Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing
Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attractors are easier to design and implement through analog circuitry, thus they has more potential applications. To explore the dynamic property of the multi-wing butterfly system and its application to image e...
Ausführliche Beschreibung
Autor*in: |
Li Zhang [verfasserIn] Xin-Lei An [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 12(2024), Seite 2573-2588 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2024 ; pages:2573-2588 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2023.3347448 |
---|
Katalog-ID: |
DOAJ097905798 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097905798 | ||
003 | DE-627 | ||
005 | 20240413200650.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2023.3347448 |2 doi | |
035 | |a (DE-627)DOAJ097905798 | ||
035 | |a (DE-599)DOAJ59f2cade6ec24928af10a6fa322fb8fd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Li Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attractors are easier to design and implement through analog circuitry, thus they has more potential applications. To explore the dynamic property of the multi-wing butterfly system and its application to image encryption. A chaotic system with four-wing attractors is designed and the dynamic behaviors are analyzed in terms of phase diagram, bifurcation diagram, Lyapunov exponential spectrum and C0 structural complexity. It is found that each parameter has a large range of intervals that can keep the system in the chaotic state and the generated sequences have sufficient pseudorandom to be well suited for application in secure communications. Then, the circuit model of the constructed four-wing chaotic system is built with a basic operational amplifier circuit, and the accuracy of the circuit implementation is verified. Finally, a color image compression encryption scheme is designed based on the theory of compressive sensing and DNA dynamic coding. The algorithm is mainly composed of five parts: sparse, compression calculation, 3D projection scrambling, DNA diffusion and plaintext association confusion. The security test results show that the designed scheme not only has superior compression performance and high security, but also has no limitation on the size of the test image. | ||
650 | 4 | |a Four-wing attractor | |
650 | 4 | |a compressive sensing | |
650 | 4 | |a DNA encoding | |
650 | 4 | |a color image encryption | |
650 | 4 | |a multisim circuit simulation | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Xin-Lei An |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 12(2024), Seite 2573-2588 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2024 |g pages:2573-2588 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2023.3347448 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/59f2cade6ec24928af10a6fa322fb8fd |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/10374126/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2024 |h 2573-2588 |
author_variant |
l z lz x l a xla |
---|---|
matchkey_str |
article:21693536:2024----::yaiaayioaorighoisseadplctoiiaenrpi |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TK |
publishDate |
2024 |
allfields |
10.1109/ACCESS.2023.3347448 doi (DE-627)DOAJ097905798 (DE-599)DOAJ59f2cade6ec24928af10a6fa322fb8fd DE-627 ger DE-627 rakwb eng TK1-9971 Li Zhang verfasserin aut Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attractors are easier to design and implement through analog circuitry, thus they has more potential applications. To explore the dynamic property of the multi-wing butterfly system and its application to image encryption. A chaotic system with four-wing attractors is designed and the dynamic behaviors are analyzed in terms of phase diagram, bifurcation diagram, Lyapunov exponential spectrum and C0 structural complexity. It is found that each parameter has a large range of intervals that can keep the system in the chaotic state and the generated sequences have sufficient pseudorandom to be well suited for application in secure communications. Then, the circuit model of the constructed four-wing chaotic system is built with a basic operational amplifier circuit, and the accuracy of the circuit implementation is verified. Finally, a color image compression encryption scheme is designed based on the theory of compressive sensing and DNA dynamic coding. The algorithm is mainly composed of five parts: sparse, compression calculation, 3D projection scrambling, DNA diffusion and plaintext association confusion. The security test results show that the designed scheme not only has superior compression performance and high security, but also has no limitation on the size of the test image. Four-wing attractor compressive sensing DNA encoding color image encryption multisim circuit simulation Electrical engineering. Electronics. Nuclear engineering Xin-Lei An verfasserin aut In IEEE Access IEEE, 2014 12(2024), Seite 2573-2588 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:12 year:2024 pages:2573-2588 https://doi.org/10.1109/ACCESS.2023.3347448 kostenfrei https://doaj.org/article/59f2cade6ec24928af10a6fa322fb8fd kostenfrei https://ieeexplore.ieee.org/document/10374126/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 2573-2588 |
spelling |
10.1109/ACCESS.2023.3347448 doi (DE-627)DOAJ097905798 (DE-599)DOAJ59f2cade6ec24928af10a6fa322fb8fd DE-627 ger DE-627 rakwb eng TK1-9971 Li Zhang verfasserin aut Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attractors are easier to design and implement through analog circuitry, thus they has more potential applications. To explore the dynamic property of the multi-wing butterfly system and its application to image encryption. A chaotic system with four-wing attractors is designed and the dynamic behaviors are analyzed in terms of phase diagram, bifurcation diagram, Lyapunov exponential spectrum and C0 structural complexity. It is found that each parameter has a large range of intervals that can keep the system in the chaotic state and the generated sequences have sufficient pseudorandom to be well suited for application in secure communications. Then, the circuit model of the constructed four-wing chaotic system is built with a basic operational amplifier circuit, and the accuracy of the circuit implementation is verified. Finally, a color image compression encryption scheme is designed based on the theory of compressive sensing and DNA dynamic coding. The algorithm is mainly composed of five parts: sparse, compression calculation, 3D projection scrambling, DNA diffusion and plaintext association confusion. The security test results show that the designed scheme not only has superior compression performance and high security, but also has no limitation on the size of the test image. Four-wing attractor compressive sensing DNA encoding color image encryption multisim circuit simulation Electrical engineering. Electronics. Nuclear engineering Xin-Lei An verfasserin aut In IEEE Access IEEE, 2014 12(2024), Seite 2573-2588 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:12 year:2024 pages:2573-2588 https://doi.org/10.1109/ACCESS.2023.3347448 kostenfrei https://doaj.org/article/59f2cade6ec24928af10a6fa322fb8fd kostenfrei https://ieeexplore.ieee.org/document/10374126/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 2573-2588 |
allfields_unstemmed |
10.1109/ACCESS.2023.3347448 doi (DE-627)DOAJ097905798 (DE-599)DOAJ59f2cade6ec24928af10a6fa322fb8fd DE-627 ger DE-627 rakwb eng TK1-9971 Li Zhang verfasserin aut Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attractors are easier to design and implement through analog circuitry, thus they has more potential applications. To explore the dynamic property of the multi-wing butterfly system and its application to image encryption. A chaotic system with four-wing attractors is designed and the dynamic behaviors are analyzed in terms of phase diagram, bifurcation diagram, Lyapunov exponential spectrum and C0 structural complexity. It is found that each parameter has a large range of intervals that can keep the system in the chaotic state and the generated sequences have sufficient pseudorandom to be well suited for application in secure communications. Then, the circuit model of the constructed four-wing chaotic system is built with a basic operational amplifier circuit, and the accuracy of the circuit implementation is verified. Finally, a color image compression encryption scheme is designed based on the theory of compressive sensing and DNA dynamic coding. The algorithm is mainly composed of five parts: sparse, compression calculation, 3D projection scrambling, DNA diffusion and plaintext association confusion. The security test results show that the designed scheme not only has superior compression performance and high security, but also has no limitation on the size of the test image. Four-wing attractor compressive sensing DNA encoding color image encryption multisim circuit simulation Electrical engineering. Electronics. Nuclear engineering Xin-Lei An verfasserin aut In IEEE Access IEEE, 2014 12(2024), Seite 2573-2588 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:12 year:2024 pages:2573-2588 https://doi.org/10.1109/ACCESS.2023.3347448 kostenfrei https://doaj.org/article/59f2cade6ec24928af10a6fa322fb8fd kostenfrei https://ieeexplore.ieee.org/document/10374126/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 2573-2588 |
allfieldsGer |
10.1109/ACCESS.2023.3347448 doi (DE-627)DOAJ097905798 (DE-599)DOAJ59f2cade6ec24928af10a6fa322fb8fd DE-627 ger DE-627 rakwb eng TK1-9971 Li Zhang verfasserin aut Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attractors are easier to design and implement through analog circuitry, thus they has more potential applications. To explore the dynamic property of the multi-wing butterfly system and its application to image encryption. A chaotic system with four-wing attractors is designed and the dynamic behaviors are analyzed in terms of phase diagram, bifurcation diagram, Lyapunov exponential spectrum and C0 structural complexity. It is found that each parameter has a large range of intervals that can keep the system in the chaotic state and the generated sequences have sufficient pseudorandom to be well suited for application in secure communications. Then, the circuit model of the constructed four-wing chaotic system is built with a basic operational amplifier circuit, and the accuracy of the circuit implementation is verified. Finally, a color image compression encryption scheme is designed based on the theory of compressive sensing and DNA dynamic coding. The algorithm is mainly composed of five parts: sparse, compression calculation, 3D projection scrambling, DNA diffusion and plaintext association confusion. The security test results show that the designed scheme not only has superior compression performance and high security, but also has no limitation on the size of the test image. Four-wing attractor compressive sensing DNA encoding color image encryption multisim circuit simulation Electrical engineering. Electronics. Nuclear engineering Xin-Lei An verfasserin aut In IEEE Access IEEE, 2014 12(2024), Seite 2573-2588 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:12 year:2024 pages:2573-2588 https://doi.org/10.1109/ACCESS.2023.3347448 kostenfrei https://doaj.org/article/59f2cade6ec24928af10a6fa322fb8fd kostenfrei https://ieeexplore.ieee.org/document/10374126/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 2573-2588 |
allfieldsSound |
10.1109/ACCESS.2023.3347448 doi (DE-627)DOAJ097905798 (DE-599)DOAJ59f2cade6ec24928af10a6fa322fb8fd DE-627 ger DE-627 rakwb eng TK1-9971 Li Zhang verfasserin aut Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attractors are easier to design and implement through analog circuitry, thus they has more potential applications. To explore the dynamic property of the multi-wing butterfly system and its application to image encryption. A chaotic system with four-wing attractors is designed and the dynamic behaviors are analyzed in terms of phase diagram, bifurcation diagram, Lyapunov exponential spectrum and C0 structural complexity. It is found that each parameter has a large range of intervals that can keep the system in the chaotic state and the generated sequences have sufficient pseudorandom to be well suited for application in secure communications. Then, the circuit model of the constructed four-wing chaotic system is built with a basic operational amplifier circuit, and the accuracy of the circuit implementation is verified. Finally, a color image compression encryption scheme is designed based on the theory of compressive sensing and DNA dynamic coding. The algorithm is mainly composed of five parts: sparse, compression calculation, 3D projection scrambling, DNA diffusion and plaintext association confusion. The security test results show that the designed scheme not only has superior compression performance and high security, but also has no limitation on the size of the test image. Four-wing attractor compressive sensing DNA encoding color image encryption multisim circuit simulation Electrical engineering. Electronics. Nuclear engineering Xin-Lei An verfasserin aut In IEEE Access IEEE, 2014 12(2024), Seite 2573-2588 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:12 year:2024 pages:2573-2588 https://doi.org/10.1109/ACCESS.2023.3347448 kostenfrei https://doaj.org/article/59f2cade6ec24928af10a6fa322fb8fd kostenfrei https://ieeexplore.ieee.org/document/10374126/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 2573-2588 |
language |
English |
source |
In IEEE Access 12(2024), Seite 2573-2588 volume:12 year:2024 pages:2573-2588 |
sourceStr |
In IEEE Access 12(2024), Seite 2573-2588 volume:12 year:2024 pages:2573-2588 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Four-wing attractor compressive sensing DNA encoding color image encryption multisim circuit simulation Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Li Zhang @@aut@@ Xin-Lei An @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ097905798 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097905798</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413200650.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2023.3347448</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097905798</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ59f2cade6ec24928af10a6fa322fb8fd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Li Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attractors are easier to design and implement through analog circuitry, thus they has more potential applications. To explore the dynamic property of the multi-wing butterfly system and its application to image encryption. A chaotic system with four-wing attractors is designed and the dynamic behaviors are analyzed in terms of phase diagram, bifurcation diagram, Lyapunov exponential spectrum and C0 structural complexity. It is found that each parameter has a large range of intervals that can keep the system in the chaotic state and the generated sequences have sufficient pseudorandom to be well suited for application in secure communications. Then, the circuit model of the constructed four-wing chaotic system is built with a basic operational amplifier circuit, and the accuracy of the circuit implementation is verified. Finally, a color image compression encryption scheme is designed based on the theory of compressive sensing and DNA dynamic coding. The algorithm is mainly composed of five parts: sparse, compression calculation, 3D projection scrambling, DNA diffusion and plaintext association confusion. The security test results show that the designed scheme not only has superior compression performance and high security, but also has no limitation on the size of the test image.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Four-wing attractor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compressive sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA encoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">color image encryption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multisim circuit simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin-Lei An</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">12(2024), Seite 2573-2588</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:2573-2588</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2023.3347448</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/59f2cade6ec24928af10a6fa322fb8fd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10374126/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2024</subfield><subfield code="h">2573-2588</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Li Zhang |
spellingShingle |
Li Zhang misc TK1-9971 misc Four-wing attractor misc compressive sensing misc DNA encoding misc color image encryption misc multisim circuit simulation misc Electrical engineering. Electronics. Nuclear engineering Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing |
authorStr |
Li Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing Four-wing attractor compressive sensing DNA encoding color image encryption multisim circuit simulation |
topic |
misc TK1-9971 misc Four-wing attractor misc compressive sensing misc DNA encoding misc color image encryption misc multisim circuit simulation misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Four-wing attractor misc compressive sensing misc DNA encoding misc color image encryption misc multisim circuit simulation misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Four-wing attractor misc compressive sensing misc DNA encoding misc color image encryption misc multisim circuit simulation misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing |
ctrlnum |
(DE-627)DOAJ097905798 (DE-599)DOAJ59f2cade6ec24928af10a6fa322fb8fd |
title_full |
Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing |
author_sort |
Li Zhang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
2573 |
author_browse |
Li Zhang Xin-Lei An |
container_volume |
12 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Li Zhang |
doi_str_mv |
10.1109/ACCESS.2023.3347448 |
author2-role |
verfasserin |
title_sort |
dynamic analysis of a four-wing chaotic system and application in image encryption based on compressive sensing |
callnumber |
TK1-9971 |
title_auth |
Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing |
abstract |
Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attractors are easier to design and implement through analog circuitry, thus they has more potential applications. To explore the dynamic property of the multi-wing butterfly system and its application to image encryption. A chaotic system with four-wing attractors is designed and the dynamic behaviors are analyzed in terms of phase diagram, bifurcation diagram, Lyapunov exponential spectrum and C0 structural complexity. It is found that each parameter has a large range of intervals that can keep the system in the chaotic state and the generated sequences have sufficient pseudorandom to be well suited for application in secure communications. Then, the circuit model of the constructed four-wing chaotic system is built with a basic operational amplifier circuit, and the accuracy of the circuit implementation is verified. Finally, a color image compression encryption scheme is designed based on the theory of compressive sensing and DNA dynamic coding. The algorithm is mainly composed of five parts: sparse, compression calculation, 3D projection scrambling, DNA diffusion and plaintext association confusion. The security test results show that the designed scheme not only has superior compression performance and high security, but also has no limitation on the size of the test image. |
abstractGer |
Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attractors are easier to design and implement through analog circuitry, thus they has more potential applications. To explore the dynamic property of the multi-wing butterfly system and its application to image encryption. A chaotic system with four-wing attractors is designed and the dynamic behaviors are analyzed in terms of phase diagram, bifurcation diagram, Lyapunov exponential spectrum and C0 structural complexity. It is found that each parameter has a large range of intervals that can keep the system in the chaotic state and the generated sequences have sufficient pseudorandom to be well suited for application in secure communications. Then, the circuit model of the constructed four-wing chaotic system is built with a basic operational amplifier circuit, and the accuracy of the circuit implementation is verified. Finally, a color image compression encryption scheme is designed based on the theory of compressive sensing and DNA dynamic coding. The algorithm is mainly composed of five parts: sparse, compression calculation, 3D projection scrambling, DNA diffusion and plaintext association confusion. The security test results show that the designed scheme not only has superior compression performance and high security, but also has no limitation on the size of the test image. |
abstract_unstemmed |
Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attractors are easier to design and implement through analog circuitry, thus they has more potential applications. To explore the dynamic property of the multi-wing butterfly system and its application to image encryption. A chaotic system with four-wing attractors is designed and the dynamic behaviors are analyzed in terms of phase diagram, bifurcation diagram, Lyapunov exponential spectrum and C0 structural complexity. It is found that each parameter has a large range of intervals that can keep the system in the chaotic state and the generated sequences have sufficient pseudorandom to be well suited for application in secure communications. Then, the circuit model of the constructed four-wing chaotic system is built with a basic operational amplifier circuit, and the accuracy of the circuit implementation is verified. Finally, a color image compression encryption scheme is designed based on the theory of compressive sensing and DNA dynamic coding. The algorithm is mainly composed of five parts: sparse, compression calculation, 3D projection scrambling, DNA diffusion and plaintext association confusion. The security test results show that the designed scheme not only has superior compression performance and high security, but also has no limitation on the size of the test image. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing |
url |
https://doi.org/10.1109/ACCESS.2023.3347448 https://doaj.org/article/59f2cade6ec24928af10a6fa322fb8fd https://ieeexplore.ieee.org/document/10374126/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Xin-Lei An |
author2Str |
Xin-Lei An |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2023.3347448 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T14:24:15.057Z |
_version_ |
1803568184095145984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097905798</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413200650.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2023.3347448</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097905798</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ59f2cade6ec24928af10a6fa322fb8fd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Li Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Analysis of a Four-Wing Chaotic System and Application in Image Encryption Based on Compressive Sensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attractors are easier to design and implement through analog circuitry, thus they has more potential applications. To explore the dynamic property of the multi-wing butterfly system and its application to image encryption. A chaotic system with four-wing attractors is designed and the dynamic behaviors are analyzed in terms of phase diagram, bifurcation diagram, Lyapunov exponential spectrum and C0 structural complexity. It is found that each parameter has a large range of intervals that can keep the system in the chaotic state and the generated sequences have sufficient pseudorandom to be well suited for application in secure communications. Then, the circuit model of the constructed four-wing chaotic system is built with a basic operational amplifier circuit, and the accuracy of the circuit implementation is verified. Finally, a color image compression encryption scheme is designed based on the theory of compressive sensing and DNA dynamic coding. The algorithm is mainly composed of five parts: sparse, compression calculation, 3D projection scrambling, DNA diffusion and plaintext association confusion. The security test results show that the designed scheme not only has superior compression performance and high security, but also has no limitation on the size of the test image.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Four-wing attractor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compressive sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA encoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">color image encryption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multisim circuit simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin-Lei An</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">12(2024), Seite 2573-2588</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:2573-2588</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2023.3347448</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/59f2cade6ec24928af10a6fa322fb8fd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10374126/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2024</subfield><subfield code="h">2573-2588</subfield></datafield></record></collection>
|
score |
7.402237 |