An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient
This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under co...
Ausführliche Beschreibung
Autor*in: |
B.I. Efendiev [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
fractional Riemann–Liouville integral fractional Riemann–Liouville derivative |
---|
Übergeordnetes Werk: |
In: Қарағанды университетінің хабаршысы. Математика сериясы - Academician Ye.A. Buketov Karaganda University, 2023, 106(2022), 2 |
---|---|
Übergeordnetes Werk: |
volume:106 ; year:2022 ; number:2 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.31489/2022m2/83-92 |
---|
Katalog-ID: |
DOAJ09799359X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09799359X | ||
003 | DE-627 | ||
005 | 20240413202153.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.31489/2022m2/83-92 |2 doi | |
035 | |a (DE-627)DOAJ09799359X | ||
035 | |a (DE-599)DOAJdef66c345cf54be482673999440c8f7c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA299.6-433 | |
050 | 0 | |a QA801-939 | |
050 | 0 | |a QA273-280 | |
100 | 0 | |a B.I. Efendiev |e verfasserin |4 aut | |
245 | 1 | 3 | |a An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found. | ||
650 | 4 | |a fractional Riemann–Liouville integral | |
650 | 4 | |a fractional Riemann–Liouville derivative | |
650 | 4 | |a Gerasimov–Caputo fractional derivative | |
650 | 4 | |a Dirichlet problem | |
650 | 4 | |a Green’s function | |
650 | 4 | |a analogue of Lyapunov inequality | |
653 | 0 | |a Analysis | |
653 | 0 | |a Analytic mechanics | |
653 | 0 | |a Probabilities. Mathematical statistics | |
773 | 0 | 8 | |i In |t Қарағанды университетінің хабаршысы. Математика сериясы |d Academician Ye.A. Buketov Karaganda University, 2023 |g 106(2022), 2 |w (DE-627)DOAJ00015783X |x 26635011 |7 nnns |
773 | 1 | 8 | |g volume:106 |g year:2022 |g number:2 |
856 | 4 | 0 | |u https://doi.org/10.31489/2022m2/83-92 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/def66c345cf54be482673999440c8f7c |z kostenfrei |
856 | 4 | 0 | |u http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/519 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2518-7929 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2663-5011 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 106 |j 2022 |e 2 |
author_variant |
b e be |
---|---|
matchkey_str |
article:26635011:2022----::nnlgefhlauoieultfrnriayeodredfeetaeutowtarcinl |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QA |
publishDate |
2022 |
allfields |
10.31489/2022m2/83-92 doi (DE-627)DOAJ09799359X (DE-599)DOAJdef66c345cf54be482673999440c8f7c DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 B.I. Efendiev verfasserin aut An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found. fractional Riemann–Liouville integral fractional Riemann–Liouville derivative Gerasimov–Caputo fractional derivative Dirichlet problem Green’s function analogue of Lyapunov inequality Analysis Analytic mechanics Probabilities. Mathematical statistics In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 106(2022), 2 (DE-627)DOAJ00015783X 26635011 nnns volume:106 year:2022 number:2 https://doi.org/10.31489/2022m2/83-92 kostenfrei https://doaj.org/article/def66c345cf54be482673999440c8f7c kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/519 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 106 2022 2 |
spelling |
10.31489/2022m2/83-92 doi (DE-627)DOAJ09799359X (DE-599)DOAJdef66c345cf54be482673999440c8f7c DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 B.I. Efendiev verfasserin aut An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found. fractional Riemann–Liouville integral fractional Riemann–Liouville derivative Gerasimov–Caputo fractional derivative Dirichlet problem Green’s function analogue of Lyapunov inequality Analysis Analytic mechanics Probabilities. Mathematical statistics In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 106(2022), 2 (DE-627)DOAJ00015783X 26635011 nnns volume:106 year:2022 number:2 https://doi.org/10.31489/2022m2/83-92 kostenfrei https://doaj.org/article/def66c345cf54be482673999440c8f7c kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/519 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 106 2022 2 |
allfields_unstemmed |
10.31489/2022m2/83-92 doi (DE-627)DOAJ09799359X (DE-599)DOAJdef66c345cf54be482673999440c8f7c DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 B.I. Efendiev verfasserin aut An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found. fractional Riemann–Liouville integral fractional Riemann–Liouville derivative Gerasimov–Caputo fractional derivative Dirichlet problem Green’s function analogue of Lyapunov inequality Analysis Analytic mechanics Probabilities. Mathematical statistics In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 106(2022), 2 (DE-627)DOAJ00015783X 26635011 nnns volume:106 year:2022 number:2 https://doi.org/10.31489/2022m2/83-92 kostenfrei https://doaj.org/article/def66c345cf54be482673999440c8f7c kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/519 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 106 2022 2 |
allfieldsGer |
10.31489/2022m2/83-92 doi (DE-627)DOAJ09799359X (DE-599)DOAJdef66c345cf54be482673999440c8f7c DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 B.I. Efendiev verfasserin aut An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found. fractional Riemann–Liouville integral fractional Riemann–Liouville derivative Gerasimov–Caputo fractional derivative Dirichlet problem Green’s function analogue of Lyapunov inequality Analysis Analytic mechanics Probabilities. Mathematical statistics In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 106(2022), 2 (DE-627)DOAJ00015783X 26635011 nnns volume:106 year:2022 number:2 https://doi.org/10.31489/2022m2/83-92 kostenfrei https://doaj.org/article/def66c345cf54be482673999440c8f7c kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/519 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 106 2022 2 |
allfieldsSound |
10.31489/2022m2/83-92 doi (DE-627)DOAJ09799359X (DE-599)DOAJdef66c345cf54be482673999440c8f7c DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 B.I. Efendiev verfasserin aut An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found. fractional Riemann–Liouville integral fractional Riemann–Liouville derivative Gerasimov–Caputo fractional derivative Dirichlet problem Green’s function analogue of Lyapunov inequality Analysis Analytic mechanics Probabilities. Mathematical statistics In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 106(2022), 2 (DE-627)DOAJ00015783X 26635011 nnns volume:106 year:2022 number:2 https://doi.org/10.31489/2022m2/83-92 kostenfrei https://doaj.org/article/def66c345cf54be482673999440c8f7c kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/519 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 106 2022 2 |
language |
English |
source |
In Қарағанды университетінің хабаршысы. Математика сериясы 106(2022), 2 volume:106 year:2022 number:2 |
sourceStr |
In Қарағанды университетінің хабаршысы. Математика сериясы 106(2022), 2 volume:106 year:2022 number:2 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fractional Riemann–Liouville integral fractional Riemann–Liouville derivative Gerasimov–Caputo fractional derivative Dirichlet problem Green’s function analogue of Lyapunov inequality Analysis Analytic mechanics Probabilities. Mathematical statistics |
isfreeaccess_bool |
true |
container_title |
Қарағанды университетінің хабаршысы. Математика сериясы |
authorswithroles_txt_mv |
B.I. Efendiev @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
DOAJ00015783X |
id |
DOAJ09799359X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09799359X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413202153.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.31489/2022m2/83-92</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09799359X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdef66c345cf54be482673999440c8f7c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA801-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273-280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">B.I. Efendiev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional Riemann–Liouville integral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional Riemann–Liouville derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gerasimov–Caputo fractional derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirichlet problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green’s function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analogue of Lyapunov inequality</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analytic mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities. Mathematical statistics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Қарағанды университетінің хабаршысы. Математика сериясы</subfield><subfield code="d">Academician Ye.A. Buketov Karaganda University, 2023</subfield><subfield code="g">106(2022), 2</subfield><subfield code="w">(DE-627)DOAJ00015783X</subfield><subfield code="x">26635011</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:106</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.31489/2022m2/83-92</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/def66c345cf54be482673999440c8f7c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/519</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2518-7929</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2663-5011</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">106</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
B.I. Efendiev |
spellingShingle |
B.I. Efendiev misc QA299.6-433 misc QA801-939 misc QA273-280 misc fractional Riemann–Liouville integral misc fractional Riemann–Liouville derivative misc Gerasimov–Caputo fractional derivative misc Dirichlet problem misc Green’s function misc analogue of Lyapunov inequality misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient |
authorStr |
B.I. Efendiev |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)DOAJ00015783X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA299 |
illustrated |
Not Illustrated |
issn |
26635011 |
topic_title |
QA299.6-433 QA801-939 QA273-280 An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient fractional Riemann–Liouville integral fractional Riemann–Liouville derivative Gerasimov–Caputo fractional derivative Dirichlet problem Green’s function analogue of Lyapunov inequality |
topic |
misc QA299.6-433 misc QA801-939 misc QA273-280 misc fractional Riemann–Liouville integral misc fractional Riemann–Liouville derivative misc Gerasimov–Caputo fractional derivative misc Dirichlet problem misc Green’s function misc analogue of Lyapunov inequality misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics |
topic_unstemmed |
misc QA299.6-433 misc QA801-939 misc QA273-280 misc fractional Riemann–Liouville integral misc fractional Riemann–Liouville derivative misc Gerasimov–Caputo fractional derivative misc Dirichlet problem misc Green’s function misc analogue of Lyapunov inequality misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics |
topic_browse |
misc QA299.6-433 misc QA801-939 misc QA273-280 misc fractional Riemann–Liouville integral misc fractional Riemann–Liouville derivative misc Gerasimov–Caputo fractional derivative misc Dirichlet problem misc Green’s function misc analogue of Lyapunov inequality misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Қарағанды университетінің хабаршысы. Математика сериясы |
hierarchy_parent_id |
DOAJ00015783X |
hierarchy_top_title |
Қарағанды университетінің хабаршысы. Математика сериясы |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)DOAJ00015783X |
title |
An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient |
ctrlnum |
(DE-627)DOAJ09799359X (DE-599)DOAJdef66c345cf54be482673999440c8f7c |
title_full |
An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient |
author_sort |
B.I. Efendiev |
journal |
Қарағанды университетінің хабаршысы. Математика сериясы |
journalStr |
Қарағанды университетінің хабаршысы. Математика сериясы |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
B.I. Efendiev |
container_volume |
106 |
class |
QA299.6-433 QA801-939 QA273-280 |
format_se |
Elektronische Aufsätze |
author-letter |
B.I. Efendiev |
doi_str_mv |
10.31489/2022m2/83-92 |
title_sort |
analogue of the lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient |
callnumber |
QA299.6-433 |
title_auth |
An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient |
abstract |
This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found. |
abstractGer |
This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found. |
abstract_unstemmed |
This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
2 |
title_short |
An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient |
url |
https://doi.org/10.31489/2022m2/83-92 https://doaj.org/article/def66c345cf54be482673999440c8f7c http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/519 https://doaj.org/toc/2518-7929 https://doaj.org/toc/2663-5011 |
remote_bool |
true |
ppnlink |
DOAJ00015783X |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.31489/2022m2/83-92 |
callnumber-a |
QA299.6-433 |
up_date |
2024-07-03T14:51:42.250Z |
_version_ |
1803569911302193152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09799359X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413202153.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.31489/2022m2/83-92</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09799359X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdef66c345cf54be482673999440c8f7c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA801-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273-280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">B.I. Efendiev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional Riemann–Liouville integral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional Riemann–Liouville derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gerasimov–Caputo fractional derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirichlet problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green’s function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analogue of Lyapunov inequality</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analytic mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities. Mathematical statistics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Қарағанды университетінің хабаршысы. Математика сериясы</subfield><subfield code="d">Academician Ye.A. Buketov Karaganda University, 2023</subfield><subfield code="g">106(2022), 2</subfield><subfield code="w">(DE-627)DOAJ00015783X</subfield><subfield code="x">26635011</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:106</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.31489/2022m2/83-92</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/def66c345cf54be482673999440c8f7c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/519</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2518-7929</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2663-5011</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">106</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield></datafield></record></collection>
|
score |
7.40158 |