Sobolev Embedding Theorem for the Sobolev-Morrey spaces
In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potenti...
Ausführliche Beschreibung
Autor*in: |
V.I. Burenkov [verfasserIn] N.A. Kydyrmina [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Қарағанды университетінің хабаршысы. Математика сериясы - Academician Ye.A. Buketov Karaganda University, 2023, 83(2016), 3 |
---|---|
Übergeordnetes Werk: |
volume:83 ; year:2016 ; number:3 |
Links: |
---|
Katalog-ID: |
DOAJ097989967 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097989967 | ||
003 | DE-627 | ||
005 | 20240413202126.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2016 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ097989967 | ||
035 | |a (DE-599)DOAJf38c8ab8ccca456693e34694a820c702 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA299.6-433 | |
050 | 0 | |a QA801-939 | |
050 | 0 | |a QA273-280 | |
100 | 0 | |a V.I. Burenkov |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sobolev Embedding Theorem for the Sobolev-Morrey spaces |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato. | ||
650 | 4 | |a Morrey space | |
650 | 4 | |a Sobolev-Morrey space | |
650 | 4 | |a Sobolev Embedding Theorem | |
653 | 0 | |a Analysis | |
653 | 0 | |a Analytic mechanics | |
653 | 0 | |a Probabilities. Mathematical statistics | |
700 | 0 | |a N.A. Kydyrmina |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Қарағанды университетінің хабаршысы. Математика сериясы |d Academician Ye.A. Buketov Karaganda University, 2023 |g 83(2016), 3 |w (DE-627)DOAJ00015783X |x 26635011 |7 nnns |
773 | 1 | 8 | |g volume:83 |g year:2016 |g number:3 |
856 | 4 | 0 | |u https://doaj.org/article/f38c8ab8ccca456693e34694a820c702 |z kostenfrei |
856 | 4 | 0 | |u http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/99 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2518-7929 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2663-5011 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 83 |j 2016 |e 3 |
author_variant |
v b vb n k nk |
---|---|
matchkey_str |
article:26635011:2016----::ooeebdighoefrhsblv |
hierarchy_sort_str |
2016 |
callnumber-subject-code |
QA |
publishDate |
2016 |
allfields |
(DE-627)DOAJ097989967 (DE-599)DOAJf38c8ab8ccca456693e34694a820c702 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 V.I. Burenkov verfasserin aut Sobolev Embedding Theorem for the Sobolev-Morrey spaces 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato. Morrey space Sobolev-Morrey space Sobolev Embedding Theorem Analysis Analytic mechanics Probabilities. Mathematical statistics N.A. Kydyrmina verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 83(2016), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:83 year:2016 number:3 https://doaj.org/article/f38c8ab8ccca456693e34694a820c702 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/99 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 83 2016 3 |
spelling |
(DE-627)DOAJ097989967 (DE-599)DOAJf38c8ab8ccca456693e34694a820c702 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 V.I. Burenkov verfasserin aut Sobolev Embedding Theorem for the Sobolev-Morrey spaces 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato. Morrey space Sobolev-Morrey space Sobolev Embedding Theorem Analysis Analytic mechanics Probabilities. Mathematical statistics N.A. Kydyrmina verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 83(2016), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:83 year:2016 number:3 https://doaj.org/article/f38c8ab8ccca456693e34694a820c702 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/99 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 83 2016 3 |
allfields_unstemmed |
(DE-627)DOAJ097989967 (DE-599)DOAJf38c8ab8ccca456693e34694a820c702 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 V.I. Burenkov verfasserin aut Sobolev Embedding Theorem for the Sobolev-Morrey spaces 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato. Morrey space Sobolev-Morrey space Sobolev Embedding Theorem Analysis Analytic mechanics Probabilities. Mathematical statistics N.A. Kydyrmina verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 83(2016), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:83 year:2016 number:3 https://doaj.org/article/f38c8ab8ccca456693e34694a820c702 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/99 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 83 2016 3 |
allfieldsGer |
(DE-627)DOAJ097989967 (DE-599)DOAJf38c8ab8ccca456693e34694a820c702 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 V.I. Burenkov verfasserin aut Sobolev Embedding Theorem for the Sobolev-Morrey spaces 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato. Morrey space Sobolev-Morrey space Sobolev Embedding Theorem Analysis Analytic mechanics Probabilities. Mathematical statistics N.A. Kydyrmina verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 83(2016), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:83 year:2016 number:3 https://doaj.org/article/f38c8ab8ccca456693e34694a820c702 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/99 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 83 2016 3 |
allfieldsSound |
(DE-627)DOAJ097989967 (DE-599)DOAJf38c8ab8ccca456693e34694a820c702 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 V.I. Burenkov verfasserin aut Sobolev Embedding Theorem for the Sobolev-Morrey spaces 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato. Morrey space Sobolev-Morrey space Sobolev Embedding Theorem Analysis Analytic mechanics Probabilities. Mathematical statistics N.A. Kydyrmina verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 83(2016), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:83 year:2016 number:3 https://doaj.org/article/f38c8ab8ccca456693e34694a820c702 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/99 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 83 2016 3 |
language |
English |
source |
In Қарағанды университетінің хабаршысы. Математика сериясы 83(2016), 3 volume:83 year:2016 number:3 |
sourceStr |
In Қарағанды университетінің хабаршысы. Математика сериясы 83(2016), 3 volume:83 year:2016 number:3 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Morrey space Sobolev-Morrey space Sobolev Embedding Theorem Analysis Analytic mechanics Probabilities. Mathematical statistics |
isfreeaccess_bool |
true |
container_title |
Қарағанды университетінің хабаршысы. Математика сериясы |
authorswithroles_txt_mv |
V.I. Burenkov @@aut@@ N.A. Kydyrmina @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
DOAJ00015783X |
id |
DOAJ097989967 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097989967</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413202126.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097989967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf38c8ab8ccca456693e34694a820c702</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA801-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273-280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">V.I. Burenkov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sobolev Embedding Theorem for the Sobolev-Morrey spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morrey space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sobolev-Morrey space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sobolev Embedding Theorem</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analytic mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities. Mathematical statistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">N.A. Kydyrmina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Қарағанды университетінің хабаршысы. Математика сериясы</subfield><subfield code="d">Academician Ye.A. Buketov Karaganda University, 2023</subfield><subfield code="g">83(2016), 3</subfield><subfield code="w">(DE-627)DOAJ00015783X</subfield><subfield code="x">26635011</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:83</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f38c8ab8ccca456693e34694a820c702</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/99</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2518-7929</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2663-5011</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">83</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
V.I. Burenkov |
spellingShingle |
V.I. Burenkov misc QA299.6-433 misc QA801-939 misc QA273-280 misc Morrey space misc Sobolev-Morrey space misc Sobolev Embedding Theorem misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics Sobolev Embedding Theorem for the Sobolev-Morrey spaces |
authorStr |
V.I. Burenkov |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)DOAJ00015783X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA299 |
illustrated |
Not Illustrated |
issn |
26635011 |
topic_title |
QA299.6-433 QA801-939 QA273-280 Sobolev Embedding Theorem for the Sobolev-Morrey spaces Morrey space Sobolev-Morrey space Sobolev Embedding Theorem |
topic |
misc QA299.6-433 misc QA801-939 misc QA273-280 misc Morrey space misc Sobolev-Morrey space misc Sobolev Embedding Theorem misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics |
topic_unstemmed |
misc QA299.6-433 misc QA801-939 misc QA273-280 misc Morrey space misc Sobolev-Morrey space misc Sobolev Embedding Theorem misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics |
topic_browse |
misc QA299.6-433 misc QA801-939 misc QA273-280 misc Morrey space misc Sobolev-Morrey space misc Sobolev Embedding Theorem misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Қарағанды университетінің хабаршысы. Математика сериясы |
hierarchy_parent_id |
DOAJ00015783X |
hierarchy_top_title |
Қарағанды университетінің хабаршысы. Математика сериясы |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)DOAJ00015783X |
title |
Sobolev Embedding Theorem for the Sobolev-Morrey spaces |
ctrlnum |
(DE-627)DOAJ097989967 (DE-599)DOAJf38c8ab8ccca456693e34694a820c702 |
title_full |
Sobolev Embedding Theorem for the Sobolev-Morrey spaces |
author_sort |
V.I. Burenkov |
journal |
Қарағанды университетінің хабаршысы. Математика сериясы |
journalStr |
Қарағанды университетінің хабаршысы. Математика сериясы |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
V.I. Burenkov N.A. Kydyrmina |
container_volume |
83 |
class |
QA299.6-433 QA801-939 QA273-280 |
format_se |
Elektronische Aufsätze |
author-letter |
V.I. Burenkov |
author2-role |
verfasserin |
title_sort |
sobolev embedding theorem for the sobolev-morrey spaces |
callnumber |
QA299.6-433 |
title_auth |
Sobolev Embedding Theorem for the Sobolev-Morrey spaces |
abstract |
In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato. |
abstractGer |
In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato. |
abstract_unstemmed |
In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
3 |
title_short |
Sobolev Embedding Theorem for the Sobolev-Morrey spaces |
url |
https://doaj.org/article/f38c8ab8ccca456693e34694a820c702 http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/99 https://doaj.org/toc/2518-7929 https://doaj.org/toc/2663-5011 |
remote_bool |
true |
author2 |
N.A. Kydyrmina |
author2Str |
N.A. Kydyrmina |
ppnlink |
DOAJ00015783X |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QA299.6-433 |
up_date |
2024-07-03T14:50:49.530Z |
_version_ |
1803569856021266432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097989967</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413202126.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097989967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf38c8ab8ccca456693e34694a820c702</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA801-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273-280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">V.I. Burenkov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sobolev Embedding Theorem for the Sobolev-Morrey spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morrey space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sobolev-Morrey space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sobolev Embedding Theorem</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analytic mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities. Mathematical statistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">N.A. Kydyrmina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Қарағанды университетінің хабаршысы. Математика сериясы</subfield><subfield code="d">Academician Ye.A. Buketov Karaganda University, 2023</subfield><subfield code="g">83(2016), 3</subfield><subfield code="w">(DE-627)DOAJ00015783X</subfield><subfield code="x">26635011</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:83</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f38c8ab8ccca456693e34694a820c702</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/99</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2518-7929</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2663-5011</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">83</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
score |
7.40158 |