Configurable topological beam splitting via antichiral gyromagnetic photonic crystal
Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the...
Ausführliche Beschreibung
Autor*in: |
Jianfeng Chen [verfasserIn] Zhi-Yuan Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Opto-Electronic Science - Editorial Office of Opto-Electronic Journals, Institute of Optics and Electronics, CAS, China, 2022, 1(2022), 5, Seite 9 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2022 ; number:5 ; pages:9 |
Links: |
---|
DOI / URN: |
10.29026/oes.2022.220001 |
---|
Katalog-ID: |
DOAJ098087347 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098087347 | ||
003 | DE-627 | ||
005 | 20240413203707.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.29026/oes.2022.220001 |2 doi | |
035 | |a (DE-627)DOAJ098087347 | ||
035 | |a (DE-599)DOAJa58df526f4114c378cad9c3185331440 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC350-467 | |
050 | 0 | |a TA1501-1820 | |
100 | 0 | |a Jianfeng Chen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Configurable topological beam splitting via antichiral gyromagnetic photonic crystal |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC. The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC. When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications. | ||
650 | 4 | |a topological photonics | |
650 | 4 | |a one-way edge state | |
650 | 4 | |a photonic crystal | |
650 | 4 | |a beam splitting | |
650 | 4 | |a topological materials | |
653 | 0 | |a Optics. Light | |
653 | 0 | |a Applied optics. Photonics | |
700 | 0 | |a Zhi-Yuan Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Opto-Electronic Science |d Editorial Office of Opto-Electronic Journals, Institute of Optics and Electronics, CAS, China, 2022 |g 1(2022), 5, Seite 9 |w (DE-627)1860040756 |x 20970382 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2022 |g number:5 |g pages:9 |
856 | 4 | 0 | |u https://doi.org/10.29026/oes.2022.220001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a58df526f4114c378cad9c3185331440 |z kostenfrei |
856 | 4 | 0 | |u https://www.oejournal.org/article/doi/10.29026/oes.2022.220001 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2097-0382 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 1 |j 2022 |e 5 |h 9 |
author_variant |
j c jc z y l zyl |
---|---|
matchkey_str |
article:20970382:2022----::ofgrbeoooiabasltigiatciagrmg |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QC |
publishDate |
2022 |
allfields |
10.29026/oes.2022.220001 doi (DE-627)DOAJ098087347 (DE-599)DOAJa58df526f4114c378cad9c3185331440 DE-627 ger DE-627 rakwb eng QC350-467 TA1501-1820 Jianfeng Chen verfasserin aut Configurable topological beam splitting via antichiral gyromagnetic photonic crystal 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC. The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC. When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications. topological photonics one-way edge state photonic crystal beam splitting topological materials Optics. Light Applied optics. Photonics Zhi-Yuan Li verfasserin aut In Opto-Electronic Science Editorial Office of Opto-Electronic Journals, Institute of Optics and Electronics, CAS, China, 2022 1(2022), 5, Seite 9 (DE-627)1860040756 20970382 nnns volume:1 year:2022 number:5 pages:9 https://doi.org/10.29026/oes.2022.220001 kostenfrei https://doaj.org/article/a58df526f4114c378cad9c3185331440 kostenfrei https://www.oejournal.org/article/doi/10.29026/oes.2022.220001 kostenfrei https://doaj.org/toc/2097-0382 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 1 2022 5 9 |
spelling |
10.29026/oes.2022.220001 doi (DE-627)DOAJ098087347 (DE-599)DOAJa58df526f4114c378cad9c3185331440 DE-627 ger DE-627 rakwb eng QC350-467 TA1501-1820 Jianfeng Chen verfasserin aut Configurable topological beam splitting via antichiral gyromagnetic photonic crystal 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC. The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC. When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications. topological photonics one-way edge state photonic crystal beam splitting topological materials Optics. Light Applied optics. Photonics Zhi-Yuan Li verfasserin aut In Opto-Electronic Science Editorial Office of Opto-Electronic Journals, Institute of Optics and Electronics, CAS, China, 2022 1(2022), 5, Seite 9 (DE-627)1860040756 20970382 nnns volume:1 year:2022 number:5 pages:9 https://doi.org/10.29026/oes.2022.220001 kostenfrei https://doaj.org/article/a58df526f4114c378cad9c3185331440 kostenfrei https://www.oejournal.org/article/doi/10.29026/oes.2022.220001 kostenfrei https://doaj.org/toc/2097-0382 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 1 2022 5 9 |
allfields_unstemmed |
10.29026/oes.2022.220001 doi (DE-627)DOAJ098087347 (DE-599)DOAJa58df526f4114c378cad9c3185331440 DE-627 ger DE-627 rakwb eng QC350-467 TA1501-1820 Jianfeng Chen verfasserin aut Configurable topological beam splitting via antichiral gyromagnetic photonic crystal 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC. The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC. When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications. topological photonics one-way edge state photonic crystal beam splitting topological materials Optics. Light Applied optics. Photonics Zhi-Yuan Li verfasserin aut In Opto-Electronic Science Editorial Office of Opto-Electronic Journals, Institute of Optics and Electronics, CAS, China, 2022 1(2022), 5, Seite 9 (DE-627)1860040756 20970382 nnns volume:1 year:2022 number:5 pages:9 https://doi.org/10.29026/oes.2022.220001 kostenfrei https://doaj.org/article/a58df526f4114c378cad9c3185331440 kostenfrei https://www.oejournal.org/article/doi/10.29026/oes.2022.220001 kostenfrei https://doaj.org/toc/2097-0382 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 1 2022 5 9 |
allfieldsGer |
10.29026/oes.2022.220001 doi (DE-627)DOAJ098087347 (DE-599)DOAJa58df526f4114c378cad9c3185331440 DE-627 ger DE-627 rakwb eng QC350-467 TA1501-1820 Jianfeng Chen verfasserin aut Configurable topological beam splitting via antichiral gyromagnetic photonic crystal 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC. The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC. When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications. topological photonics one-way edge state photonic crystal beam splitting topological materials Optics. Light Applied optics. Photonics Zhi-Yuan Li verfasserin aut In Opto-Electronic Science Editorial Office of Opto-Electronic Journals, Institute of Optics and Electronics, CAS, China, 2022 1(2022), 5, Seite 9 (DE-627)1860040756 20970382 nnns volume:1 year:2022 number:5 pages:9 https://doi.org/10.29026/oes.2022.220001 kostenfrei https://doaj.org/article/a58df526f4114c378cad9c3185331440 kostenfrei https://www.oejournal.org/article/doi/10.29026/oes.2022.220001 kostenfrei https://doaj.org/toc/2097-0382 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 1 2022 5 9 |
allfieldsSound |
10.29026/oes.2022.220001 doi (DE-627)DOAJ098087347 (DE-599)DOAJa58df526f4114c378cad9c3185331440 DE-627 ger DE-627 rakwb eng QC350-467 TA1501-1820 Jianfeng Chen verfasserin aut Configurable topological beam splitting via antichiral gyromagnetic photonic crystal 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC. The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC. When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications. topological photonics one-way edge state photonic crystal beam splitting topological materials Optics. Light Applied optics. Photonics Zhi-Yuan Li verfasserin aut In Opto-Electronic Science Editorial Office of Opto-Electronic Journals, Institute of Optics and Electronics, CAS, China, 2022 1(2022), 5, Seite 9 (DE-627)1860040756 20970382 nnns volume:1 year:2022 number:5 pages:9 https://doi.org/10.29026/oes.2022.220001 kostenfrei https://doaj.org/article/a58df526f4114c378cad9c3185331440 kostenfrei https://www.oejournal.org/article/doi/10.29026/oes.2022.220001 kostenfrei https://doaj.org/toc/2097-0382 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 1 2022 5 9 |
language |
English |
source |
In Opto-Electronic Science 1(2022), 5, Seite 9 volume:1 year:2022 number:5 pages:9 |
sourceStr |
In Opto-Electronic Science 1(2022), 5, Seite 9 volume:1 year:2022 number:5 pages:9 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
topological photonics one-way edge state photonic crystal beam splitting topological materials Optics. Light Applied optics. Photonics |
isfreeaccess_bool |
true |
container_title |
Opto-Electronic Science |
authorswithroles_txt_mv |
Jianfeng Chen @@aut@@ Zhi-Yuan Li @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1860040756 |
id |
DOAJ098087347 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098087347</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413203707.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.29026/oes.2022.220001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098087347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa58df526f4114c378cad9c3185331440</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianfeng Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Configurable topological beam splitting via antichiral gyromagnetic photonic crystal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC. The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC. When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topological photonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">one-way edge state</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photonic crystal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">beam splitting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topological materials</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi-Yuan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Opto-Electronic Science</subfield><subfield code="d">Editorial Office of Opto-Electronic Journals, Institute of Optics and Electronics, CAS, China, 2022</subfield><subfield code="g">1(2022), 5, Seite 9</subfield><subfield code="w">(DE-627)1860040756</subfield><subfield code="x">20970382</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.29026/oes.2022.220001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a58df526f4114c378cad9c3185331440</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.oejournal.org/article/doi/10.29026/oes.2022.220001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2097-0382</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="h">9</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Jianfeng Chen |
spellingShingle |
Jianfeng Chen misc QC350-467 misc TA1501-1820 misc topological photonics misc one-way edge state misc photonic crystal misc beam splitting misc topological materials misc Optics. Light misc Applied optics. Photonics Configurable topological beam splitting via antichiral gyromagnetic photonic crystal |
authorStr |
Jianfeng Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1860040756 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC350-467 |
illustrated |
Not Illustrated |
issn |
20970382 |
topic_title |
QC350-467 TA1501-1820 Configurable topological beam splitting via antichiral gyromagnetic photonic crystal topological photonics one-way edge state photonic crystal beam splitting topological materials |
topic |
misc QC350-467 misc TA1501-1820 misc topological photonics misc one-way edge state misc photonic crystal misc beam splitting misc topological materials misc Optics. Light misc Applied optics. Photonics |
topic_unstemmed |
misc QC350-467 misc TA1501-1820 misc topological photonics misc one-way edge state misc photonic crystal misc beam splitting misc topological materials misc Optics. Light misc Applied optics. Photonics |
topic_browse |
misc QC350-467 misc TA1501-1820 misc topological photonics misc one-way edge state misc photonic crystal misc beam splitting misc topological materials misc Optics. Light misc Applied optics. Photonics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Opto-Electronic Science |
hierarchy_parent_id |
1860040756 |
hierarchy_top_title |
Opto-Electronic Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1860040756 |
title |
Configurable topological beam splitting via antichiral gyromagnetic photonic crystal |
ctrlnum |
(DE-627)DOAJ098087347 (DE-599)DOAJa58df526f4114c378cad9c3185331440 |
title_full |
Configurable topological beam splitting via antichiral gyromagnetic photonic crystal |
author_sort |
Jianfeng Chen |
journal |
Opto-Electronic Science |
journalStr |
Opto-Electronic Science |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
9 |
author_browse |
Jianfeng Chen Zhi-Yuan Li |
container_volume |
1 |
class |
QC350-467 TA1501-1820 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianfeng Chen |
doi_str_mv |
10.29026/oes.2022.220001 |
author2-role |
verfasserin |
title_sort |
configurable topological beam splitting via antichiral gyromagnetic photonic crystal |
callnumber |
QC350-467 |
title_auth |
Configurable topological beam splitting via antichiral gyromagnetic photonic crystal |
abstract |
Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC. The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC. When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications. |
abstractGer |
Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC. The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC. When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications. |
abstract_unstemmed |
Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC. The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC. When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
5 |
title_short |
Configurable topological beam splitting via antichiral gyromagnetic photonic crystal |
url |
https://doi.org/10.29026/oes.2022.220001 https://doaj.org/article/a58df526f4114c378cad9c3185331440 https://www.oejournal.org/article/doi/10.29026/oes.2022.220001 https://doaj.org/toc/2097-0382 |
remote_bool |
true |
author2 |
Zhi-Yuan Li |
author2Str |
Zhi-Yuan Li |
ppnlink |
1860040756 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.29026/oes.2022.220001 |
callnumber-a |
QC350-467 |
up_date |
2024-07-03T15:20:28.686Z |
_version_ |
1803571721600499712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098087347</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413203707.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.29026/oes.2022.220001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098087347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa58df526f4114c378cad9c3185331440</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianfeng Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Configurable topological beam splitting via antichiral gyromagnetic photonic crystal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC. The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC. When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topological photonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">one-way edge state</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photonic crystal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">beam splitting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topological materials</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi-Yuan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Opto-Electronic Science</subfield><subfield code="d">Editorial Office of Opto-Electronic Journals, Institute of Optics and Electronics, CAS, China, 2022</subfield><subfield code="g">1(2022), 5, Seite 9</subfield><subfield code="w">(DE-627)1860040756</subfield><subfield code="x">20970382</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.29026/oes.2022.220001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a58df526f4114c378cad9c3185331440</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.oejournal.org/article/doi/10.29026/oes.2022.220001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2097-0382</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="h">9</subfield></datafield></record></collection>
|
score |
7.39989 |