ097811335 (DE-599)DOAJe3bd59840abc4fd3a7e2ed25b7dab122 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Wanrong Pei verfasserin aut Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigated the reflection of plane waves at the interface of dipolar gradient elastic solids under the control of an external magnetic field. This study focused on the increasing influence of the microstructural effect as the incident wavelength approaches the characteristic length of the microstructure or at higher frequencies. Initially, the dispersion equation for the propagation of elastic waves was derived from the dipole strain gradient theory and Maxwell’s electromagnetic theory. Subsequently, the amplitude ratios of various reflected waves to incident P-waves and incident SV-waves were calculated based on the interface conditions. Finally, the numerical results were used to discuss the impact of the external magnetic field and microstructural characteristic length on the propagation of the reflected wave. It was observed that the microstructural effect generated new wave modes and introduced dispersion characteristics into the elastic waves. Conversely, the external magnetic field primarily influences the amplitude of the elastic wave propagation via the Lorentz force without creating new wave modes or affecting the dispersion properties of the elastic wave in the dipolar gradient elastic solid. dipole strain gradient microstructural effect Lorentz force reflection Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Tongde Wu verfasserin aut Zhiwen Wang verfasserin aut Yunlei Jiang verfasserin aut Chuanping Zhou verfasserin aut Rougang Zhou verfasserin aut Yongping Gong verfasserin aut In Applied Sciences MDPI AG, 2012 14(2023), 1, p 376 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2023 number:1, p 376 https://doi.org/10.3390/app14010376 kostenfrei https://doaj.org/article/e3bd59840abc4fd3a7e2ed25b7dab122 kostenfrei https://www.mdpi.com/2076-3417/14/1/376 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1, p 376 |
spelling |
10.3390/app14010376 doi (DE-627)DOAJ097811335 (DE-599)DOAJe3bd59840abc4fd3a7e2ed25b7dab122 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Wanrong Pei verfasserin aut Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigated the reflection of plane waves at the interface of dipolar gradient elastic solids under the control of an external magnetic field. This study focused on the increasing influence of the microstructural effect as the incident wavelength approaches the characteristic length of the microstructure or at higher frequencies. Initially, the dispersion equation for the propagation of elastic waves was derived from the dipole strain gradient theory and Maxwell’s electromagnetic theory. Subsequently, the amplitude ratios of various reflected waves to incident P-waves and incident SV-waves were calculated based on the interface conditions. Finally, the numerical results were used to discuss the impact of the external magnetic field and microstructural characteristic length on the propagation of the reflected wave. It was observed that the microstructural effect generated new wave modes and introduced dispersion characteristics into the elastic waves. Conversely, the external magnetic field primarily influences the amplitude of the elastic wave propagation via the Lorentz force without creating new wave modes or affecting the dispersion properties of the elastic wave in the dipolar gradient elastic solid. dipole strain gradient microstructural effect Lorentz force reflection Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Tongde Wu verfasserin aut Zhiwen Wang verfasserin aut Yunlei Jiang verfasserin aut Chuanping Zhou verfasserin aut Rougang Zhou verfasserin aut Yongping Gong verfasserin aut In Applied Sciences MDPI AG, 2012 14(2023), 1, p 376 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2023 number:1, p 376 https://doi.org/10.3390/app14010376 kostenfrei https://doaj.org/article/e3bd59840abc4fd3a7e2ed25b7dab122 kostenfrei https://www.mdpi.com/2076-3417/14/1/376 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1, p 376 |
allfields_unstemmed |
10.3390/app14010376 doi (DE-627)DOAJ097811335 (DE-599)DOAJe3bd59840abc4fd3a7e2ed25b7dab122 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Wanrong Pei verfasserin aut Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigated the reflection of plane waves at the interface of dipolar gradient elastic solids under the control of an external magnetic field. This study focused on the increasing influence of the microstructural effect as the incident wavelength approaches the characteristic length of the microstructure or at higher frequencies. Initially, the dispersion equation for the propagation of elastic waves was derived from the dipole strain gradient theory and Maxwell’s electromagnetic theory. Subsequently, the amplitude ratios of various reflected waves to incident P-waves and incident SV-waves were calculated based on the interface conditions. Finally, the numerical results were used to discuss the impact of the external magnetic field and microstructural characteristic length on the propagation of the reflected wave. It was observed that the microstructural effect generated new wave modes and introduced dispersion characteristics into the elastic waves. Conversely, the external magnetic field primarily influences the amplitude of the elastic wave propagation via the Lorentz force without creating new wave modes or affecting the dispersion properties of the elastic wave in the dipolar gradient elastic solid. dipole strain gradient microstructural effect Lorentz force reflection Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Tongde Wu verfasserin aut Zhiwen Wang verfasserin aut Yunlei Jiang verfasserin aut Chuanping Zhou verfasserin aut Rougang Zhou verfasserin aut Yongping Gong verfasserin aut In Applied Sciences MDPI AG, 2012 14(2023), 1, p 376 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2023 number:1, p 376 https://doi.org/10.3390/app14010376 kostenfrei https://doaj.org/article/e3bd59840abc4fd3a7e2ed25b7dab122 kostenfrei https://www.mdpi.com/2076-3417/14/1/376 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1, p 376 |
allfieldsGer |
10.3390/app14010376 doi (DE-627)DOAJ097811335 (DE-599)DOAJe3bd59840abc4fd3a7e2ed25b7dab122 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Wanrong Pei verfasserin aut Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigated the reflection of plane waves at the interface of dipolar gradient elastic solids under the control of an external magnetic field. This study focused on the increasing influence of the microstructural effect as the incident wavelength approaches the characteristic length of the microstructure or at higher frequencies. Initially, the dispersion equation for the propagation of elastic waves was derived from the dipole strain gradient theory and Maxwell’s electromagnetic theory. Subsequently, the amplitude ratios of various reflected waves to incident P-waves and incident SV-waves were calculated based on the interface conditions. Finally, the numerical results were used to discuss the impact of the external magnetic field and microstructural characteristic length on the propagation of the reflected wave. It was observed that the microstructural effect generated new wave modes and introduced dispersion characteristics into the elastic waves. Conversely, the external magnetic field primarily influences the amplitude of the elastic wave propagation via the Lorentz force without creating new wave modes or affecting the dispersion properties of the elastic wave in the dipolar gradient elastic solid. dipole strain gradient microstructural effect Lorentz force reflection Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Tongde Wu verfasserin aut Zhiwen Wang verfasserin aut Yunlei Jiang verfasserin aut Chuanping Zhou verfasserin aut Rougang Zhou verfasserin aut Yongping Gong verfasserin aut In Applied Sciences MDPI AG, 2012 14(2023), 1, p 376 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2023 number:1, p 376 https://doi.org/10.3390/app14010376 kostenfrei https://doaj.org/article/e3bd59840abc4fd3a7e2ed25b7dab122 kostenfrei https://www.mdpi.com/2076-3417/14/1/376 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1, p 376 |
allfieldsSound |
10.3390/app14010376 doi (DE-627)DOAJ097811335 (DE-599)DOAJe3bd59840abc4fd3a7e2ed25b7dab122 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Wanrong Pei verfasserin aut Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigated the reflection of plane waves at the interface of dipolar gradient elastic solids under the control of an external magnetic field. This study focused on the increasing influence of the microstructural effect as the incident wavelength approaches the characteristic length of the microstructure or at higher frequencies. Initially, the dispersion equation for the propagation of elastic waves was derived from the dipole strain gradient theory and Maxwell’s electromagnetic theory. Subsequently, the amplitude ratios of various reflected waves to incident P-waves and incident SV-waves were calculated based on the interface conditions. Finally, the numerical results were used to discuss the impact of the external magnetic field and microstructural characteristic length on the propagation of the reflected wave. It was observed that the microstructural effect generated new wave modes and introduced dispersion characteristics into the elastic waves. Conversely, the external magnetic field primarily influences the amplitude of the elastic wave propagation via the Lorentz force without creating new wave modes or affecting the dispersion properties of the elastic wave in the dipolar gradient elastic solid. dipole strain gradient microstructural effect Lorentz force reflection Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Tongde Wu verfasserin aut Zhiwen Wang verfasserin aut Yunlei Jiang verfasserin aut Chuanping Zhou verfasserin aut Rougang Zhou verfasserin aut Yongping Gong verfasserin aut In Applied Sciences MDPI AG, 2012 14(2023), 1, p 376 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2023 number:1, p 376 https://doi.org/10.3390/app14010376 kostenfrei https://doaj.org/article/e3bd59840abc4fd3a7e2ed25b7dab122 kostenfrei https://www.mdpi.com/2076-3417/14/1/376 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1, p 376 |
language |
English |
source |
In Applied Sciences 14(2023), 1, p 376 volume:14 year:2023 number:1, p 376 |
sourceStr |
In Applied Sciences 14(2023), 1, p 376 volume:14 year:2023 number:1, p 376 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
dipole strain gradient microstructural effect Lorentz force reflection Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Wanrong Pei @@aut@@ Tongde Wu @@aut@@ Zhiwen Wang @@aut@@ Yunlei Jiang @@aut@@ Chuanping Zhou @@aut@@ Rougang Zhou @@aut@@ Yongping Gong @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ097811335 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097811335</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413194754.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app14010376</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097811335</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe3bd59840abc4fd3a7e2ed25b7dab122</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wanrong Pei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigated the reflection of plane waves at the interface of dipolar gradient elastic solids under the control of an external magnetic field. This study focused on the increasing influence of the microstructural effect as the incident wavelength approaches the characteristic length of the microstructure or at higher frequencies. Initially, the dispersion equation for the propagation of elastic waves was derived from the dipole strain gradient theory and Maxwell’s electromagnetic theory. Subsequently, the amplitude ratios of various reflected waves to incident P-waves and incident SV-waves were calculated based on the interface conditions. Finally, the numerical results were used to discuss the impact of the external magnetic field and microstructural characteristic length on the propagation of the reflected wave. It was observed that the microstructural effect generated new wave modes and introduced dispersion characteristics into the elastic waves. Conversely, the external magnetic field primarily influences the amplitude of the elastic wave propagation via the Lorentz force without creating new wave modes or affecting the dispersion properties of the elastic wave in the dipolar gradient elastic solid.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dipole strain gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microstructural effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lorentz force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reflection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tongde Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiwen Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunlei Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chuanping Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rougang Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongping Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">14(2023), 1, p 376</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 376</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app14010376</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e3bd59840abc4fd3a7e2ed25b7dab122</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/14/1/376</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 376</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Wanrong Pei |
spellingShingle |
Wanrong Pei misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc dipole strain gradient misc microstructural effect misc Lorentz force misc reflection misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field |
authorStr |
Wanrong Pei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field dipole strain gradient microstructural effect Lorentz force reflection |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc dipole strain gradient misc microstructural effect misc Lorentz force misc reflection misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc dipole strain gradient misc microstructural effect misc Lorentz force misc reflection misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc dipole strain gradient misc microstructural effect misc Lorentz force misc reflection misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field |
ctrlnum |
(DE-627)DOAJ097811335 (DE-599)DOAJe3bd59840abc4fd3a7e2ed25b7dab122 |
title_full |
Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field |
author_sort |
Wanrong Pei |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Wanrong Pei Tongde Wu Zhiwen Wang Yunlei Jiang Chuanping Zhou Rougang Zhou Yongping Gong |
container_volume |
14 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Wanrong Pei |
doi_str_mv |
10.3390/app14010376 |
author2-role |
verfasserin |
title_sort |
reflection of elastic waves in dipolar gradient half-space under the control of external magnetic field |
callnumber |
TA1-2040 |
title_auth |
Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field |
abstract |
This paper investigated the reflection of plane waves at the interface of dipolar gradient elastic solids under the control of an external magnetic field. This study focused on the increasing influence of the microstructural effect as the incident wavelength approaches the characteristic length of the microstructure or at higher frequencies. Initially, the dispersion equation for the propagation of elastic waves was derived from the dipole strain gradient theory and Maxwell’s electromagnetic theory. Subsequently, the amplitude ratios of various reflected waves to incident P-waves and incident SV-waves were calculated based on the interface conditions. Finally, the numerical results were used to discuss the impact of the external magnetic field and microstructural characteristic length on the propagation of the reflected wave. It was observed that the microstructural effect generated new wave modes and introduced dispersion characteristics into the elastic waves. Conversely, the external magnetic field primarily influences the amplitude of the elastic wave propagation via the Lorentz force without creating new wave modes or affecting the dispersion properties of the elastic wave in the dipolar gradient elastic solid. |
abstractGer |
This paper investigated the reflection of plane waves at the interface of dipolar gradient elastic solids under the control of an external magnetic field. This study focused on the increasing influence of the microstructural effect as the incident wavelength approaches the characteristic length of the microstructure or at higher frequencies. Initially, the dispersion equation for the propagation of elastic waves was derived from the dipole strain gradient theory and Maxwell’s electromagnetic theory. Subsequently, the amplitude ratios of various reflected waves to incident P-waves and incident SV-waves were calculated based on the interface conditions. Finally, the numerical results were used to discuss the impact of the external magnetic field and microstructural characteristic length on the propagation of the reflected wave. It was observed that the microstructural effect generated new wave modes and introduced dispersion characteristics into the elastic waves. Conversely, the external magnetic field primarily influences the amplitude of the elastic wave propagation via the Lorentz force without creating new wave modes or affecting the dispersion properties of the elastic wave in the dipolar gradient elastic solid. |
abstract_unstemmed |
This paper investigated the reflection of plane waves at the interface of dipolar gradient elastic solids under the control of an external magnetic field. This study focused on the increasing influence of the microstructural effect as the incident wavelength approaches the characteristic length of the microstructure or at higher frequencies. Initially, the dispersion equation for the propagation of elastic waves was derived from the dipole strain gradient theory and Maxwell’s electromagnetic theory. Subsequently, the amplitude ratios of various reflected waves to incident P-waves and incident SV-waves were calculated based on the interface conditions. Finally, the numerical results were used to discuss the impact of the external magnetic field and microstructural characteristic length on the propagation of the reflected wave. It was observed that the microstructural effect generated new wave modes and introduced dispersion characteristics into the elastic waves. Conversely, the external magnetic field primarily influences the amplitude of the elastic wave propagation via the Lorentz force without creating new wave modes or affecting the dispersion properties of the elastic wave in the dipolar gradient elastic solid. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 376 |
title_short |
Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field |
url |
https://doi.org/10.3390/app14010376 https://doaj.org/article/e3bd59840abc4fd3a7e2ed25b7dab122 https://www.mdpi.com/2076-3417/14/1/376 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Tongde Wu Zhiwen Wang Yunlei Jiang Chuanping Zhou Rougang Zhou Yongping Gong |
author2Str |
Tongde Wu Zhiwen Wang Yunlei Jiang Chuanping Zhou Rougang Zhou Yongping Gong |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app14010376 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T13:55:50.967Z |
_version_ |
1803566397226221568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097811335</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413194754.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app14010376</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097811335</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe3bd59840abc4fd3a7e2ed25b7dab122</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wanrong Pei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reflection of Elastic Waves in Dipolar Gradient Half-Space under the Control of External Magnetic Field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigated the reflection of plane waves at the interface of dipolar gradient elastic solids under the control of an external magnetic field. This study focused on the increasing influence of the microstructural effect as the incident wavelength approaches the characteristic length of the microstructure or at higher frequencies. Initially, the dispersion equation for the propagation of elastic waves was derived from the dipole strain gradient theory and Maxwell’s electromagnetic theory. Subsequently, the amplitude ratios of various reflected waves to incident P-waves and incident SV-waves were calculated based on the interface conditions. Finally, the numerical results were used to discuss the impact of the external magnetic field and microstructural characteristic length on the propagation of the reflected wave. It was observed that the microstructural effect generated new wave modes and introduced dispersion characteristics into the elastic waves. Conversely, the external magnetic field primarily influences the amplitude of the elastic wave propagation via the Lorentz force without creating new wave modes or affecting the dispersion properties of the elastic wave in the dipolar gradient elastic solid.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dipole strain gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microstructural effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lorentz force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reflection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tongde Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiwen Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunlei Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chuanping Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rougang Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongping Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">14(2023), 1, p 376</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 376</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app14010376</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e3bd59840abc4fd3a7e2ed25b7dab122</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/14/1/376</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 376</subfield></datafield></record></collection>
|
score |
7.4007473 |