Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05
We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H _2 CO, CH _...
Ausführliche Beschreibung
Autor*in: |
Prasanta Gorai [verfasserIn] Chi-Yan Law [verfasserIn] Jonathan C. Tan [verfasserIn] Yichen Zhang [verfasserIn] Rubén Fedriani [verfasserIn] Kei E. I. Tanaka [verfasserIn] Mélisse Bonfand [verfasserIn] Giuliana Cosentino [verfasserIn] Diego Mardones [verfasserIn] Maria T. Beltrán [verfasserIn] Guido Garay [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 960(2024), 2, p 127 |
---|---|
Übergeordnetes Werk: |
volume:960 ; year:2024 ; number:2, p 127 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/ad09bb |
---|
Katalog-ID: |
DOAJ097864749 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097864749 | ||
003 | DE-627 | ||
005 | 20240413195912.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/ad09bb |2 doi | |
035 | |a (DE-627)DOAJ097864749 | ||
035 | |a (DE-599)DOAJ89a2e5fc85de4155925c881cd9de815e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Prasanta Gorai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05 |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H _2 CO, CH _3 OH, CH _3 OCH _3 ), sulfur-bearing (SO _2 , H _2 S), and nitrogen-bearing (e.g., HNCO, NH _2 CHO, C _2 H _3 CN, C _2 H _5 CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species, and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a millimeter continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of ∼300 K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of ∼250 K, and is of intermediate chemical complexity. HMC3 is further away, ∼3000 au in projection, cooler (∼70 K), and is the least line-rich. The three HMCs have similar mass surface densities (∼10 g cm ^−2 ), number densities ( n _H ∼ 10 ^9 cm ^−3 ), and masses of a few solar masses. The total gas mass in the cores and in the region out to 3000 au is ∼25 M _⊙ , which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry. | ||
650 | 4 | |a Star formation | |
650 | 4 | |a Astrochemistry | |
650 | 4 | |a Complex organic molecules | |
650 | 4 | |a Spectral line identification | |
650 | 4 | |a Massive stars | |
650 | 4 | |a Interstellar medium | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Chi-Yan Law |e verfasserin |4 aut | |
700 | 0 | |a Jonathan C. Tan |e verfasserin |4 aut | |
700 | 0 | |a Yichen Zhang |e verfasserin |4 aut | |
700 | 0 | |a Rubén Fedriani |e verfasserin |4 aut | |
700 | 0 | |a Kei E. I. Tanaka |e verfasserin |4 aut | |
700 | 0 | |a Mélisse Bonfand |e verfasserin |4 aut | |
700 | 0 | |a Giuliana Cosentino |e verfasserin |4 aut | |
700 | 0 | |a Diego Mardones |e verfasserin |4 aut | |
700 | 0 | |a Maria T. Beltrán |e verfasserin |4 aut | |
700 | 0 | |a Guido Garay |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 960(2024), 2, p 127 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:960 |g year:2024 |g number:2, p 127 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad09bb |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/89a2e5fc85de4155925c881cd9de815e |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad09bb |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 960 |j 2024 |e 2, p 127 |
author_variant |
p g pg c y l cyl j c t jct y z yz r f rf k e i t keit m b mb g c gc d m dm m t b mtb g g gg |
---|---|
matchkey_str |
article:15384357:2024----::srceiadansisfhioaemsie |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QB |
publishDate |
2024 |
allfields |
10.3847/1538-4357/ad09bb doi (DE-627)DOAJ097864749 (DE-599)DOAJ89a2e5fc85de4155925c881cd9de815e DE-627 ger DE-627 rakwb eng QB460-466 Prasanta Gorai verfasserin aut Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H _2 CO, CH _3 OH, CH _3 OCH _3 ), sulfur-bearing (SO _2 , H _2 S), and nitrogen-bearing (e.g., HNCO, NH _2 CHO, C _2 H _3 CN, C _2 H _5 CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species, and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a millimeter continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of ∼300 K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of ∼250 K, and is of intermediate chemical complexity. HMC3 is further away, ∼3000 au in projection, cooler (∼70 K), and is the least line-rich. The three HMCs have similar mass surface densities (∼10 g cm ^−2 ), number densities ( n _H ∼ 10 ^9 cm ^−3 ), and masses of a few solar masses. The total gas mass in the cores and in the region out to 3000 au is ∼25 M _⊙ , which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry. Star formation Astrochemistry Complex organic molecules Spectral line identification Massive stars Interstellar medium Astrophysics Chi-Yan Law verfasserin aut Jonathan C. Tan verfasserin aut Yichen Zhang verfasserin aut Rubén Fedriani verfasserin aut Kei E. I. Tanaka verfasserin aut Mélisse Bonfand verfasserin aut Giuliana Cosentino verfasserin aut Diego Mardones verfasserin aut Maria T. Beltrán verfasserin aut Guido Garay verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 960(2024), 2, p 127 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:960 year:2024 number:2, p 127 https://doi.org/10.3847/1538-4357/ad09bb kostenfrei https://doaj.org/article/89a2e5fc85de4155925c881cd9de815e kostenfrei https://doi.org/10.3847/1538-4357/ad09bb kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 960 2024 2, p 127 |
spelling |
10.3847/1538-4357/ad09bb doi (DE-627)DOAJ097864749 (DE-599)DOAJ89a2e5fc85de4155925c881cd9de815e DE-627 ger DE-627 rakwb eng QB460-466 Prasanta Gorai verfasserin aut Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H _2 CO, CH _3 OH, CH _3 OCH _3 ), sulfur-bearing (SO _2 , H _2 S), and nitrogen-bearing (e.g., HNCO, NH _2 CHO, C _2 H _3 CN, C _2 H _5 CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species, and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a millimeter continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of ∼300 K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of ∼250 K, and is of intermediate chemical complexity. HMC3 is further away, ∼3000 au in projection, cooler (∼70 K), and is the least line-rich. The three HMCs have similar mass surface densities (∼10 g cm ^−2 ), number densities ( n _H ∼ 10 ^9 cm ^−3 ), and masses of a few solar masses. The total gas mass in the cores and in the region out to 3000 au is ∼25 M _⊙ , which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry. Star formation Astrochemistry Complex organic molecules Spectral line identification Massive stars Interstellar medium Astrophysics Chi-Yan Law verfasserin aut Jonathan C. Tan verfasserin aut Yichen Zhang verfasserin aut Rubén Fedriani verfasserin aut Kei E. I. Tanaka verfasserin aut Mélisse Bonfand verfasserin aut Giuliana Cosentino verfasserin aut Diego Mardones verfasserin aut Maria T. Beltrán verfasserin aut Guido Garay verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 960(2024), 2, p 127 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:960 year:2024 number:2, p 127 https://doi.org/10.3847/1538-4357/ad09bb kostenfrei https://doaj.org/article/89a2e5fc85de4155925c881cd9de815e kostenfrei https://doi.org/10.3847/1538-4357/ad09bb kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 960 2024 2, p 127 |
allfields_unstemmed |
10.3847/1538-4357/ad09bb doi (DE-627)DOAJ097864749 (DE-599)DOAJ89a2e5fc85de4155925c881cd9de815e DE-627 ger DE-627 rakwb eng QB460-466 Prasanta Gorai verfasserin aut Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H _2 CO, CH _3 OH, CH _3 OCH _3 ), sulfur-bearing (SO _2 , H _2 S), and nitrogen-bearing (e.g., HNCO, NH _2 CHO, C _2 H _3 CN, C _2 H _5 CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species, and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a millimeter continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of ∼300 K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of ∼250 K, and is of intermediate chemical complexity. HMC3 is further away, ∼3000 au in projection, cooler (∼70 K), and is the least line-rich. The three HMCs have similar mass surface densities (∼10 g cm ^−2 ), number densities ( n _H ∼ 10 ^9 cm ^−3 ), and masses of a few solar masses. The total gas mass in the cores and in the region out to 3000 au is ∼25 M _⊙ , which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry. Star formation Astrochemistry Complex organic molecules Spectral line identification Massive stars Interstellar medium Astrophysics Chi-Yan Law verfasserin aut Jonathan C. Tan verfasserin aut Yichen Zhang verfasserin aut Rubén Fedriani verfasserin aut Kei E. I. Tanaka verfasserin aut Mélisse Bonfand verfasserin aut Giuliana Cosentino verfasserin aut Diego Mardones verfasserin aut Maria T. Beltrán verfasserin aut Guido Garay verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 960(2024), 2, p 127 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:960 year:2024 number:2, p 127 https://doi.org/10.3847/1538-4357/ad09bb kostenfrei https://doaj.org/article/89a2e5fc85de4155925c881cd9de815e kostenfrei https://doi.org/10.3847/1538-4357/ad09bb kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 960 2024 2, p 127 |
allfieldsGer |
10.3847/1538-4357/ad09bb doi (DE-627)DOAJ097864749 (DE-599)DOAJ89a2e5fc85de4155925c881cd9de815e DE-627 ger DE-627 rakwb eng QB460-466 Prasanta Gorai verfasserin aut Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H _2 CO, CH _3 OH, CH _3 OCH _3 ), sulfur-bearing (SO _2 , H _2 S), and nitrogen-bearing (e.g., HNCO, NH _2 CHO, C _2 H _3 CN, C _2 H _5 CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species, and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a millimeter continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of ∼300 K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of ∼250 K, and is of intermediate chemical complexity. HMC3 is further away, ∼3000 au in projection, cooler (∼70 K), and is the least line-rich. The three HMCs have similar mass surface densities (∼10 g cm ^−2 ), number densities ( n _H ∼ 10 ^9 cm ^−3 ), and masses of a few solar masses. The total gas mass in the cores and in the region out to 3000 au is ∼25 M _⊙ , which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry. Star formation Astrochemistry Complex organic molecules Spectral line identification Massive stars Interstellar medium Astrophysics Chi-Yan Law verfasserin aut Jonathan C. Tan verfasserin aut Yichen Zhang verfasserin aut Rubén Fedriani verfasserin aut Kei E. I. Tanaka verfasserin aut Mélisse Bonfand verfasserin aut Giuliana Cosentino verfasserin aut Diego Mardones verfasserin aut Maria T. Beltrán verfasserin aut Guido Garay verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 960(2024), 2, p 127 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:960 year:2024 number:2, p 127 https://doi.org/10.3847/1538-4357/ad09bb kostenfrei https://doaj.org/article/89a2e5fc85de4155925c881cd9de815e kostenfrei https://doi.org/10.3847/1538-4357/ad09bb kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 960 2024 2, p 127 |
allfieldsSound |
10.3847/1538-4357/ad09bb doi (DE-627)DOAJ097864749 (DE-599)DOAJ89a2e5fc85de4155925c881cd9de815e DE-627 ger DE-627 rakwb eng QB460-466 Prasanta Gorai verfasserin aut Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H _2 CO, CH _3 OH, CH _3 OCH _3 ), sulfur-bearing (SO _2 , H _2 S), and nitrogen-bearing (e.g., HNCO, NH _2 CHO, C _2 H _3 CN, C _2 H _5 CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species, and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a millimeter continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of ∼300 K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of ∼250 K, and is of intermediate chemical complexity. HMC3 is further away, ∼3000 au in projection, cooler (∼70 K), and is the least line-rich. The three HMCs have similar mass surface densities (∼10 g cm ^−2 ), number densities ( n _H ∼ 10 ^9 cm ^−3 ), and masses of a few solar masses. The total gas mass in the cores and in the region out to 3000 au is ∼25 M _⊙ , which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry. Star formation Astrochemistry Complex organic molecules Spectral line identification Massive stars Interstellar medium Astrophysics Chi-Yan Law verfasserin aut Jonathan C. Tan verfasserin aut Yichen Zhang verfasserin aut Rubén Fedriani verfasserin aut Kei E. I. Tanaka verfasserin aut Mélisse Bonfand verfasserin aut Giuliana Cosentino verfasserin aut Diego Mardones verfasserin aut Maria T. Beltrán verfasserin aut Guido Garay verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 960(2024), 2, p 127 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:960 year:2024 number:2, p 127 https://doi.org/10.3847/1538-4357/ad09bb kostenfrei https://doaj.org/article/89a2e5fc85de4155925c881cd9de815e kostenfrei https://doi.org/10.3847/1538-4357/ad09bb kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 960 2024 2, p 127 |
language |
English |
source |
In The Astrophysical Journal 960(2024), 2, p 127 volume:960 year:2024 number:2, p 127 |
sourceStr |
In The Astrophysical Journal 960(2024), 2, p 127 volume:960 year:2024 number:2, p 127 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Star formation Astrochemistry Complex organic molecules Spectral line identification Massive stars Interstellar medium Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Prasanta Gorai @@aut@@ Chi-Yan Law @@aut@@ Jonathan C. Tan @@aut@@ Yichen Zhang @@aut@@ Rubén Fedriani @@aut@@ Kei E. I. Tanaka @@aut@@ Mélisse Bonfand @@aut@@ Giuliana Cosentino @@aut@@ Diego Mardones @@aut@@ Maria T. Beltrán @@aut@@ Guido Garay @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ097864749 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097864749</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413195912.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad09bb</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097864749</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ89a2e5fc85de4155925c881cd9de815e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Prasanta Gorai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H _2 CO, CH _3 OH, CH _3 OCH _3 ), sulfur-bearing (SO _2 , H _2 S), and nitrogen-bearing (e.g., HNCO, NH _2 CHO, C _2 H _3 CN, C _2 H _5 CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species, and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a millimeter continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of ∼300 K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of ∼250 K, and is of intermediate chemical complexity. HMC3 is further away, ∼3000 au in projection, cooler (∼70 K), and is the least line-rich. The three HMCs have similar mass surface densities (∼10 g cm ^−2 ), number densities ( n _H ∼ 10 ^9 cm ^−3 ), and masses of a few solar masses. The total gas mass in the cores and in the region out to 3000 au is ∼25 M _⊙ , which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Star formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrochemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex organic molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral line identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Massive stars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interstellar medium</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chi-Yan Law</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonathan C. Tan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yichen Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rubén Fedriani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kei E. I. Tanaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mélisse Bonfand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuliana Cosentino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diego Mardones</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria T. Beltrán</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guido Garay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">960(2024), 2, p 127</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:960</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2, p 127</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad09bb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/89a2e5fc85de4155925c881cd9de815e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad09bb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">960</subfield><subfield code="j">2024</subfield><subfield code="e">2, p 127</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Prasanta Gorai |
spellingShingle |
Prasanta Gorai misc QB460-466 misc Star formation misc Astrochemistry misc Complex organic molecules misc Spectral line identification misc Massive stars misc Interstellar medium misc Astrophysics Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05 |
authorStr |
Prasanta Gorai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05 Star formation Astrochemistry Complex organic molecules Spectral line identification Massive stars Interstellar medium |
topic |
misc QB460-466 misc Star formation misc Astrochemistry misc Complex organic molecules misc Spectral line identification misc Massive stars misc Interstellar medium misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Star formation misc Astrochemistry misc Complex organic molecules misc Spectral line identification misc Massive stars misc Interstellar medium misc Astrophysics |
topic_browse |
misc QB460-466 misc Star formation misc Astrochemistry misc Complex organic molecules misc Spectral line identification misc Massive stars misc Interstellar medium misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05 |
ctrlnum |
(DE-627)DOAJ097864749 (DE-599)DOAJ89a2e5fc85de4155925c881cd9de815e |
title_full |
Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05 |
author_sort |
Prasanta Gorai |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Prasanta Gorai Chi-Yan Law Jonathan C. Tan Yichen Zhang Rubén Fedriani Kei E. I. Tanaka Mélisse Bonfand Giuliana Cosentino Diego Mardones Maria T. Beltrán Guido Garay |
container_volume |
960 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Prasanta Gorai |
doi_str_mv |
10.3847/1538-4357/ad09bb |
author2-role |
verfasserin |
title_sort |
astrochemical diagnostics of the isolated massive protostar g28.20-0.05 |
callnumber |
QB460-466 |
title_auth |
Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05 |
abstract |
We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H _2 CO, CH _3 OH, CH _3 OCH _3 ), sulfur-bearing (SO _2 , H _2 S), and nitrogen-bearing (e.g., HNCO, NH _2 CHO, C _2 H _3 CN, C _2 H _5 CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species, and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a millimeter continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of ∼300 K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of ∼250 K, and is of intermediate chemical complexity. HMC3 is further away, ∼3000 au in projection, cooler (∼70 K), and is the least line-rich. The three HMCs have similar mass surface densities (∼10 g cm ^−2 ), number densities ( n _H ∼ 10 ^9 cm ^−3 ), and masses of a few solar masses. The total gas mass in the cores and in the region out to 3000 au is ∼25 M _⊙ , which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry. |
abstractGer |
We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H _2 CO, CH _3 OH, CH _3 OCH _3 ), sulfur-bearing (SO _2 , H _2 S), and nitrogen-bearing (e.g., HNCO, NH _2 CHO, C _2 H _3 CN, C _2 H _5 CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species, and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a millimeter continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of ∼300 K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of ∼250 K, and is of intermediate chemical complexity. HMC3 is further away, ∼3000 au in projection, cooler (∼70 K), and is the least line-rich. The three HMCs have similar mass surface densities (∼10 g cm ^−2 ), number densities ( n _H ∼ 10 ^9 cm ^−3 ), and masses of a few solar masses. The total gas mass in the cores and in the region out to 3000 au is ∼25 M _⊙ , which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry. |
abstract_unstemmed |
We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H _2 CO, CH _3 OH, CH _3 OCH _3 ), sulfur-bearing (SO _2 , H _2 S), and nitrogen-bearing (e.g., HNCO, NH _2 CHO, C _2 H _3 CN, C _2 H _5 CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species, and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a millimeter continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of ∼300 K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of ∼250 K, and is of intermediate chemical complexity. HMC3 is further away, ∼3000 au in projection, cooler (∼70 K), and is the least line-rich. The three HMCs have similar mass surface densities (∼10 g cm ^−2 ), number densities ( n _H ∼ 10 ^9 cm ^−3 ), and masses of a few solar masses. The total gas mass in the cores and in the region out to 3000 au is ∼25 M _⊙ , which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 127 |
title_short |
Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05 |
url |
https://doi.org/10.3847/1538-4357/ad09bb https://doaj.org/article/89a2e5fc85de4155925c881cd9de815e https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
Chi-Yan Law Jonathan C. Tan Yichen Zhang Rubén Fedriani Kei E. I. Tanaka Mélisse Bonfand Giuliana Cosentino Diego Mardones Maria T. Beltrán Guido Garay |
author2Str |
Chi-Yan Law Jonathan C. Tan Yichen Zhang Rubén Fedriani Kei E. I. Tanaka Mélisse Bonfand Giuliana Cosentino Diego Mardones Maria T. Beltrán Guido Garay |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/ad09bb |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T14:12:10.512Z |
_version_ |
1803567424353599488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097864749</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413195912.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad09bb</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097864749</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ89a2e5fc85de4155925c881cd9de815e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Prasanta Gorai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H _2 CO, CH _3 OH, CH _3 OCH _3 ), sulfur-bearing (SO _2 , H _2 S), and nitrogen-bearing (e.g., HNCO, NH _2 CHO, C _2 H _3 CN, C _2 H _5 CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species, and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a millimeter continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of ∼300 K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of ∼250 K, and is of intermediate chemical complexity. HMC3 is further away, ∼3000 au in projection, cooler (∼70 K), and is the least line-rich. The three HMCs have similar mass surface densities (∼10 g cm ^−2 ), number densities ( n _H ∼ 10 ^9 cm ^−3 ), and masses of a few solar masses. The total gas mass in the cores and in the region out to 3000 au is ∼25 M _⊙ , which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Star formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrochemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex organic molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral line identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Massive stars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interstellar medium</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chi-Yan Law</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonathan C. Tan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yichen Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rubén Fedriani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kei E. I. Tanaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mélisse Bonfand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuliana Cosentino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diego Mardones</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria T. Beltrán</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guido Garay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">960(2024), 2, p 127</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:960</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2, p 127</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad09bb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/89a2e5fc85de4155925c881cd9de815e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad09bb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">960</subfield><subfield code="j">2024</subfield><subfield code="e">2, p 127</subfield></datafield></record></collection>
|
score |
7.40125 |