Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant
In the present paper, we study two eco-epidemiological models. The first one consists of a prey and twocompeting predators with SI-disease in prey species spreading by contacts between susceptible prey and infected prey. This model assumes linear functional response. The second model is the modifica...
Ausführliche Beschreibung
Autor*in: |
Evren Hincal [verfasserIn] Shorsh Mohammed [verfasserIn] Bilgen Kaymakamzade [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Қарағанды университетінің хабаршысы. Математика сериясы - Academician Ye.A. Buketov Karaganda University, 2023, 99(2020), 3 |
---|---|
Übergeordnetes Werk: |
volume:99 ; year:2020 ; number:3 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.31489/2020m3/55-61 |
---|
Katalog-ID: |
DOAJ097992461 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097992461 | ||
003 | DE-627 | ||
005 | 20240413202145.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.31489/2020m3/55-61 |2 doi | |
035 | |a (DE-627)DOAJ097992461 | ||
035 | |a (DE-599)DOAJd7f289a3b566499fb836cfcc8db39292 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA299.6-433 | |
050 | 0 | |a QA801-939 | |
050 | 0 | |a QA273-280 | |
100 | 0 | |a Evren Hincal |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the present paper, we study two eco-epidemiological models. The first one consists of a prey and twocompeting predators with SI-disease in prey species spreading by contacts between susceptible prey and infected prey. This model assumes linear functional response. The second model is the modification of the first one when the effect of toxicant is taken into account. In this paper, we examine the dynamical behavior of non-survival and free equilibrium points of our proposed model. | ||
650 | 4 | |a Stability analysis | |
650 | 4 | |a epidemiological model | |
650 | 4 | |a prey | |
650 | 4 | |a predator | |
653 | 0 | |a Analysis | |
653 | 0 | |a Analytic mechanics | |
653 | 0 | |a Probabilities. Mathematical statistics | |
700 | 0 | |a Shorsh Mohammed |e verfasserin |4 aut | |
700 | 0 | |a Bilgen Kaymakamzade |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Қарағанды университетінің хабаршысы. Математика сериясы |d Academician Ye.A. Buketov Karaganda University, 2023 |g 99(2020), 3 |w (DE-627)DOAJ00015783X |x 26635011 |7 nnns |
773 | 1 | 8 | |g volume:99 |g year:2020 |g number:3 |
856 | 4 | 0 | |u https://doi.org/10.31489/2020m3/55-61 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d7f289a3b566499fb836cfcc8db39292 |z kostenfrei |
856 | 4 | 0 | |u http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/383 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2518-7929 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2663-5011 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 99 |j 2020 |e 3 |
author_variant |
e h eh s m sm b k bk |
---|---|
matchkey_str |
article:26635011:2020----::tbltaayioaeopdmooiamdlossigfpeadwcmeigrdtr |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QA |
publishDate |
2020 |
allfields |
10.31489/2020m3/55-61 doi (DE-627)DOAJ097992461 (DE-599)DOAJd7f289a3b566499fb836cfcc8db39292 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 Evren Hincal verfasserin aut Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present paper, we study two eco-epidemiological models. The first one consists of a prey and twocompeting predators with SI-disease in prey species spreading by contacts between susceptible prey and infected prey. This model assumes linear functional response. The second model is the modification of the first one when the effect of toxicant is taken into account. In this paper, we examine the dynamical behavior of non-survival and free equilibrium points of our proposed model. Stability analysis epidemiological model prey predator Analysis Analytic mechanics Probabilities. Mathematical statistics Shorsh Mohammed verfasserin aut Bilgen Kaymakamzade verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 99(2020), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:99 year:2020 number:3 https://doi.org/10.31489/2020m3/55-61 kostenfrei https://doaj.org/article/d7f289a3b566499fb836cfcc8db39292 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/383 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 99 2020 3 |
spelling |
10.31489/2020m3/55-61 doi (DE-627)DOAJ097992461 (DE-599)DOAJd7f289a3b566499fb836cfcc8db39292 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 Evren Hincal verfasserin aut Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present paper, we study two eco-epidemiological models. The first one consists of a prey and twocompeting predators with SI-disease in prey species spreading by contacts between susceptible prey and infected prey. This model assumes linear functional response. The second model is the modification of the first one when the effect of toxicant is taken into account. In this paper, we examine the dynamical behavior of non-survival and free equilibrium points of our proposed model. Stability analysis epidemiological model prey predator Analysis Analytic mechanics Probabilities. Mathematical statistics Shorsh Mohammed verfasserin aut Bilgen Kaymakamzade verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 99(2020), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:99 year:2020 number:3 https://doi.org/10.31489/2020m3/55-61 kostenfrei https://doaj.org/article/d7f289a3b566499fb836cfcc8db39292 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/383 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 99 2020 3 |
allfields_unstemmed |
10.31489/2020m3/55-61 doi (DE-627)DOAJ097992461 (DE-599)DOAJd7f289a3b566499fb836cfcc8db39292 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 Evren Hincal verfasserin aut Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present paper, we study two eco-epidemiological models. The first one consists of a prey and twocompeting predators with SI-disease in prey species spreading by contacts between susceptible prey and infected prey. This model assumes linear functional response. The second model is the modification of the first one when the effect of toxicant is taken into account. In this paper, we examine the dynamical behavior of non-survival and free equilibrium points of our proposed model. Stability analysis epidemiological model prey predator Analysis Analytic mechanics Probabilities. Mathematical statistics Shorsh Mohammed verfasserin aut Bilgen Kaymakamzade verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 99(2020), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:99 year:2020 number:3 https://doi.org/10.31489/2020m3/55-61 kostenfrei https://doaj.org/article/d7f289a3b566499fb836cfcc8db39292 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/383 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 99 2020 3 |
allfieldsGer |
10.31489/2020m3/55-61 doi (DE-627)DOAJ097992461 (DE-599)DOAJd7f289a3b566499fb836cfcc8db39292 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 Evren Hincal verfasserin aut Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present paper, we study two eco-epidemiological models. The first one consists of a prey and twocompeting predators with SI-disease in prey species spreading by contacts between susceptible prey and infected prey. This model assumes linear functional response. The second model is the modification of the first one when the effect of toxicant is taken into account. In this paper, we examine the dynamical behavior of non-survival and free equilibrium points of our proposed model. Stability analysis epidemiological model prey predator Analysis Analytic mechanics Probabilities. Mathematical statistics Shorsh Mohammed verfasserin aut Bilgen Kaymakamzade verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 99(2020), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:99 year:2020 number:3 https://doi.org/10.31489/2020m3/55-61 kostenfrei https://doaj.org/article/d7f289a3b566499fb836cfcc8db39292 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/383 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 99 2020 3 |
allfieldsSound |
10.31489/2020m3/55-61 doi (DE-627)DOAJ097992461 (DE-599)DOAJd7f289a3b566499fb836cfcc8db39292 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 Evren Hincal verfasserin aut Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present paper, we study two eco-epidemiological models. The first one consists of a prey and twocompeting predators with SI-disease in prey species spreading by contacts between susceptible prey and infected prey. This model assumes linear functional response. The second model is the modification of the first one when the effect of toxicant is taken into account. In this paper, we examine the dynamical behavior of non-survival and free equilibrium points of our proposed model. Stability analysis epidemiological model prey predator Analysis Analytic mechanics Probabilities. Mathematical statistics Shorsh Mohammed verfasserin aut Bilgen Kaymakamzade verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 99(2020), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:99 year:2020 number:3 https://doi.org/10.31489/2020m3/55-61 kostenfrei https://doaj.org/article/d7f289a3b566499fb836cfcc8db39292 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/383 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 99 2020 3 |
language |
English |
source |
In Қарағанды университетінің хабаршысы. Математика сериясы 99(2020), 3 volume:99 year:2020 number:3 |
sourceStr |
In Қарағанды университетінің хабаршысы. Математика сериясы 99(2020), 3 volume:99 year:2020 number:3 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Stability analysis epidemiological model prey predator Analysis Analytic mechanics Probabilities. Mathematical statistics |
isfreeaccess_bool |
true |
container_title |
Қарағанды университетінің хабаршысы. Математика сериясы |
authorswithroles_txt_mv |
Evren Hincal @@aut@@ Shorsh Mohammed @@aut@@ Bilgen Kaymakamzade @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
DOAJ00015783X |
id |
DOAJ097992461 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097992461</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413202145.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.31489/2020m3/55-61</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097992461</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd7f289a3b566499fb836cfcc8db39292</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA801-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273-280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Evren Hincal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the present paper, we study two eco-epidemiological models. The first one consists of a prey and twocompeting predators with SI-disease in prey species spreading by contacts between susceptible prey and infected prey. This model assumes linear functional response. The second model is the modification of the first one when the effect of toxicant is taken into account. In this paper, we examine the dynamical behavior of non-survival and free equilibrium points of our proposed model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">epidemiological model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prey</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">predator</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analytic mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities. Mathematical statistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shorsh Mohammed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bilgen Kaymakamzade</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Қарағанды университетінің хабаршысы. Математика сериясы</subfield><subfield code="d">Academician Ye.A. Buketov Karaganda University, 2023</subfield><subfield code="g">99(2020), 3</subfield><subfield code="w">(DE-627)DOAJ00015783X</subfield><subfield code="x">26635011</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:99</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.31489/2020m3/55-61</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d7f289a3b566499fb836cfcc8db39292</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/383</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2518-7929</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2663-5011</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">99</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Evren Hincal |
spellingShingle |
Evren Hincal misc QA299.6-433 misc QA801-939 misc QA273-280 misc Stability analysis misc epidemiological model misc prey misc predator misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant |
authorStr |
Evren Hincal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)DOAJ00015783X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA299 |
illustrated |
Not Illustrated |
issn |
26635011 |
topic_title |
QA299.6-433 QA801-939 QA273-280 Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant Stability analysis epidemiological model prey predator |
topic |
misc QA299.6-433 misc QA801-939 misc QA273-280 misc Stability analysis misc epidemiological model misc prey misc predator misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics |
topic_unstemmed |
misc QA299.6-433 misc QA801-939 misc QA273-280 misc Stability analysis misc epidemiological model misc prey misc predator misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics |
topic_browse |
misc QA299.6-433 misc QA801-939 misc QA273-280 misc Stability analysis misc epidemiological model misc prey misc predator misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Қарағанды университетінің хабаршысы. Математика сериясы |
hierarchy_parent_id |
DOAJ00015783X |
hierarchy_top_title |
Қарағанды университетінің хабаршысы. Математика сериясы |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)DOAJ00015783X |
title |
Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant |
ctrlnum |
(DE-627)DOAJ097992461 (DE-599)DOAJd7f289a3b566499fb836cfcc8db39292 |
title_full |
Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant |
author_sort |
Evren Hincal |
journal |
Қарағанды университетінің хабаршысы. Математика сериясы |
journalStr |
Қарағанды университетінің хабаршысы. Математика сериясы |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Evren Hincal Shorsh Mohammed Bilgen Kaymakamzade |
container_volume |
99 |
class |
QA299.6-433 QA801-939 QA273-280 |
format_se |
Elektronische Aufsätze |
author-letter |
Evren Hincal |
doi_str_mv |
10.31489/2020m3/55-61 |
author2-role |
verfasserin |
title_sort |
stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with si-disease in prey and toxicant |
callnumber |
QA299.6-433 |
title_auth |
Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant |
abstract |
In the present paper, we study two eco-epidemiological models. The first one consists of a prey and twocompeting predators with SI-disease in prey species spreading by contacts between susceptible prey and infected prey. This model assumes linear functional response. The second model is the modification of the first one when the effect of toxicant is taken into account. In this paper, we examine the dynamical behavior of non-survival and free equilibrium points of our proposed model. |
abstractGer |
In the present paper, we study two eco-epidemiological models. The first one consists of a prey and twocompeting predators with SI-disease in prey species spreading by contacts between susceptible prey and infected prey. This model assumes linear functional response. The second model is the modification of the first one when the effect of toxicant is taken into account. In this paper, we examine the dynamical behavior of non-survival and free equilibrium points of our proposed model. |
abstract_unstemmed |
In the present paper, we study two eco-epidemiological models. The first one consists of a prey and twocompeting predators with SI-disease in prey species spreading by contacts between susceptible prey and infected prey. This model assumes linear functional response. The second model is the modification of the first one when the effect of toxicant is taken into account. In this paper, we examine the dynamical behavior of non-survival and free equilibrium points of our proposed model. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
3 |
title_short |
Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant |
url |
https://doi.org/10.31489/2020m3/55-61 https://doaj.org/article/d7f289a3b566499fb836cfcc8db39292 http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/383 https://doaj.org/toc/2518-7929 https://doaj.org/toc/2663-5011 |
remote_bool |
true |
author2 |
Shorsh Mohammed Bilgen Kaymakamzade |
author2Str |
Shorsh Mohammed Bilgen Kaymakamzade |
ppnlink |
DOAJ00015783X |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.31489/2020m3/55-61 |
callnumber-a |
QA299.6-433 |
up_date |
2024-07-03T14:51:25.486Z |
_version_ |
1803569893728059393 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097992461</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413202145.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.31489/2020m3/55-61</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097992461</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd7f289a3b566499fb836cfcc8db39292</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA801-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273-280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Evren Hincal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability analysis of an eco-epidemiological model consisting of a prey and two competing predators with SI-disease in prey and toxicant</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the present paper, we study two eco-epidemiological models. The first one consists of a prey and twocompeting predators with SI-disease in prey species spreading by contacts between susceptible prey and infected prey. This model assumes linear functional response. The second model is the modification of the first one when the effect of toxicant is taken into account. In this paper, we examine the dynamical behavior of non-survival and free equilibrium points of our proposed model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">epidemiological model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prey</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">predator</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analytic mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities. Mathematical statistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shorsh Mohammed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bilgen Kaymakamzade</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Қарағанды университетінің хабаршысы. Математика сериясы</subfield><subfield code="d">Academician Ye.A. Buketov Karaganda University, 2023</subfield><subfield code="g">99(2020), 3</subfield><subfield code="w">(DE-627)DOAJ00015783X</subfield><subfield code="x">26635011</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:99</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.31489/2020m3/55-61</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d7f289a3b566499fb836cfcc8db39292</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/383</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2518-7929</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2663-5011</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">99</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
score |
7.401613 |