Study on clarification of the mechanism for tire force generated in airless tire during rolling motion
In recent years, the research on airless tire (Non-pneumatic tire, NPT) for passenger cars has received extensive attention. The background to this is the development of autonomous driving technology. Autonomous driving of Level 4 and above is un-manned driving, so it is more important to reduce the...
Ausführliche Beschreibung
Autor*in: |
Katsuhide FUJITA [verfasserIn] Takuma SUZUKI [verfasserIn] Toshihiko OKANO [verfasserIn] Yuta WASHIMI [verfasserIn] Kensuke SASAKI [verfasserIn] Tsutomu TANIMOTO [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Japanisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nihon Kikai Gakkai ronbunshu - The Japan Society of Mechanical Engineers, 2022, 89(2023), 928, Seite 23-00214-23-00214 |
---|---|
Übergeordnetes Werk: |
volume:89 ; year:2023 ; number:928 ; pages:23-00214-23-00214 |
Links: |
---|
DOI / URN: |
10.1299/transjsme.23-00214 |
---|
Katalog-ID: |
DOAJ098133888 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098133888 | ||
003 | DE-627 | ||
005 | 20240413204841.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||jpn c | ||
024 | 7 | |a 10.1299/transjsme.23-00214 |2 doi | |
035 | |a (DE-627)DOAJ098133888 | ||
035 | |a (DE-599)DOAJfc437421ae224bdf95052e6267f99eb7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a jpn | ||
050 | 0 | |a TJ1-1570 | |
050 | 0 | |a TA213-215 | |
100 | 0 | |a Katsuhide FUJITA |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study on clarification of the mechanism for tire force generated in airless tire during rolling motion |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In recent years, the research on airless tire (Non-pneumatic tire, NPT) for passenger cars has received extensive attention. The background to this is the development of autonomous driving technology. Autonomous driving of Level 4 and above is un-manned driving, so it is more important to reduce the frequency of maintenance due to accidental failures, and punctureless airless tires are expected as tires for autonomous driving vehicles. Rolling resistance of tires is a highly important property for tire development. The reduction of rolling resistance of tires has become more significant in the tire industry, because it has close relation to the fuel consumption efficiency. As for conventional pneumatic tire, the rolling resistance is mainly generated by energy loss of tire components during tire deformation and it is well known that to reduce the rolling resistance, tanδ of rubber should be decreased. The purpose of this study is to clarify the contributing factors of airless tires to rolling resistance. As a result of measuring the tire force generated by a rolling experiment using a scale model airless tire, it was confirmed that the wheel load fluctuated impulsively. Therefore, we observed the tire deformation during rolling with a high-speed video camera and clarified the mechanism of tire force generation. | ||
650 | 4 | |a airless tire | |
650 | 4 | |a autonomous driving technology | |
650 | 4 | |a wheel load | |
650 | 4 | |a rolling resistance | |
650 | 4 | |a tire deformation | |
653 | 0 | |a Mechanical engineering and machinery | |
653 | 0 | |a Engineering machinery, tools, and implements | |
700 | 0 | |a Takuma SUZUKI |e verfasserin |4 aut | |
700 | 0 | |a Toshihiko OKANO |e verfasserin |4 aut | |
700 | 0 | |a Yuta WASHIMI |e verfasserin |4 aut | |
700 | 0 | |a Kensuke SASAKI |e verfasserin |4 aut | |
700 | 0 | |a Tsutomu TANIMOTO |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nihon Kikai Gakkai ronbunshu |d The Japan Society of Mechanical Engineers, 2022 |g 89(2023), 928, Seite 23-00214-23-00214 |w (DE-627)1028882408 |x 21879761 |7 nnns |
773 | 1 | 8 | |g volume:89 |g year:2023 |g number:928 |g pages:23-00214-23-00214 |
856 | 4 | 0 | |u https://doi.org/10.1299/transjsme.23-00214 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fc437421ae224bdf95052e6267f99eb7 |z kostenfrei |
856 | 4 | 0 | |u https://www.jstage.jst.go.jp/article/transjsme/89/928/89_23-00214/_pdf/-char/en |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2187-9761 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 89 |j 2023 |e 928 |h 23-00214-23-00214 |
author_variant |
k f kf t s ts t o to y w yw k s ks t t tt |
---|---|
matchkey_str |
article:21879761:2023----::tdocaiiainfhmcaimotrfreeeaeiare |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TJ |
publishDate |
2023 |
allfields |
10.1299/transjsme.23-00214 doi (DE-627)DOAJ098133888 (DE-599)DOAJfc437421ae224bdf95052e6267f99eb7 DE-627 ger DE-627 rakwb jpn TJ1-1570 TA213-215 Katsuhide FUJITA verfasserin aut Study on clarification of the mechanism for tire force generated in airless tire during rolling motion 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the research on airless tire (Non-pneumatic tire, NPT) for passenger cars has received extensive attention. The background to this is the development of autonomous driving technology. Autonomous driving of Level 4 and above is un-manned driving, so it is more important to reduce the frequency of maintenance due to accidental failures, and punctureless airless tires are expected as tires for autonomous driving vehicles. Rolling resistance of tires is a highly important property for tire development. The reduction of rolling resistance of tires has become more significant in the tire industry, because it has close relation to the fuel consumption efficiency. As for conventional pneumatic tire, the rolling resistance is mainly generated by energy loss of tire components during tire deformation and it is well known that to reduce the rolling resistance, tanδ of rubber should be decreased. The purpose of this study is to clarify the contributing factors of airless tires to rolling resistance. As a result of measuring the tire force generated by a rolling experiment using a scale model airless tire, it was confirmed that the wheel load fluctuated impulsively. Therefore, we observed the tire deformation during rolling with a high-speed video camera and clarified the mechanism of tire force generation. airless tire autonomous driving technology wheel load rolling resistance tire deformation Mechanical engineering and machinery Engineering machinery, tools, and implements Takuma SUZUKI verfasserin aut Toshihiko OKANO verfasserin aut Yuta WASHIMI verfasserin aut Kensuke SASAKI verfasserin aut Tsutomu TANIMOTO verfasserin aut In Nihon Kikai Gakkai ronbunshu The Japan Society of Mechanical Engineers, 2022 89(2023), 928, Seite 23-00214-23-00214 (DE-627)1028882408 21879761 nnns volume:89 year:2023 number:928 pages:23-00214-23-00214 https://doi.org/10.1299/transjsme.23-00214 kostenfrei https://doaj.org/article/fc437421ae224bdf95052e6267f99eb7 kostenfrei https://www.jstage.jst.go.jp/article/transjsme/89/928/89_23-00214/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9761 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 89 2023 928 23-00214-23-00214 |
spelling |
10.1299/transjsme.23-00214 doi (DE-627)DOAJ098133888 (DE-599)DOAJfc437421ae224bdf95052e6267f99eb7 DE-627 ger DE-627 rakwb jpn TJ1-1570 TA213-215 Katsuhide FUJITA verfasserin aut Study on clarification of the mechanism for tire force generated in airless tire during rolling motion 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the research on airless tire (Non-pneumatic tire, NPT) for passenger cars has received extensive attention. The background to this is the development of autonomous driving technology. Autonomous driving of Level 4 and above is un-manned driving, so it is more important to reduce the frequency of maintenance due to accidental failures, and punctureless airless tires are expected as tires for autonomous driving vehicles. Rolling resistance of tires is a highly important property for tire development. The reduction of rolling resistance of tires has become more significant in the tire industry, because it has close relation to the fuel consumption efficiency. As for conventional pneumatic tire, the rolling resistance is mainly generated by energy loss of tire components during tire deformation and it is well known that to reduce the rolling resistance, tanδ of rubber should be decreased. The purpose of this study is to clarify the contributing factors of airless tires to rolling resistance. As a result of measuring the tire force generated by a rolling experiment using a scale model airless tire, it was confirmed that the wheel load fluctuated impulsively. Therefore, we observed the tire deformation during rolling with a high-speed video camera and clarified the mechanism of tire force generation. airless tire autonomous driving technology wheel load rolling resistance tire deformation Mechanical engineering and machinery Engineering machinery, tools, and implements Takuma SUZUKI verfasserin aut Toshihiko OKANO verfasserin aut Yuta WASHIMI verfasserin aut Kensuke SASAKI verfasserin aut Tsutomu TANIMOTO verfasserin aut In Nihon Kikai Gakkai ronbunshu The Japan Society of Mechanical Engineers, 2022 89(2023), 928, Seite 23-00214-23-00214 (DE-627)1028882408 21879761 nnns volume:89 year:2023 number:928 pages:23-00214-23-00214 https://doi.org/10.1299/transjsme.23-00214 kostenfrei https://doaj.org/article/fc437421ae224bdf95052e6267f99eb7 kostenfrei https://www.jstage.jst.go.jp/article/transjsme/89/928/89_23-00214/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9761 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 89 2023 928 23-00214-23-00214 |
allfields_unstemmed |
10.1299/transjsme.23-00214 doi (DE-627)DOAJ098133888 (DE-599)DOAJfc437421ae224bdf95052e6267f99eb7 DE-627 ger DE-627 rakwb jpn TJ1-1570 TA213-215 Katsuhide FUJITA verfasserin aut Study on clarification of the mechanism for tire force generated in airless tire during rolling motion 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the research on airless tire (Non-pneumatic tire, NPT) for passenger cars has received extensive attention. The background to this is the development of autonomous driving technology. Autonomous driving of Level 4 and above is un-manned driving, so it is more important to reduce the frequency of maintenance due to accidental failures, and punctureless airless tires are expected as tires for autonomous driving vehicles. Rolling resistance of tires is a highly important property for tire development. The reduction of rolling resistance of tires has become more significant in the tire industry, because it has close relation to the fuel consumption efficiency. As for conventional pneumatic tire, the rolling resistance is mainly generated by energy loss of tire components during tire deformation and it is well known that to reduce the rolling resistance, tanδ of rubber should be decreased. The purpose of this study is to clarify the contributing factors of airless tires to rolling resistance. As a result of measuring the tire force generated by a rolling experiment using a scale model airless tire, it was confirmed that the wheel load fluctuated impulsively. Therefore, we observed the tire deformation during rolling with a high-speed video camera and clarified the mechanism of tire force generation. airless tire autonomous driving technology wheel load rolling resistance tire deformation Mechanical engineering and machinery Engineering machinery, tools, and implements Takuma SUZUKI verfasserin aut Toshihiko OKANO verfasserin aut Yuta WASHIMI verfasserin aut Kensuke SASAKI verfasserin aut Tsutomu TANIMOTO verfasserin aut In Nihon Kikai Gakkai ronbunshu The Japan Society of Mechanical Engineers, 2022 89(2023), 928, Seite 23-00214-23-00214 (DE-627)1028882408 21879761 nnns volume:89 year:2023 number:928 pages:23-00214-23-00214 https://doi.org/10.1299/transjsme.23-00214 kostenfrei https://doaj.org/article/fc437421ae224bdf95052e6267f99eb7 kostenfrei https://www.jstage.jst.go.jp/article/transjsme/89/928/89_23-00214/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9761 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 89 2023 928 23-00214-23-00214 |
allfieldsGer |
10.1299/transjsme.23-00214 doi (DE-627)DOAJ098133888 (DE-599)DOAJfc437421ae224bdf95052e6267f99eb7 DE-627 ger DE-627 rakwb jpn TJ1-1570 TA213-215 Katsuhide FUJITA verfasserin aut Study on clarification of the mechanism for tire force generated in airless tire during rolling motion 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the research on airless tire (Non-pneumatic tire, NPT) for passenger cars has received extensive attention. The background to this is the development of autonomous driving technology. Autonomous driving of Level 4 and above is un-manned driving, so it is more important to reduce the frequency of maintenance due to accidental failures, and punctureless airless tires are expected as tires for autonomous driving vehicles. Rolling resistance of tires is a highly important property for tire development. The reduction of rolling resistance of tires has become more significant in the tire industry, because it has close relation to the fuel consumption efficiency. As for conventional pneumatic tire, the rolling resistance is mainly generated by energy loss of tire components during tire deformation and it is well known that to reduce the rolling resistance, tanδ of rubber should be decreased. The purpose of this study is to clarify the contributing factors of airless tires to rolling resistance. As a result of measuring the tire force generated by a rolling experiment using a scale model airless tire, it was confirmed that the wheel load fluctuated impulsively. Therefore, we observed the tire deformation during rolling with a high-speed video camera and clarified the mechanism of tire force generation. airless tire autonomous driving technology wheel load rolling resistance tire deformation Mechanical engineering and machinery Engineering machinery, tools, and implements Takuma SUZUKI verfasserin aut Toshihiko OKANO verfasserin aut Yuta WASHIMI verfasserin aut Kensuke SASAKI verfasserin aut Tsutomu TANIMOTO verfasserin aut In Nihon Kikai Gakkai ronbunshu The Japan Society of Mechanical Engineers, 2022 89(2023), 928, Seite 23-00214-23-00214 (DE-627)1028882408 21879761 nnns volume:89 year:2023 number:928 pages:23-00214-23-00214 https://doi.org/10.1299/transjsme.23-00214 kostenfrei https://doaj.org/article/fc437421ae224bdf95052e6267f99eb7 kostenfrei https://www.jstage.jst.go.jp/article/transjsme/89/928/89_23-00214/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9761 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 89 2023 928 23-00214-23-00214 |
allfieldsSound |
10.1299/transjsme.23-00214 doi (DE-627)DOAJ098133888 (DE-599)DOAJfc437421ae224bdf95052e6267f99eb7 DE-627 ger DE-627 rakwb jpn TJ1-1570 TA213-215 Katsuhide FUJITA verfasserin aut Study on clarification of the mechanism for tire force generated in airless tire during rolling motion 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the research on airless tire (Non-pneumatic tire, NPT) for passenger cars has received extensive attention. The background to this is the development of autonomous driving technology. Autonomous driving of Level 4 and above is un-manned driving, so it is more important to reduce the frequency of maintenance due to accidental failures, and punctureless airless tires are expected as tires for autonomous driving vehicles. Rolling resistance of tires is a highly important property for tire development. The reduction of rolling resistance of tires has become more significant in the tire industry, because it has close relation to the fuel consumption efficiency. As for conventional pneumatic tire, the rolling resistance is mainly generated by energy loss of tire components during tire deformation and it is well known that to reduce the rolling resistance, tanδ of rubber should be decreased. The purpose of this study is to clarify the contributing factors of airless tires to rolling resistance. As a result of measuring the tire force generated by a rolling experiment using a scale model airless tire, it was confirmed that the wheel load fluctuated impulsively. Therefore, we observed the tire deformation during rolling with a high-speed video camera and clarified the mechanism of tire force generation. airless tire autonomous driving technology wheel load rolling resistance tire deformation Mechanical engineering and machinery Engineering machinery, tools, and implements Takuma SUZUKI verfasserin aut Toshihiko OKANO verfasserin aut Yuta WASHIMI verfasserin aut Kensuke SASAKI verfasserin aut Tsutomu TANIMOTO verfasserin aut In Nihon Kikai Gakkai ronbunshu The Japan Society of Mechanical Engineers, 2022 89(2023), 928, Seite 23-00214-23-00214 (DE-627)1028882408 21879761 nnns volume:89 year:2023 number:928 pages:23-00214-23-00214 https://doi.org/10.1299/transjsme.23-00214 kostenfrei https://doaj.org/article/fc437421ae224bdf95052e6267f99eb7 kostenfrei https://www.jstage.jst.go.jp/article/transjsme/89/928/89_23-00214/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9761 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 89 2023 928 23-00214-23-00214 |
language |
Japanese |
source |
In Nihon Kikai Gakkai ronbunshu 89(2023), 928, Seite 23-00214-23-00214 volume:89 year:2023 number:928 pages:23-00214-23-00214 |
sourceStr |
In Nihon Kikai Gakkai ronbunshu 89(2023), 928, Seite 23-00214-23-00214 volume:89 year:2023 number:928 pages:23-00214-23-00214 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
airless tire autonomous driving technology wheel load rolling resistance tire deformation Mechanical engineering and machinery Engineering machinery, tools, and implements |
isfreeaccess_bool |
true |
container_title |
Nihon Kikai Gakkai ronbunshu |
authorswithroles_txt_mv |
Katsuhide FUJITA @@aut@@ Takuma SUZUKI @@aut@@ Toshihiko OKANO @@aut@@ Yuta WASHIMI @@aut@@ Kensuke SASAKI @@aut@@ Tsutomu TANIMOTO @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1028882408 |
id |
DOAJ098133888 |
language_de |
japanisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098133888</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413204841.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||jpn c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1299/transjsme.23-00214</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098133888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfc437421ae224bdf95052e6267f99eb7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">jpn</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA213-215</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Katsuhide FUJITA</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on clarification of the mechanism for tire force generated in airless tire during rolling motion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years, the research on airless tire (Non-pneumatic tire, NPT) for passenger cars has received extensive attention. The background to this is the development of autonomous driving technology. Autonomous driving of Level 4 and above is un-manned driving, so it is more important to reduce the frequency of maintenance due to accidental failures, and punctureless airless tires are expected as tires for autonomous driving vehicles. Rolling resistance of tires is a highly important property for tire development. The reduction of rolling resistance of tires has become more significant in the tire industry, because it has close relation to the fuel consumption efficiency. As for conventional pneumatic tire, the rolling resistance is mainly generated by energy loss of tire components during tire deformation and it is well known that to reduce the rolling resistance, tanδ of rubber should be decreased. The purpose of this study is to clarify the contributing factors of airless tires to rolling resistance. As a result of measuring the tire force generated by a rolling experiment using a scale model airless tire, it was confirmed that the wheel load fluctuated impulsively. Therefore, we observed the tire deformation during rolling with a high-speed video camera and clarified the mechanism of tire force generation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">airless tire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autonomous driving technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wheel load</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rolling resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tire deformation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering machinery, tools, and implements</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Takuma SUZUKI</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshihiko OKANO</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuta WASHIMI</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kensuke SASAKI</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tsutomu TANIMOTO</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nihon Kikai Gakkai ronbunshu</subfield><subfield code="d">The Japan Society of Mechanical Engineers, 2022</subfield><subfield code="g">89(2023), 928, Seite 23-00214-23-00214</subfield><subfield code="w">(DE-627)1028882408</subfield><subfield code="x">21879761</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:928</subfield><subfield code="g">pages:23-00214-23-00214</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1299/transjsme.23-00214</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fc437421ae224bdf95052e6267f99eb7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.jstage.jst.go.jp/article/transjsme/89/928/89_23-00214/_pdf/-char/en</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2187-9761</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2023</subfield><subfield code="e">928</subfield><subfield code="h">23-00214-23-00214</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Katsuhide FUJITA |
spellingShingle |
Katsuhide FUJITA misc TJ1-1570 misc TA213-215 misc airless tire misc autonomous driving technology misc wheel load misc rolling resistance misc tire deformation misc Mechanical engineering and machinery misc Engineering machinery, tools, and implements Study on clarification of the mechanism for tire force generated in airless tire during rolling motion |
authorStr |
Katsuhide FUJITA |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1028882408 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ1-1570 |
illustrated |
Not Illustrated |
issn |
21879761 |
topic_title |
TJ1-1570 TA213-215 Study on clarification of the mechanism for tire force generated in airless tire during rolling motion airless tire autonomous driving technology wheel load rolling resistance tire deformation |
topic |
misc TJ1-1570 misc TA213-215 misc airless tire misc autonomous driving technology misc wheel load misc rolling resistance misc tire deformation misc Mechanical engineering and machinery misc Engineering machinery, tools, and implements |
topic_unstemmed |
misc TJ1-1570 misc TA213-215 misc airless tire misc autonomous driving technology misc wheel load misc rolling resistance misc tire deformation misc Mechanical engineering and machinery misc Engineering machinery, tools, and implements |
topic_browse |
misc TJ1-1570 misc TA213-215 misc airless tire misc autonomous driving technology misc wheel load misc rolling resistance misc tire deformation misc Mechanical engineering and machinery misc Engineering machinery, tools, and implements |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nihon Kikai Gakkai ronbunshu |
hierarchy_parent_id |
1028882408 |
hierarchy_top_title |
Nihon Kikai Gakkai ronbunshu |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1028882408 |
title |
Study on clarification of the mechanism for tire force generated in airless tire during rolling motion |
ctrlnum |
(DE-627)DOAJ098133888 (DE-599)DOAJfc437421ae224bdf95052e6267f99eb7 |
title_full |
Study on clarification of the mechanism for tire force generated in airless tire during rolling motion |
author_sort |
Katsuhide FUJITA |
journal |
Nihon Kikai Gakkai ronbunshu |
journalStr |
Nihon Kikai Gakkai ronbunshu |
callnumber-first-code |
T |
lang_code |
jpn |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
23 |
author_browse |
Katsuhide FUJITA Takuma SUZUKI Toshihiko OKANO Yuta WASHIMI Kensuke SASAKI Tsutomu TANIMOTO |
container_volume |
89 |
class |
TJ1-1570 TA213-215 |
format_se |
Elektronische Aufsätze |
author-letter |
Katsuhide FUJITA |
doi_str_mv |
10.1299/transjsme.23-00214 |
author2-role |
verfasserin |
title_sort |
study on clarification of the mechanism for tire force generated in airless tire during rolling motion |
callnumber |
TJ1-1570 |
title_auth |
Study on clarification of the mechanism for tire force generated in airless tire during rolling motion |
abstract |
In recent years, the research on airless tire (Non-pneumatic tire, NPT) for passenger cars has received extensive attention. The background to this is the development of autonomous driving technology. Autonomous driving of Level 4 and above is un-manned driving, so it is more important to reduce the frequency of maintenance due to accidental failures, and punctureless airless tires are expected as tires for autonomous driving vehicles. Rolling resistance of tires is a highly important property for tire development. The reduction of rolling resistance of tires has become more significant in the tire industry, because it has close relation to the fuel consumption efficiency. As for conventional pneumatic tire, the rolling resistance is mainly generated by energy loss of tire components during tire deformation and it is well known that to reduce the rolling resistance, tanδ of rubber should be decreased. The purpose of this study is to clarify the contributing factors of airless tires to rolling resistance. As a result of measuring the tire force generated by a rolling experiment using a scale model airless tire, it was confirmed that the wheel load fluctuated impulsively. Therefore, we observed the tire deformation during rolling with a high-speed video camera and clarified the mechanism of tire force generation. |
abstractGer |
In recent years, the research on airless tire (Non-pneumatic tire, NPT) for passenger cars has received extensive attention. The background to this is the development of autonomous driving technology. Autonomous driving of Level 4 and above is un-manned driving, so it is more important to reduce the frequency of maintenance due to accidental failures, and punctureless airless tires are expected as tires for autonomous driving vehicles. Rolling resistance of tires is a highly important property for tire development. The reduction of rolling resistance of tires has become more significant in the tire industry, because it has close relation to the fuel consumption efficiency. As for conventional pneumatic tire, the rolling resistance is mainly generated by energy loss of tire components during tire deformation and it is well known that to reduce the rolling resistance, tanδ of rubber should be decreased. The purpose of this study is to clarify the contributing factors of airless tires to rolling resistance. As a result of measuring the tire force generated by a rolling experiment using a scale model airless tire, it was confirmed that the wheel load fluctuated impulsively. Therefore, we observed the tire deformation during rolling with a high-speed video camera and clarified the mechanism of tire force generation. |
abstract_unstemmed |
In recent years, the research on airless tire (Non-pneumatic tire, NPT) for passenger cars has received extensive attention. The background to this is the development of autonomous driving technology. Autonomous driving of Level 4 and above is un-manned driving, so it is more important to reduce the frequency of maintenance due to accidental failures, and punctureless airless tires are expected as tires for autonomous driving vehicles. Rolling resistance of tires is a highly important property for tire development. The reduction of rolling resistance of tires has become more significant in the tire industry, because it has close relation to the fuel consumption efficiency. As for conventional pneumatic tire, the rolling resistance is mainly generated by energy loss of tire components during tire deformation and it is well known that to reduce the rolling resistance, tanδ of rubber should be decreased. The purpose of this study is to clarify the contributing factors of airless tires to rolling resistance. As a result of measuring the tire force generated by a rolling experiment using a scale model airless tire, it was confirmed that the wheel load fluctuated impulsively. Therefore, we observed the tire deformation during rolling with a high-speed video camera and clarified the mechanism of tire force generation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
928 |
title_short |
Study on clarification of the mechanism for tire force generated in airless tire during rolling motion |
url |
https://doi.org/10.1299/transjsme.23-00214 https://doaj.org/article/fc437421ae224bdf95052e6267f99eb7 https://www.jstage.jst.go.jp/article/transjsme/89/928/89_23-00214/_pdf/-char/en https://doaj.org/toc/2187-9761 |
remote_bool |
true |
author2 |
Takuma SUZUKI Toshihiko OKANO Yuta WASHIMI Kensuke SASAKI Tsutomu TANIMOTO |
author2Str |
Takuma SUZUKI Toshihiko OKANO Yuta WASHIMI Kensuke SASAKI Tsutomu TANIMOTO |
ppnlink |
1028882408 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1299/transjsme.23-00214 |
callnumber-a |
TJ1-1570 |
up_date |
2024-07-03T15:36:18.908Z |
_version_ |
1803572717980483584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098133888</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413204841.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||jpn c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1299/transjsme.23-00214</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098133888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfc437421ae224bdf95052e6267f99eb7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">jpn</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA213-215</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Katsuhide FUJITA</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on clarification of the mechanism for tire force generated in airless tire during rolling motion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years, the research on airless tire (Non-pneumatic tire, NPT) for passenger cars has received extensive attention. The background to this is the development of autonomous driving technology. Autonomous driving of Level 4 and above is un-manned driving, so it is more important to reduce the frequency of maintenance due to accidental failures, and punctureless airless tires are expected as tires for autonomous driving vehicles. Rolling resistance of tires is a highly important property for tire development. The reduction of rolling resistance of tires has become more significant in the tire industry, because it has close relation to the fuel consumption efficiency. As for conventional pneumatic tire, the rolling resistance is mainly generated by energy loss of tire components during tire deformation and it is well known that to reduce the rolling resistance, tanδ of rubber should be decreased. The purpose of this study is to clarify the contributing factors of airless tires to rolling resistance. As a result of measuring the tire force generated by a rolling experiment using a scale model airless tire, it was confirmed that the wheel load fluctuated impulsively. Therefore, we observed the tire deformation during rolling with a high-speed video camera and clarified the mechanism of tire force generation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">airless tire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autonomous driving technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wheel load</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rolling resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tire deformation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering machinery, tools, and implements</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Takuma SUZUKI</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshihiko OKANO</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuta WASHIMI</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kensuke SASAKI</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tsutomu TANIMOTO</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nihon Kikai Gakkai ronbunshu</subfield><subfield code="d">The Japan Society of Mechanical Engineers, 2022</subfield><subfield code="g">89(2023), 928, Seite 23-00214-23-00214</subfield><subfield code="w">(DE-627)1028882408</subfield><subfield code="x">21879761</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:928</subfield><subfield code="g">pages:23-00214-23-00214</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1299/transjsme.23-00214</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fc437421ae224bdf95052e6267f99eb7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.jstage.jst.go.jp/article/transjsme/89/928/89_23-00214/_pdf/-char/en</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2187-9761</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2023</subfield><subfield code="e">928</subfield><subfield code="h">23-00214-23-00214</subfield></datafield></record></collection>
|
score |
7.4007654 |