Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations
Recently, integral transforms are a powerful tool used in many areas of mathematics, physics, engineering, and other fields and disciplines. This article is devoted to the study of one important integral transform, which is called the modified degenerate Laplace transform (MDLT). The fundamental for...
Ausführliche Beschreibung
Autor*in: |
Almalki Yahya [verfasserIn] Abdalla Mohamed [verfasserIn] Abd-Elmageed Hala [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Demonstratio Mathematica - De Gruyter, 2014, 56(2023), 1, Seite 14 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2023 ; number:1 ; pages:14 |
Links: |
---|
DOI / URN: |
10.1515/dema-2023-0112 |
---|
Katalog-ID: |
DOAJ098128418 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098128418 | ||
003 | DE-627 | ||
005 | 20240413204705.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/dema-2023-0112 |2 doi | |
035 | |a (DE-627)DOAJ098128418 | ||
035 | |a (DE-599)DOAJ379593ef861743b3ad135e0927537cf2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Almalki Yahya |e verfasserin |4 aut | |
245 | 1 | 0 | |a Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Recently, integral transforms are a powerful tool used in many areas of mathematics, physics, engineering, and other fields and disciplines. This article is devoted to the study of one important integral transform, which is called the modified degenerate Laplace transform (MDLT). The fundamental formulas and properties of the MDLT are obtained. Furthermore, as an application of the acquired MDLT, we solved a simple differential equation and fractional-order kinetic equations. The outcomes covered here are general in nature and easily reducible to new and known outcomes. | ||
650 | 4 | |a degenerate functions | |
650 | 4 | |a modified degenerate laplace transforms | |
650 | 4 | |a fractional kinetic equations | |
650 | 4 | |a 34a08 | |
650 | 4 | |a 44a10 | |
650 | 4 | |a 44a20 | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Abdalla Mohamed |e verfasserin |4 aut | |
700 | 0 | |a Abd-Elmageed Hala |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Demonstratio Mathematica |d De Gruyter, 2014 |g 56(2023), 1, Seite 14 |w (DE-627)731335007 |w (DE-600)2693084-5 |x 23914661 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2023 |g number:1 |g pages:14 |
856 | 4 | 0 | |u https://doi.org/10.1515/dema-2023-0112 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/379593ef861743b3ad135e0927537cf2 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/dema-2023-0112 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2391-4661 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 56 |j 2023 |e 1 |h 14 |
author_variant |
a y ay a m am a e h aeh |
---|---|
matchkey_str |
article:23914661:2023----::eutoteoiideeeaealctpitgaascaewtapiainivl |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.1515/dema-2023-0112 doi (DE-627)DOAJ098128418 (DE-599)DOAJ379593ef861743b3ad135e0927537cf2 DE-627 ger DE-627 rakwb eng QA1-939 Almalki Yahya verfasserin aut Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, integral transforms are a powerful tool used in many areas of mathematics, physics, engineering, and other fields and disciplines. This article is devoted to the study of one important integral transform, which is called the modified degenerate Laplace transform (MDLT). The fundamental formulas and properties of the MDLT are obtained. Furthermore, as an application of the acquired MDLT, we solved a simple differential equation and fractional-order kinetic equations. The outcomes covered here are general in nature and easily reducible to new and known outcomes. degenerate functions modified degenerate laplace transforms fractional kinetic equations 34a08 44a10 44a20 Mathematics Abdalla Mohamed verfasserin aut Abd-Elmageed Hala verfasserin aut In Demonstratio Mathematica De Gruyter, 2014 56(2023), 1, Seite 14 (DE-627)731335007 (DE-600)2693084-5 23914661 nnns volume:56 year:2023 number:1 pages:14 https://doi.org/10.1515/dema-2023-0112 kostenfrei https://doaj.org/article/379593ef861743b3ad135e0927537cf2 kostenfrei https://doi.org/10.1515/dema-2023-0112 kostenfrei https://doaj.org/toc/2391-4661 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 56 2023 1 14 |
spelling |
10.1515/dema-2023-0112 doi (DE-627)DOAJ098128418 (DE-599)DOAJ379593ef861743b3ad135e0927537cf2 DE-627 ger DE-627 rakwb eng QA1-939 Almalki Yahya verfasserin aut Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, integral transforms are a powerful tool used in many areas of mathematics, physics, engineering, and other fields and disciplines. This article is devoted to the study of one important integral transform, which is called the modified degenerate Laplace transform (MDLT). The fundamental formulas and properties of the MDLT are obtained. Furthermore, as an application of the acquired MDLT, we solved a simple differential equation and fractional-order kinetic equations. The outcomes covered here are general in nature and easily reducible to new and known outcomes. degenerate functions modified degenerate laplace transforms fractional kinetic equations 34a08 44a10 44a20 Mathematics Abdalla Mohamed verfasserin aut Abd-Elmageed Hala verfasserin aut In Demonstratio Mathematica De Gruyter, 2014 56(2023), 1, Seite 14 (DE-627)731335007 (DE-600)2693084-5 23914661 nnns volume:56 year:2023 number:1 pages:14 https://doi.org/10.1515/dema-2023-0112 kostenfrei https://doaj.org/article/379593ef861743b3ad135e0927537cf2 kostenfrei https://doi.org/10.1515/dema-2023-0112 kostenfrei https://doaj.org/toc/2391-4661 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 56 2023 1 14 |
allfields_unstemmed |
10.1515/dema-2023-0112 doi (DE-627)DOAJ098128418 (DE-599)DOAJ379593ef861743b3ad135e0927537cf2 DE-627 ger DE-627 rakwb eng QA1-939 Almalki Yahya verfasserin aut Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, integral transforms are a powerful tool used in many areas of mathematics, physics, engineering, and other fields and disciplines. This article is devoted to the study of one important integral transform, which is called the modified degenerate Laplace transform (MDLT). The fundamental formulas and properties of the MDLT are obtained. Furthermore, as an application of the acquired MDLT, we solved a simple differential equation and fractional-order kinetic equations. The outcomes covered here are general in nature and easily reducible to new and known outcomes. degenerate functions modified degenerate laplace transforms fractional kinetic equations 34a08 44a10 44a20 Mathematics Abdalla Mohamed verfasserin aut Abd-Elmageed Hala verfasserin aut In Demonstratio Mathematica De Gruyter, 2014 56(2023), 1, Seite 14 (DE-627)731335007 (DE-600)2693084-5 23914661 nnns volume:56 year:2023 number:1 pages:14 https://doi.org/10.1515/dema-2023-0112 kostenfrei https://doaj.org/article/379593ef861743b3ad135e0927537cf2 kostenfrei https://doi.org/10.1515/dema-2023-0112 kostenfrei https://doaj.org/toc/2391-4661 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 56 2023 1 14 |
allfieldsGer |
10.1515/dema-2023-0112 doi (DE-627)DOAJ098128418 (DE-599)DOAJ379593ef861743b3ad135e0927537cf2 DE-627 ger DE-627 rakwb eng QA1-939 Almalki Yahya verfasserin aut Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, integral transforms are a powerful tool used in many areas of mathematics, physics, engineering, and other fields and disciplines. This article is devoted to the study of one important integral transform, which is called the modified degenerate Laplace transform (MDLT). The fundamental formulas and properties of the MDLT are obtained. Furthermore, as an application of the acquired MDLT, we solved a simple differential equation and fractional-order kinetic equations. The outcomes covered here are general in nature and easily reducible to new and known outcomes. degenerate functions modified degenerate laplace transforms fractional kinetic equations 34a08 44a10 44a20 Mathematics Abdalla Mohamed verfasserin aut Abd-Elmageed Hala verfasserin aut In Demonstratio Mathematica De Gruyter, 2014 56(2023), 1, Seite 14 (DE-627)731335007 (DE-600)2693084-5 23914661 nnns volume:56 year:2023 number:1 pages:14 https://doi.org/10.1515/dema-2023-0112 kostenfrei https://doaj.org/article/379593ef861743b3ad135e0927537cf2 kostenfrei https://doi.org/10.1515/dema-2023-0112 kostenfrei https://doaj.org/toc/2391-4661 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 56 2023 1 14 |
allfieldsSound |
10.1515/dema-2023-0112 doi (DE-627)DOAJ098128418 (DE-599)DOAJ379593ef861743b3ad135e0927537cf2 DE-627 ger DE-627 rakwb eng QA1-939 Almalki Yahya verfasserin aut Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, integral transforms are a powerful tool used in many areas of mathematics, physics, engineering, and other fields and disciplines. This article is devoted to the study of one important integral transform, which is called the modified degenerate Laplace transform (MDLT). The fundamental formulas and properties of the MDLT are obtained. Furthermore, as an application of the acquired MDLT, we solved a simple differential equation and fractional-order kinetic equations. The outcomes covered here are general in nature and easily reducible to new and known outcomes. degenerate functions modified degenerate laplace transforms fractional kinetic equations 34a08 44a10 44a20 Mathematics Abdalla Mohamed verfasserin aut Abd-Elmageed Hala verfasserin aut In Demonstratio Mathematica De Gruyter, 2014 56(2023), 1, Seite 14 (DE-627)731335007 (DE-600)2693084-5 23914661 nnns volume:56 year:2023 number:1 pages:14 https://doi.org/10.1515/dema-2023-0112 kostenfrei https://doaj.org/article/379593ef861743b3ad135e0927537cf2 kostenfrei https://doi.org/10.1515/dema-2023-0112 kostenfrei https://doaj.org/toc/2391-4661 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 56 2023 1 14 |
language |
English |
source |
In Demonstratio Mathematica 56(2023), 1, Seite 14 volume:56 year:2023 number:1 pages:14 |
sourceStr |
In Demonstratio Mathematica 56(2023), 1, Seite 14 volume:56 year:2023 number:1 pages:14 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
degenerate functions modified degenerate laplace transforms fractional kinetic equations 34a08 44a10 44a20 Mathematics |
isfreeaccess_bool |
true |
container_title |
Demonstratio Mathematica |
authorswithroles_txt_mv |
Almalki Yahya @@aut@@ Abdalla Mohamed @@aut@@ Abd-Elmageed Hala @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
731335007 |
id |
DOAJ098128418 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098128418</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413204705.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/dema-2023-0112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098128418</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ379593ef861743b3ad135e0927537cf2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Almalki Yahya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recently, integral transforms are a powerful tool used in many areas of mathematics, physics, engineering, and other fields and disciplines. This article is devoted to the study of one important integral transform, which is called the modified degenerate Laplace transform (MDLT). The fundamental formulas and properties of the MDLT are obtained. Furthermore, as an application of the acquired MDLT, we solved a simple differential equation and fractional-order kinetic equations. The outcomes covered here are general in nature and easily reducible to new and known outcomes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">degenerate functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">modified degenerate laplace transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional kinetic equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">34a08</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">44a10</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">44a20</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdalla Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abd-Elmageed Hala</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Demonstratio Mathematica</subfield><subfield code="d">De Gruyter, 2014</subfield><subfield code="g">56(2023), 1, Seite 14</subfield><subfield code="w">(DE-627)731335007</subfield><subfield code="w">(DE-600)2693084-5</subfield><subfield code="x">23914661</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/dema-2023-0112</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/379593ef861743b3ad135e0927537cf2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/dema-2023-0112</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2391-4661</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">14</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Almalki Yahya |
spellingShingle |
Almalki Yahya misc QA1-939 misc degenerate functions misc modified degenerate laplace transforms misc fractional kinetic equations misc 34a08 misc 44a10 misc 44a20 misc Mathematics Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations |
authorStr |
Almalki Yahya |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)731335007 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
23914661 |
topic_title |
QA1-939 Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations degenerate functions modified degenerate laplace transforms fractional kinetic equations 34a08 44a10 44a20 |
topic |
misc QA1-939 misc degenerate functions misc modified degenerate laplace transforms misc fractional kinetic equations misc 34a08 misc 44a10 misc 44a20 misc Mathematics |
topic_unstemmed |
misc QA1-939 misc degenerate functions misc modified degenerate laplace transforms misc fractional kinetic equations misc 34a08 misc 44a10 misc 44a20 misc Mathematics |
topic_browse |
misc QA1-939 misc degenerate functions misc modified degenerate laplace transforms misc fractional kinetic equations misc 34a08 misc 44a10 misc 44a20 misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Demonstratio Mathematica |
hierarchy_parent_id |
731335007 |
hierarchy_top_title |
Demonstratio Mathematica |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)731335007 (DE-600)2693084-5 |
title |
Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations |
ctrlnum |
(DE-627)DOAJ098128418 (DE-599)DOAJ379593ef861743b3ad135e0927537cf2 |
title_full |
Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations |
author_sort |
Almalki Yahya |
journal |
Demonstratio Mathematica |
journalStr |
Demonstratio Mathematica |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
14 |
author_browse |
Almalki Yahya Abdalla Mohamed Abd-Elmageed Hala |
container_volume |
56 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Almalki Yahya |
doi_str_mv |
10.1515/dema-2023-0112 |
author2-role |
verfasserin |
title_sort |
results on the modified degenerate laplace-type integral associated with applications involving fractional kinetic equations |
callnumber |
QA1-939 |
title_auth |
Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations |
abstract |
Recently, integral transforms are a powerful tool used in many areas of mathematics, physics, engineering, and other fields and disciplines. This article is devoted to the study of one important integral transform, which is called the modified degenerate Laplace transform (MDLT). The fundamental formulas and properties of the MDLT are obtained. Furthermore, as an application of the acquired MDLT, we solved a simple differential equation and fractional-order kinetic equations. The outcomes covered here are general in nature and easily reducible to new and known outcomes. |
abstractGer |
Recently, integral transforms are a powerful tool used in many areas of mathematics, physics, engineering, and other fields and disciplines. This article is devoted to the study of one important integral transform, which is called the modified degenerate Laplace transform (MDLT). The fundamental formulas and properties of the MDLT are obtained. Furthermore, as an application of the acquired MDLT, we solved a simple differential equation and fractional-order kinetic equations. The outcomes covered here are general in nature and easily reducible to new and known outcomes. |
abstract_unstemmed |
Recently, integral transforms are a powerful tool used in many areas of mathematics, physics, engineering, and other fields and disciplines. This article is devoted to the study of one important integral transform, which is called the modified degenerate Laplace transform (MDLT). The fundamental formulas and properties of the MDLT are obtained. Furthermore, as an application of the acquired MDLT, we solved a simple differential equation and fractional-order kinetic equations. The outcomes covered here are general in nature and easily reducible to new and known outcomes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations |
url |
https://doi.org/10.1515/dema-2023-0112 https://doaj.org/article/379593ef861743b3ad135e0927537cf2 https://doaj.org/toc/2391-4661 |
remote_bool |
true |
author2 |
Abdalla Mohamed Abd-Elmageed Hala |
author2Str |
Abdalla Mohamed Abd-Elmageed Hala |
ppnlink |
731335007 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/dema-2023-0112 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T15:34:14.841Z |
_version_ |
1803572587883659264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098128418</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413204705.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/dema-2023-0112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098128418</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ379593ef861743b3ad135e0927537cf2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Almalki Yahya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recently, integral transforms are a powerful tool used in many areas of mathematics, physics, engineering, and other fields and disciplines. This article is devoted to the study of one important integral transform, which is called the modified degenerate Laplace transform (MDLT). The fundamental formulas and properties of the MDLT are obtained. Furthermore, as an application of the acquired MDLT, we solved a simple differential equation and fractional-order kinetic equations. The outcomes covered here are general in nature and easily reducible to new and known outcomes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">degenerate functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">modified degenerate laplace transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional kinetic equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">34a08</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">44a10</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">44a20</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdalla Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abd-Elmageed Hala</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Demonstratio Mathematica</subfield><subfield code="d">De Gruyter, 2014</subfield><subfield code="g">56(2023), 1, Seite 14</subfield><subfield code="w">(DE-627)731335007</subfield><subfield code="w">(DE-600)2693084-5</subfield><subfield code="x">23914661</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/dema-2023-0112</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/379593ef861743b3ad135e0927537cf2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/dema-2023-0112</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2391-4661</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">14</subfield></datafield></record></collection>
|
score |
7.4005785 |