Existence and smoothness of solutions of a singular differential equation of hyperbolic type
This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interes...
Ausführliche Beschreibung
Autor*in: |
M.B. Muratbekov [verfasserIn] Ye.N. Bayandiyev [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Қарағанды университетінің хабаршысы. Математика сериясы - Academician Ye.A. Buketov Karaganda University, 2023, 107(2022), 3 |
---|---|
Übergeordnetes Werk: |
volume:107 ; year:2022 ; number:3 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.31489/2022m3/98-104 |
---|
Katalog-ID: |
DOAJ097993743 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097993743 | ||
003 | DE-627 | ||
005 | 20240413202154.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.31489/2022m3/98-104 |2 doi | |
035 | |a (DE-627)DOAJ097993743 | ||
035 | |a (DE-599)DOAJ8f785e431c63400bb1ada619f8377cc4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA299.6-433 | |
050 | 0 | |a QA801-939 | |
050 | 0 | |a QA273-280 | |
100 | 0 | |a M.B. Muratbekov |e verfasserin |4 aut | |
245 | 1 | 0 | |a Existence and smoothness of solutions of a singular differential equation of hyperbolic type |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients. | ||
650 | 4 | |a resolvent | |
650 | 4 | |a hyperbolic type equation | |
650 | 4 | |a maximal regularity | |
650 | 4 | |a unbounded domain | |
653 | 0 | |a Analysis | |
653 | 0 | |a Analytic mechanics | |
653 | 0 | |a Probabilities. Mathematical statistics | |
700 | 0 | |a Ye.N. Bayandiyev |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Қарағанды университетінің хабаршысы. Математика сериясы |d Academician Ye.A. Buketov Karaganda University, 2023 |g 107(2022), 3 |w (DE-627)DOAJ00015783X |x 26635011 |7 nnns |
773 | 1 | 8 | |g volume:107 |g year:2022 |g number:3 |
856 | 4 | 0 | |u https://doi.org/10.31489/2022m3/98-104 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8f785e431c63400bb1ada619f8377cc4 |z kostenfrei |
856 | 4 | 0 | |u http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/524 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2518-7929 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2663-5011 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 107 |j 2022 |e 3 |
author_variant |
m m mm y b yb |
---|---|
matchkey_str |
article:26635011:2022----::xsecadmohesfouinoaiglrifrnilqa |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QA |
publishDate |
2022 |
allfields |
10.31489/2022m3/98-104 doi (DE-627)DOAJ097993743 (DE-599)DOAJ8f785e431c63400bb1ada619f8377cc4 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 M.B. Muratbekov verfasserin aut Existence and smoothness of solutions of a singular differential equation of hyperbolic type 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients. resolvent hyperbolic type equation maximal regularity unbounded domain Analysis Analytic mechanics Probabilities. Mathematical statistics Ye.N. Bayandiyev verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 107(2022), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:107 year:2022 number:3 https://doi.org/10.31489/2022m3/98-104 kostenfrei https://doaj.org/article/8f785e431c63400bb1ada619f8377cc4 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/524 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 107 2022 3 |
spelling |
10.31489/2022m3/98-104 doi (DE-627)DOAJ097993743 (DE-599)DOAJ8f785e431c63400bb1ada619f8377cc4 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 M.B. Muratbekov verfasserin aut Existence and smoothness of solutions of a singular differential equation of hyperbolic type 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients. resolvent hyperbolic type equation maximal regularity unbounded domain Analysis Analytic mechanics Probabilities. Mathematical statistics Ye.N. Bayandiyev verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 107(2022), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:107 year:2022 number:3 https://doi.org/10.31489/2022m3/98-104 kostenfrei https://doaj.org/article/8f785e431c63400bb1ada619f8377cc4 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/524 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 107 2022 3 |
allfields_unstemmed |
10.31489/2022m3/98-104 doi (DE-627)DOAJ097993743 (DE-599)DOAJ8f785e431c63400bb1ada619f8377cc4 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 M.B. Muratbekov verfasserin aut Existence and smoothness of solutions of a singular differential equation of hyperbolic type 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients. resolvent hyperbolic type equation maximal regularity unbounded domain Analysis Analytic mechanics Probabilities. Mathematical statistics Ye.N. Bayandiyev verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 107(2022), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:107 year:2022 number:3 https://doi.org/10.31489/2022m3/98-104 kostenfrei https://doaj.org/article/8f785e431c63400bb1ada619f8377cc4 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/524 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 107 2022 3 |
allfieldsGer |
10.31489/2022m3/98-104 doi (DE-627)DOAJ097993743 (DE-599)DOAJ8f785e431c63400bb1ada619f8377cc4 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 M.B. Muratbekov verfasserin aut Existence and smoothness of solutions of a singular differential equation of hyperbolic type 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients. resolvent hyperbolic type equation maximal regularity unbounded domain Analysis Analytic mechanics Probabilities. Mathematical statistics Ye.N. Bayandiyev verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 107(2022), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:107 year:2022 number:3 https://doi.org/10.31489/2022m3/98-104 kostenfrei https://doaj.org/article/8f785e431c63400bb1ada619f8377cc4 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/524 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 107 2022 3 |
allfieldsSound |
10.31489/2022m3/98-104 doi (DE-627)DOAJ097993743 (DE-599)DOAJ8f785e431c63400bb1ada619f8377cc4 DE-627 ger DE-627 rakwb eng QA299.6-433 QA801-939 QA273-280 M.B. Muratbekov verfasserin aut Existence and smoothness of solutions of a singular differential equation of hyperbolic type 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients. resolvent hyperbolic type equation maximal regularity unbounded domain Analysis Analytic mechanics Probabilities. Mathematical statistics Ye.N. Bayandiyev verfasserin aut In Қарағанды университетінің хабаршысы. Математика сериясы Academician Ye.A. Buketov Karaganda University, 2023 107(2022), 3 (DE-627)DOAJ00015783X 26635011 nnns volume:107 year:2022 number:3 https://doi.org/10.31489/2022m3/98-104 kostenfrei https://doaj.org/article/8f785e431c63400bb1ada619f8377cc4 kostenfrei http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/524 kostenfrei https://doaj.org/toc/2518-7929 Journal toc kostenfrei https://doaj.org/toc/2663-5011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 107 2022 3 |
language |
English |
source |
In Қарағанды университетінің хабаршысы. Математика сериясы 107(2022), 3 volume:107 year:2022 number:3 |
sourceStr |
In Қарағанды университетінің хабаршысы. Математика сериясы 107(2022), 3 volume:107 year:2022 number:3 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
resolvent hyperbolic type equation maximal regularity unbounded domain Analysis Analytic mechanics Probabilities. Mathematical statistics |
isfreeaccess_bool |
true |
container_title |
Қарағанды университетінің хабаршысы. Математика сериясы |
authorswithroles_txt_mv |
M.B. Muratbekov @@aut@@ Ye.N. Bayandiyev @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
DOAJ00015783X |
id |
DOAJ097993743 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097993743</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413202154.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.31489/2022m3/98-104</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097993743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8f785e431c63400bb1ada619f8377cc4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA801-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273-280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M.B. Muratbekov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Existence and smoothness of solutions of a singular differential equation of hyperbolic type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resolvent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperbolic type equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximal regularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unbounded domain</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analytic mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities. Mathematical statistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ye.N. Bayandiyev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Қарағанды университетінің хабаршысы. Математика сериясы</subfield><subfield code="d">Academician Ye.A. Buketov Karaganda University, 2023</subfield><subfield code="g">107(2022), 3</subfield><subfield code="w">(DE-627)DOAJ00015783X</subfield><subfield code="x">26635011</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:107</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.31489/2022m3/98-104</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8f785e431c63400bb1ada619f8377cc4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/524</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2518-7929</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2663-5011</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">107</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
M.B. Muratbekov |
spellingShingle |
M.B. Muratbekov misc QA299.6-433 misc QA801-939 misc QA273-280 misc resolvent misc hyperbolic type equation misc maximal regularity misc unbounded domain misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics Existence and smoothness of solutions of a singular differential equation of hyperbolic type |
authorStr |
M.B. Muratbekov |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)DOAJ00015783X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA299 |
illustrated |
Not Illustrated |
issn |
26635011 |
topic_title |
QA299.6-433 QA801-939 QA273-280 Existence and smoothness of solutions of a singular differential equation of hyperbolic type resolvent hyperbolic type equation maximal regularity unbounded domain |
topic |
misc QA299.6-433 misc QA801-939 misc QA273-280 misc resolvent misc hyperbolic type equation misc maximal regularity misc unbounded domain misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics |
topic_unstemmed |
misc QA299.6-433 misc QA801-939 misc QA273-280 misc resolvent misc hyperbolic type equation misc maximal regularity misc unbounded domain misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics |
topic_browse |
misc QA299.6-433 misc QA801-939 misc QA273-280 misc resolvent misc hyperbolic type equation misc maximal regularity misc unbounded domain misc Analysis misc Analytic mechanics misc Probabilities. Mathematical statistics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Қарағанды университетінің хабаршысы. Математика сериясы |
hierarchy_parent_id |
DOAJ00015783X |
hierarchy_top_title |
Қарағанды университетінің хабаршысы. Математика сериясы |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)DOAJ00015783X |
title |
Existence and smoothness of solutions of a singular differential equation of hyperbolic type |
ctrlnum |
(DE-627)DOAJ097993743 (DE-599)DOAJ8f785e431c63400bb1ada619f8377cc4 |
title_full |
Existence and smoothness of solutions of a singular differential equation of hyperbolic type |
author_sort |
M.B. Muratbekov |
journal |
Қарағанды университетінің хабаршысы. Математика сериясы |
journalStr |
Қарағанды университетінің хабаршысы. Математика сериясы |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
M.B. Muratbekov Ye.N. Bayandiyev |
container_volume |
107 |
class |
QA299.6-433 QA801-939 QA273-280 |
format_se |
Elektronische Aufsätze |
author-letter |
M.B. Muratbekov |
doi_str_mv |
10.31489/2022m3/98-104 |
author2-role |
verfasserin |
title_sort |
existence and smoothness of solutions of a singular differential equation of hyperbolic type |
callnumber |
QA299.6-433 |
title_auth |
Existence and smoothness of solutions of a singular differential equation of hyperbolic type |
abstract |
This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients. |
abstractGer |
This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients. |
abstract_unstemmed |
This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
3 |
title_short |
Existence and smoothness of solutions of a singular differential equation of hyperbolic type |
url |
https://doi.org/10.31489/2022m3/98-104 https://doaj.org/article/8f785e431c63400bb1ada619f8377cc4 http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/524 https://doaj.org/toc/2518-7929 https://doaj.org/toc/2663-5011 |
remote_bool |
true |
author2 |
Ye.N. Bayandiyev |
author2Str |
Ye.N. Bayandiyev |
ppnlink |
DOAJ00015783X |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.31489/2022m3/98-104 |
callnumber-a |
QA299.6-433 |
up_date |
2024-07-03T14:51:44.729Z |
_version_ |
1803569913901613056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097993743</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413202154.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.31489/2022m3/98-104</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097993743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8f785e431c63400bb1ada619f8377cc4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA801-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273-280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M.B. Muratbekov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Existence and smoothness of solutions of a singular differential equation of hyperbolic type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resolvent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperbolic type equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximal regularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unbounded domain</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analytic mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities. Mathematical statistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ye.N. Bayandiyev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Қарағанды университетінің хабаршысы. Математика сериясы</subfield><subfield code="d">Academician Ye.A. Buketov Karaganda University, 2023</subfield><subfield code="g">107(2022), 3</subfield><subfield code="w">(DE-627)DOAJ00015783X</subfield><subfield code="x">26635011</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:107</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.31489/2022m3/98-104</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8f785e431c63400bb1ada619f8377cc4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/524</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2518-7929</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2663-5011</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">107</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
score |
7.40158 |