High‐throughput, microscopy‐based screening and quantification of genetic elements
Abstract Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screeni...
Ausführliche Beschreibung
Autor*in: |
Rongrong Zhang [verfasserIn] Yajia Huang [verfasserIn] Mei Li [verfasserIn] Lei Wang [verfasserIn] Bing Li [verfasserIn] Aiguo Xia [verfasserIn] Ye Li [verfasserIn] Shuai Yang [verfasserIn] Fan Jin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: mLife - Wiley, 2022, 2(2023), 4, Seite 450-461 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2023 ; number:4 ; pages:450-461 |
Links: |
---|
DOI / URN: |
10.1002/mlf2.12096 |
---|
Katalog-ID: |
DOAJ097981982 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097981982 | ||
003 | DE-627 | ||
005 | 20240413201945.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/mlf2.12096 |2 doi | |
035 | |a (DE-627)DOAJ097981982 | ||
035 | |a (DE-599)DOAJ21f12515f24747119dd1548341552373 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a Rongrong Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a High‐throughput, microscopy‐based screening and quantification of genetic elements |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy‐based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large‐scale samples for library screening of genetic elements. However, strategies for high‐throughput microscopy experiments remain limited. Here, we present a high‐throughput, microscopy‐based platform that can simultaneously complete the preparation of an 8 × 12‐well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single‐cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs. | ||
650 | 4 | |a characterization methods | |
650 | 4 | |a high‐throughput | |
650 | 4 | |a robust genetic elements | |
650 | 4 | |a synthetic biology | |
653 | 0 | |a Microbiology | |
700 | 0 | |a Yajia Huang |e verfasserin |4 aut | |
700 | 0 | |a Mei Li |e verfasserin |4 aut | |
700 | 0 | |a Lei Wang |e verfasserin |4 aut | |
700 | 0 | |a Bing Li |e verfasserin |4 aut | |
700 | 0 | |a Aiguo Xia |e verfasserin |4 aut | |
700 | 0 | |a Ye Li |e verfasserin |4 aut | |
700 | 0 | |a Shuai Yang |e verfasserin |4 aut | |
700 | 0 | |a Fan Jin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t mLife |d Wiley, 2022 |g 2(2023), 4, Seite 450-461 |w (DE-627)1804448230 |w (DE-600)3120417-X |x 2770100X |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2023 |g number:4 |g pages:450-461 |
856 | 4 | 0 | |u https://doi.org/10.1002/mlf2.12096 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/21f12515f24747119dd1548341552373 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/mlf2.12096 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2770-100X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2023 |e 4 |h 450-461 |
author_variant |
r z rz y h yh m l ml l w lw b l bl a x ax y l yl s y sy f j fj |
---|---|
matchkey_str |
article:2770100X:2023----::ihhogptirsoyaesreignqatfcto |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QR |
publishDate |
2023 |
allfields |
10.1002/mlf2.12096 doi (DE-627)DOAJ097981982 (DE-599)DOAJ21f12515f24747119dd1548341552373 DE-627 ger DE-627 rakwb eng QR1-502 Rongrong Zhang verfasserin aut High‐throughput, microscopy‐based screening and quantification of genetic elements 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy‐based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large‐scale samples for library screening of genetic elements. However, strategies for high‐throughput microscopy experiments remain limited. Here, we present a high‐throughput, microscopy‐based platform that can simultaneously complete the preparation of an 8 × 12‐well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single‐cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs. characterization methods high‐throughput robust genetic elements synthetic biology Microbiology Yajia Huang verfasserin aut Mei Li verfasserin aut Lei Wang verfasserin aut Bing Li verfasserin aut Aiguo Xia verfasserin aut Ye Li verfasserin aut Shuai Yang verfasserin aut Fan Jin verfasserin aut In mLife Wiley, 2022 2(2023), 4, Seite 450-461 (DE-627)1804448230 (DE-600)3120417-X 2770100X nnns volume:2 year:2023 number:4 pages:450-461 https://doi.org/10.1002/mlf2.12096 kostenfrei https://doaj.org/article/21f12515f24747119dd1548341552373 kostenfrei https://doi.org/10.1002/mlf2.12096 kostenfrei https://doaj.org/toc/2770-100X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2023 4 450-461 |
spelling |
10.1002/mlf2.12096 doi (DE-627)DOAJ097981982 (DE-599)DOAJ21f12515f24747119dd1548341552373 DE-627 ger DE-627 rakwb eng QR1-502 Rongrong Zhang verfasserin aut High‐throughput, microscopy‐based screening and quantification of genetic elements 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy‐based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large‐scale samples for library screening of genetic elements. However, strategies for high‐throughput microscopy experiments remain limited. Here, we present a high‐throughput, microscopy‐based platform that can simultaneously complete the preparation of an 8 × 12‐well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single‐cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs. characterization methods high‐throughput robust genetic elements synthetic biology Microbiology Yajia Huang verfasserin aut Mei Li verfasserin aut Lei Wang verfasserin aut Bing Li verfasserin aut Aiguo Xia verfasserin aut Ye Li verfasserin aut Shuai Yang verfasserin aut Fan Jin verfasserin aut In mLife Wiley, 2022 2(2023), 4, Seite 450-461 (DE-627)1804448230 (DE-600)3120417-X 2770100X nnns volume:2 year:2023 number:4 pages:450-461 https://doi.org/10.1002/mlf2.12096 kostenfrei https://doaj.org/article/21f12515f24747119dd1548341552373 kostenfrei https://doi.org/10.1002/mlf2.12096 kostenfrei https://doaj.org/toc/2770-100X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2023 4 450-461 |
allfields_unstemmed |
10.1002/mlf2.12096 doi (DE-627)DOAJ097981982 (DE-599)DOAJ21f12515f24747119dd1548341552373 DE-627 ger DE-627 rakwb eng QR1-502 Rongrong Zhang verfasserin aut High‐throughput, microscopy‐based screening and quantification of genetic elements 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy‐based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large‐scale samples for library screening of genetic elements. However, strategies for high‐throughput microscopy experiments remain limited. Here, we present a high‐throughput, microscopy‐based platform that can simultaneously complete the preparation of an 8 × 12‐well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single‐cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs. characterization methods high‐throughput robust genetic elements synthetic biology Microbiology Yajia Huang verfasserin aut Mei Li verfasserin aut Lei Wang verfasserin aut Bing Li verfasserin aut Aiguo Xia verfasserin aut Ye Li verfasserin aut Shuai Yang verfasserin aut Fan Jin verfasserin aut In mLife Wiley, 2022 2(2023), 4, Seite 450-461 (DE-627)1804448230 (DE-600)3120417-X 2770100X nnns volume:2 year:2023 number:4 pages:450-461 https://doi.org/10.1002/mlf2.12096 kostenfrei https://doaj.org/article/21f12515f24747119dd1548341552373 kostenfrei https://doi.org/10.1002/mlf2.12096 kostenfrei https://doaj.org/toc/2770-100X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2023 4 450-461 |
allfieldsGer |
10.1002/mlf2.12096 doi (DE-627)DOAJ097981982 (DE-599)DOAJ21f12515f24747119dd1548341552373 DE-627 ger DE-627 rakwb eng QR1-502 Rongrong Zhang verfasserin aut High‐throughput, microscopy‐based screening and quantification of genetic elements 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy‐based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large‐scale samples for library screening of genetic elements. However, strategies for high‐throughput microscopy experiments remain limited. Here, we present a high‐throughput, microscopy‐based platform that can simultaneously complete the preparation of an 8 × 12‐well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single‐cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs. characterization methods high‐throughput robust genetic elements synthetic biology Microbiology Yajia Huang verfasserin aut Mei Li verfasserin aut Lei Wang verfasserin aut Bing Li verfasserin aut Aiguo Xia verfasserin aut Ye Li verfasserin aut Shuai Yang verfasserin aut Fan Jin verfasserin aut In mLife Wiley, 2022 2(2023), 4, Seite 450-461 (DE-627)1804448230 (DE-600)3120417-X 2770100X nnns volume:2 year:2023 number:4 pages:450-461 https://doi.org/10.1002/mlf2.12096 kostenfrei https://doaj.org/article/21f12515f24747119dd1548341552373 kostenfrei https://doi.org/10.1002/mlf2.12096 kostenfrei https://doaj.org/toc/2770-100X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2023 4 450-461 |
allfieldsSound |
10.1002/mlf2.12096 doi (DE-627)DOAJ097981982 (DE-599)DOAJ21f12515f24747119dd1548341552373 DE-627 ger DE-627 rakwb eng QR1-502 Rongrong Zhang verfasserin aut High‐throughput, microscopy‐based screening and quantification of genetic elements 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy‐based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large‐scale samples for library screening of genetic elements. However, strategies for high‐throughput microscopy experiments remain limited. Here, we present a high‐throughput, microscopy‐based platform that can simultaneously complete the preparation of an 8 × 12‐well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single‐cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs. characterization methods high‐throughput robust genetic elements synthetic biology Microbiology Yajia Huang verfasserin aut Mei Li verfasserin aut Lei Wang verfasserin aut Bing Li verfasserin aut Aiguo Xia verfasserin aut Ye Li verfasserin aut Shuai Yang verfasserin aut Fan Jin verfasserin aut In mLife Wiley, 2022 2(2023), 4, Seite 450-461 (DE-627)1804448230 (DE-600)3120417-X 2770100X nnns volume:2 year:2023 number:4 pages:450-461 https://doi.org/10.1002/mlf2.12096 kostenfrei https://doaj.org/article/21f12515f24747119dd1548341552373 kostenfrei https://doi.org/10.1002/mlf2.12096 kostenfrei https://doaj.org/toc/2770-100X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2023 4 450-461 |
language |
English |
source |
In mLife 2(2023), 4, Seite 450-461 volume:2 year:2023 number:4 pages:450-461 |
sourceStr |
In mLife 2(2023), 4, Seite 450-461 volume:2 year:2023 number:4 pages:450-461 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
characterization methods high‐throughput robust genetic elements synthetic biology Microbiology |
isfreeaccess_bool |
true |
container_title |
mLife |
authorswithroles_txt_mv |
Rongrong Zhang @@aut@@ Yajia Huang @@aut@@ Mei Li @@aut@@ Lei Wang @@aut@@ Bing Li @@aut@@ Aiguo Xia @@aut@@ Ye Li @@aut@@ Shuai Yang @@aut@@ Fan Jin @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1804448230 |
id |
DOAJ097981982 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097981982</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413201945.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/mlf2.12096</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097981982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ21f12515f24747119dd1548341552373</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rongrong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High‐throughput, microscopy‐based screening and quantification of genetic elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy‐based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large‐scale samples for library screening of genetic elements. However, strategies for high‐throughput microscopy experiments remain limited. Here, we present a high‐throughput, microscopy‐based platform that can simultaneously complete the preparation of an 8 × 12‐well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single‐cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">characterization methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high‐throughput</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robust genetic elements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthetic biology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yajia Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aiguo Xia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ye Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuai Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fan Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">mLife</subfield><subfield code="d">Wiley, 2022</subfield><subfield code="g">2(2023), 4, Seite 450-461</subfield><subfield code="w">(DE-627)1804448230</subfield><subfield code="w">(DE-600)3120417-X</subfield><subfield code="x">2770100X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:450-461</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/mlf2.12096</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/21f12515f24747119dd1548341552373</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/mlf2.12096</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2770-100X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2023</subfield><subfield code="e">4</subfield><subfield code="h">450-461</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Rongrong Zhang |
spellingShingle |
Rongrong Zhang misc QR1-502 misc characterization methods misc high‐throughput misc robust genetic elements misc synthetic biology misc Microbiology High‐throughput, microscopy‐based screening and quantification of genetic elements |
authorStr |
Rongrong Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1804448230 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
2770100X |
topic_title |
QR1-502 High‐throughput, microscopy‐based screening and quantification of genetic elements characterization methods high‐throughput robust genetic elements synthetic biology |
topic |
misc QR1-502 misc characterization methods misc high‐throughput misc robust genetic elements misc synthetic biology misc Microbiology |
topic_unstemmed |
misc QR1-502 misc characterization methods misc high‐throughput misc robust genetic elements misc synthetic biology misc Microbiology |
topic_browse |
misc QR1-502 misc characterization methods misc high‐throughput misc robust genetic elements misc synthetic biology misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
mLife |
hierarchy_parent_id |
1804448230 |
hierarchy_top_title |
mLife |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1804448230 (DE-600)3120417-X |
title |
High‐throughput, microscopy‐based screening and quantification of genetic elements |
ctrlnum |
(DE-627)DOAJ097981982 (DE-599)DOAJ21f12515f24747119dd1548341552373 |
title_full |
High‐throughput, microscopy‐based screening and quantification of genetic elements |
author_sort |
Rongrong Zhang |
journal |
mLife |
journalStr |
mLife |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
450 |
author_browse |
Rongrong Zhang Yajia Huang Mei Li Lei Wang Bing Li Aiguo Xia Ye Li Shuai Yang Fan Jin |
container_volume |
2 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
Rongrong Zhang |
doi_str_mv |
10.1002/mlf2.12096 |
author2-role |
verfasserin |
title_sort |
high‐throughput, microscopy‐based screening and quantification of genetic elements |
callnumber |
QR1-502 |
title_auth |
High‐throughput, microscopy‐based screening and quantification of genetic elements |
abstract |
Abstract Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy‐based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large‐scale samples for library screening of genetic elements. However, strategies for high‐throughput microscopy experiments remain limited. Here, we present a high‐throughput, microscopy‐based platform that can simultaneously complete the preparation of an 8 × 12‐well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single‐cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs. |
abstractGer |
Abstract Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy‐based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large‐scale samples for library screening of genetic elements. However, strategies for high‐throughput microscopy experiments remain limited. Here, we present a high‐throughput, microscopy‐based platform that can simultaneously complete the preparation of an 8 × 12‐well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single‐cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs. |
abstract_unstemmed |
Abstract Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy‐based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large‐scale samples for library screening of genetic elements. However, strategies for high‐throughput microscopy experiments remain limited. Here, we present a high‐throughput, microscopy‐based platform that can simultaneously complete the preparation of an 8 × 12‐well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single‐cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
High‐throughput, microscopy‐based screening and quantification of genetic elements |
url |
https://doi.org/10.1002/mlf2.12096 https://doaj.org/article/21f12515f24747119dd1548341552373 https://doaj.org/toc/2770-100X |
remote_bool |
true |
author2 |
Yajia Huang Mei Li Lei Wang Bing Li Aiguo Xia Ye Li Shuai Yang Fan Jin |
author2Str |
Yajia Huang Mei Li Lei Wang Bing Li Aiguo Xia Ye Li Shuai Yang Fan Jin |
ppnlink |
1804448230 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/mlf2.12096 |
callnumber-a |
QR1-502 |
up_date |
2024-07-03T14:48:23.090Z |
_version_ |
1803569702471991297 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097981982</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413201945.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/mlf2.12096</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097981982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ21f12515f24747119dd1548341552373</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rongrong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High‐throughput, microscopy‐based screening and quantification of genetic elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy‐based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large‐scale samples for library screening of genetic elements. However, strategies for high‐throughput microscopy experiments remain limited. Here, we present a high‐throughput, microscopy‐based platform that can simultaneously complete the preparation of an 8 × 12‐well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single‐cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">characterization methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high‐throughput</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robust genetic elements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthetic biology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yajia Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aiguo Xia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ye Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuai Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fan Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">mLife</subfield><subfield code="d">Wiley, 2022</subfield><subfield code="g">2(2023), 4, Seite 450-461</subfield><subfield code="w">(DE-627)1804448230</subfield><subfield code="w">(DE-600)3120417-X</subfield><subfield code="x">2770100X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:450-461</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/mlf2.12096</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/21f12515f24747119dd1548341552373</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/mlf2.12096</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2770-100X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2023</subfield><subfield code="e">4</subfield><subfield code="h">450-461</subfield></datafield></record></collection>
|
score |
7.401513 |