Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions
The coal pillar dam of underground reservoirs and residual coal in goaves have a direct impact on the quality of mine water. In this paper, the coal pillar dam of an underground reservoir and residual coal in the goaf and mine water in the Daliuta coal mine are used as research objects. The adsorpti...
Ausführliche Beschreibung
Autor*in: |
Binbin Jiang [verfasserIn] Ze Zhao [verfasserIn] Zhiguo Cao [verfasserIn] Deqian Liu [verfasserIn] Jiawei Tang [verfasserIn] Haiqin Zhang [verfasserIn] Yuan Liu [verfasserIn] Dingcheng Liang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Processes - MDPI AG, 2013, 11(2023), 2656, p 2656 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; number:2656, p 2656 |
Links: |
---|
DOI / URN: |
10.3390/pr11092656 |
---|
Katalog-ID: |
DOAJ098260847 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098260847 | ||
003 | DE-627 | ||
005 | 20240413211401.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/pr11092656 |2 doi | |
035 | |a (DE-627)DOAJ098260847 | ||
035 | |a (DE-599)DOAJe981c9fd86cf49e5b7cf4f83468ae0ba | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Binbin Jiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The coal pillar dam of underground reservoirs and residual coal in goaves have a direct impact on the quality of mine water. In this paper, the coal pillar dam of an underground reservoir and residual coal in the goaf and mine water in the Daliuta coal mine are used as research objects. The adsorption mechanism of residual coal with respect to <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in mine water was analyzed by carrying out adsorption experiments. The composition and variation of organic matter in mine water at different times were simulated using three-dimensional fluorescence spectrum analysis. The influence of residual coal and microorganisms in underground reservoirs on the change in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< contents in mine water was explored. Moreover, the mechanism of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< changes in the water body was clarified. The results showed that the concentration of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in the water first decreased and then increased, showing a downward trend as a whole. The adsorption of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal led to a decrease in its concentration, which conformed to a pseudo-second-order kinetic model and Freundlich isothermal adsorption model, indicating that the adsorption process of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal is mainly carried out via chemical adsorption and multi-layer adsorption. The increase in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< concentration was caused by the hydrolysis of tryptophan and other protein-like substances in the water into nitrate under the action of microorganisms. | ||
650 | 4 | |a coal mine underground reservoir | |
650 | 4 | |a water–coal interaction | |
650 | 4 | |a nitrogen | |
650 | 4 | |a migration transformation | |
653 | 0 | |a Chemical technology | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Ze Zhao |e verfasserin |4 aut | |
700 | 0 | |a Zhiguo Cao |e verfasserin |4 aut | |
700 | 0 | |a Deqian Liu |e verfasserin |4 aut | |
700 | 0 | |a Jiawei Tang |e verfasserin |4 aut | |
700 | 0 | |a Haiqin Zhang |e verfasserin |4 aut | |
700 | 0 | |a Yuan Liu |e verfasserin |4 aut | |
700 | 0 | |a Dingcheng Liang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Processes |d MDPI AG, 2013 |g 11(2023), 2656, p 2656 |w (DE-627)750371439 |w (DE-600)2720994-5 |x 22279717 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g number:2656, p 2656 |
856 | 4 | 0 | |u https://doi.org/10.3390/pr11092656 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e981c9fd86cf49e5b7cf4f83468ae0ba |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9717/11/9/2656 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9717 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |e 2656, p 2656 |
author_variant |
b j bj z z zz z c zc d l dl j t jt h z hz y l yl d l dl |
---|---|
matchkey_str |
article:22279717:2023----::tdoteirtoadrnfrainfirgnnieaeudrhat |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TP |
publishDate |
2023 |
allfields |
10.3390/pr11092656 doi (DE-627)DOAJ098260847 (DE-599)DOAJe981c9fd86cf49e5b7cf4f83468ae0ba DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Binbin Jiang verfasserin aut Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The coal pillar dam of underground reservoirs and residual coal in goaves have a direct impact on the quality of mine water. In this paper, the coal pillar dam of an underground reservoir and residual coal in the goaf and mine water in the Daliuta coal mine are used as research objects. The adsorption mechanism of residual coal with respect to <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in mine water was analyzed by carrying out adsorption experiments. The composition and variation of organic matter in mine water at different times were simulated using three-dimensional fluorescence spectrum analysis. The influence of residual coal and microorganisms in underground reservoirs on the change in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< contents in mine water was explored. Moreover, the mechanism of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< changes in the water body was clarified. The results showed that the concentration of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in the water first decreased and then increased, showing a downward trend as a whole. The adsorption of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal led to a decrease in its concentration, which conformed to a pseudo-second-order kinetic model and Freundlich isothermal adsorption model, indicating that the adsorption process of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal is mainly carried out via chemical adsorption and multi-layer adsorption. The increase in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< concentration was caused by the hydrolysis of tryptophan and other protein-like substances in the water into nitrate under the action of microorganisms. coal mine underground reservoir water–coal interaction nitrogen migration transformation Chemical technology Chemistry Ze Zhao verfasserin aut Zhiguo Cao verfasserin aut Deqian Liu verfasserin aut Jiawei Tang verfasserin aut Haiqin Zhang verfasserin aut Yuan Liu verfasserin aut Dingcheng Liang verfasserin aut In Processes MDPI AG, 2013 11(2023), 2656, p 2656 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:2656, p 2656 https://doi.org/10.3390/pr11092656 kostenfrei https://doaj.org/article/e981c9fd86cf49e5b7cf4f83468ae0ba kostenfrei https://www.mdpi.com/2227-9717/11/9/2656 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 2656, p 2656 |
spelling |
10.3390/pr11092656 doi (DE-627)DOAJ098260847 (DE-599)DOAJe981c9fd86cf49e5b7cf4f83468ae0ba DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Binbin Jiang verfasserin aut Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The coal pillar dam of underground reservoirs and residual coal in goaves have a direct impact on the quality of mine water. In this paper, the coal pillar dam of an underground reservoir and residual coal in the goaf and mine water in the Daliuta coal mine are used as research objects. The adsorption mechanism of residual coal with respect to <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in mine water was analyzed by carrying out adsorption experiments. The composition and variation of organic matter in mine water at different times were simulated using three-dimensional fluorescence spectrum analysis. The influence of residual coal and microorganisms in underground reservoirs on the change in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< contents in mine water was explored. Moreover, the mechanism of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< changes in the water body was clarified. The results showed that the concentration of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in the water first decreased and then increased, showing a downward trend as a whole. The adsorption of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal led to a decrease in its concentration, which conformed to a pseudo-second-order kinetic model and Freundlich isothermal adsorption model, indicating that the adsorption process of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal is mainly carried out via chemical adsorption and multi-layer adsorption. The increase in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< concentration was caused by the hydrolysis of tryptophan and other protein-like substances in the water into nitrate under the action of microorganisms. coal mine underground reservoir water–coal interaction nitrogen migration transformation Chemical technology Chemistry Ze Zhao verfasserin aut Zhiguo Cao verfasserin aut Deqian Liu verfasserin aut Jiawei Tang verfasserin aut Haiqin Zhang verfasserin aut Yuan Liu verfasserin aut Dingcheng Liang verfasserin aut In Processes MDPI AG, 2013 11(2023), 2656, p 2656 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:2656, p 2656 https://doi.org/10.3390/pr11092656 kostenfrei https://doaj.org/article/e981c9fd86cf49e5b7cf4f83468ae0ba kostenfrei https://www.mdpi.com/2227-9717/11/9/2656 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 2656, p 2656 |
allfields_unstemmed |
10.3390/pr11092656 doi (DE-627)DOAJ098260847 (DE-599)DOAJe981c9fd86cf49e5b7cf4f83468ae0ba DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Binbin Jiang verfasserin aut Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The coal pillar dam of underground reservoirs and residual coal in goaves have a direct impact on the quality of mine water. In this paper, the coal pillar dam of an underground reservoir and residual coal in the goaf and mine water in the Daliuta coal mine are used as research objects. The adsorption mechanism of residual coal with respect to <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in mine water was analyzed by carrying out adsorption experiments. The composition and variation of organic matter in mine water at different times were simulated using three-dimensional fluorescence spectrum analysis. The influence of residual coal and microorganisms in underground reservoirs on the change in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< contents in mine water was explored. Moreover, the mechanism of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< changes in the water body was clarified. The results showed that the concentration of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in the water first decreased and then increased, showing a downward trend as a whole. The adsorption of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal led to a decrease in its concentration, which conformed to a pseudo-second-order kinetic model and Freundlich isothermal adsorption model, indicating that the adsorption process of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal is mainly carried out via chemical adsorption and multi-layer adsorption. The increase in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< concentration was caused by the hydrolysis of tryptophan and other protein-like substances in the water into nitrate under the action of microorganisms. coal mine underground reservoir water–coal interaction nitrogen migration transformation Chemical technology Chemistry Ze Zhao verfasserin aut Zhiguo Cao verfasserin aut Deqian Liu verfasserin aut Jiawei Tang verfasserin aut Haiqin Zhang verfasserin aut Yuan Liu verfasserin aut Dingcheng Liang verfasserin aut In Processes MDPI AG, 2013 11(2023), 2656, p 2656 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:2656, p 2656 https://doi.org/10.3390/pr11092656 kostenfrei https://doaj.org/article/e981c9fd86cf49e5b7cf4f83468ae0ba kostenfrei https://www.mdpi.com/2227-9717/11/9/2656 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 2656, p 2656 |
allfieldsGer |
10.3390/pr11092656 doi (DE-627)DOAJ098260847 (DE-599)DOAJe981c9fd86cf49e5b7cf4f83468ae0ba DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Binbin Jiang verfasserin aut Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The coal pillar dam of underground reservoirs and residual coal in goaves have a direct impact on the quality of mine water. In this paper, the coal pillar dam of an underground reservoir and residual coal in the goaf and mine water in the Daliuta coal mine are used as research objects. The adsorption mechanism of residual coal with respect to <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in mine water was analyzed by carrying out adsorption experiments. The composition and variation of organic matter in mine water at different times were simulated using three-dimensional fluorescence spectrum analysis. The influence of residual coal and microorganisms in underground reservoirs on the change in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< contents in mine water was explored. Moreover, the mechanism of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< changes in the water body was clarified. The results showed that the concentration of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in the water first decreased and then increased, showing a downward trend as a whole. The adsorption of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal led to a decrease in its concentration, which conformed to a pseudo-second-order kinetic model and Freundlich isothermal adsorption model, indicating that the adsorption process of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal is mainly carried out via chemical adsorption and multi-layer adsorption. The increase in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< concentration was caused by the hydrolysis of tryptophan and other protein-like substances in the water into nitrate under the action of microorganisms. coal mine underground reservoir water–coal interaction nitrogen migration transformation Chemical technology Chemistry Ze Zhao verfasserin aut Zhiguo Cao verfasserin aut Deqian Liu verfasserin aut Jiawei Tang verfasserin aut Haiqin Zhang verfasserin aut Yuan Liu verfasserin aut Dingcheng Liang verfasserin aut In Processes MDPI AG, 2013 11(2023), 2656, p 2656 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:2656, p 2656 https://doi.org/10.3390/pr11092656 kostenfrei https://doaj.org/article/e981c9fd86cf49e5b7cf4f83468ae0ba kostenfrei https://www.mdpi.com/2227-9717/11/9/2656 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 2656, p 2656 |
allfieldsSound |
10.3390/pr11092656 doi (DE-627)DOAJ098260847 (DE-599)DOAJe981c9fd86cf49e5b7cf4f83468ae0ba DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Binbin Jiang verfasserin aut Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The coal pillar dam of underground reservoirs and residual coal in goaves have a direct impact on the quality of mine water. In this paper, the coal pillar dam of an underground reservoir and residual coal in the goaf and mine water in the Daliuta coal mine are used as research objects. The adsorption mechanism of residual coal with respect to <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in mine water was analyzed by carrying out adsorption experiments. The composition and variation of organic matter in mine water at different times were simulated using three-dimensional fluorescence spectrum analysis. The influence of residual coal and microorganisms in underground reservoirs on the change in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< contents in mine water was explored. Moreover, the mechanism of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< changes in the water body was clarified. The results showed that the concentration of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in the water first decreased and then increased, showing a downward trend as a whole. The adsorption of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal led to a decrease in its concentration, which conformed to a pseudo-second-order kinetic model and Freundlich isothermal adsorption model, indicating that the adsorption process of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal is mainly carried out via chemical adsorption and multi-layer adsorption. The increase in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< concentration was caused by the hydrolysis of tryptophan and other protein-like substances in the water into nitrate under the action of microorganisms. coal mine underground reservoir water–coal interaction nitrogen migration transformation Chemical technology Chemistry Ze Zhao verfasserin aut Zhiguo Cao verfasserin aut Deqian Liu verfasserin aut Jiawei Tang verfasserin aut Haiqin Zhang verfasserin aut Yuan Liu verfasserin aut Dingcheng Liang verfasserin aut In Processes MDPI AG, 2013 11(2023), 2656, p 2656 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:2656, p 2656 https://doi.org/10.3390/pr11092656 kostenfrei https://doaj.org/article/e981c9fd86cf49e5b7cf4f83468ae0ba kostenfrei https://www.mdpi.com/2227-9717/11/9/2656 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 2656, p 2656 |
language |
English |
source |
In Processes 11(2023), 2656, p 2656 volume:11 year:2023 number:2656, p 2656 |
sourceStr |
In Processes 11(2023), 2656, p 2656 volume:11 year:2023 number:2656, p 2656 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
coal mine underground reservoir water–coal interaction nitrogen migration transformation Chemical technology Chemistry |
isfreeaccess_bool |
true |
container_title |
Processes |
authorswithroles_txt_mv |
Binbin Jiang @@aut@@ Ze Zhao @@aut@@ Zhiguo Cao @@aut@@ Deqian Liu @@aut@@ Jiawei Tang @@aut@@ Haiqin Zhang @@aut@@ Yuan Liu @@aut@@ Dingcheng Liang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
750371439 |
id |
DOAJ098260847 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098260847</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413211401.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr11092656</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098260847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe981c9fd86cf49e5b7cf4f83468ae0ba</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Binbin Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The coal pillar dam of underground reservoirs and residual coal in goaves have a direct impact on the quality of mine water. In this paper, the coal pillar dam of an underground reservoir and residual coal in the goaf and mine water in the Daliuta coal mine are used as research objects. The adsorption mechanism of residual coal with respect to <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in mine water was analyzed by carrying out adsorption experiments. The composition and variation of organic matter in mine water at different times were simulated using three-dimensional fluorescence spectrum analysis. The influence of residual coal and microorganisms in underground reservoirs on the change in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< contents in mine water was explored. Moreover, the mechanism of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< changes in the water body was clarified. The results showed that the concentration of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in the water first decreased and then increased, showing a downward trend as a whole. The adsorption of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal led to a decrease in its concentration, which conformed to a pseudo-second-order kinetic model and Freundlich isothermal adsorption model, indicating that the adsorption process of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal is mainly carried out via chemical adsorption and multi-layer adsorption. The increase in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< concentration was caused by the hydrolysis of tryptophan and other protein-like substances in the water into nitrate under the action of microorganisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coal mine underground reservoir</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water–coal interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">migration transformation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ze Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiguo Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deqian Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawei Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiqin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dingcheng Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 2656, p 2656</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2656, p 2656</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr11092656</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e981c9fd86cf49e5b7cf4f83468ae0ba</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/11/9/2656</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">2656, p 2656</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Binbin Jiang |
spellingShingle |
Binbin Jiang misc TP1-1185 misc QD1-999 misc coal mine underground reservoir misc water–coal interaction misc nitrogen misc migration transformation misc Chemical technology misc Chemistry Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions |
authorStr |
Binbin Jiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750371439 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
22279717 |
topic_title |
TP1-1185 QD1-999 Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions coal mine underground reservoir water–coal interaction nitrogen migration transformation |
topic |
misc TP1-1185 misc QD1-999 misc coal mine underground reservoir misc water–coal interaction misc nitrogen misc migration transformation misc Chemical technology misc Chemistry |
topic_unstemmed |
misc TP1-1185 misc QD1-999 misc coal mine underground reservoir misc water–coal interaction misc nitrogen misc migration transformation misc Chemical technology misc Chemistry |
topic_browse |
misc TP1-1185 misc QD1-999 misc coal mine underground reservoir misc water–coal interaction misc nitrogen misc migration transformation misc Chemical technology misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Processes |
hierarchy_parent_id |
750371439 |
hierarchy_top_title |
Processes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750371439 (DE-600)2720994-5 |
title |
Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions |
ctrlnum |
(DE-627)DOAJ098260847 (DE-599)DOAJe981c9fd86cf49e5b7cf4f83468ae0ba |
title_full |
Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions |
author_sort |
Binbin Jiang |
journal |
Processes |
journalStr |
Processes |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Binbin Jiang Ze Zhao Zhiguo Cao Deqian Liu Jiawei Tang Haiqin Zhang Yuan Liu Dingcheng Liang |
container_volume |
11 |
class |
TP1-1185 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Binbin Jiang |
doi_str_mv |
10.3390/pr11092656 |
author2-role |
verfasserin |
title_sort |
study on the migration and transformation of nitrogen in mine water under the action of water–coal interactions |
callnumber |
TP1-1185 |
title_auth |
Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions |
abstract |
The coal pillar dam of underground reservoirs and residual coal in goaves have a direct impact on the quality of mine water. In this paper, the coal pillar dam of an underground reservoir and residual coal in the goaf and mine water in the Daliuta coal mine are used as research objects. The adsorption mechanism of residual coal with respect to <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in mine water was analyzed by carrying out adsorption experiments. The composition and variation of organic matter in mine water at different times were simulated using three-dimensional fluorescence spectrum analysis. The influence of residual coal and microorganisms in underground reservoirs on the change in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< contents in mine water was explored. Moreover, the mechanism of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< changes in the water body was clarified. The results showed that the concentration of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in the water first decreased and then increased, showing a downward trend as a whole. The adsorption of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal led to a decrease in its concentration, which conformed to a pseudo-second-order kinetic model and Freundlich isothermal adsorption model, indicating that the adsorption process of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal is mainly carried out via chemical adsorption and multi-layer adsorption. The increase in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< concentration was caused by the hydrolysis of tryptophan and other protein-like substances in the water into nitrate under the action of microorganisms. |
abstractGer |
The coal pillar dam of underground reservoirs and residual coal in goaves have a direct impact on the quality of mine water. In this paper, the coal pillar dam of an underground reservoir and residual coal in the goaf and mine water in the Daliuta coal mine are used as research objects. The adsorption mechanism of residual coal with respect to <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in mine water was analyzed by carrying out adsorption experiments. The composition and variation of organic matter in mine water at different times were simulated using three-dimensional fluorescence spectrum analysis. The influence of residual coal and microorganisms in underground reservoirs on the change in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< contents in mine water was explored. Moreover, the mechanism of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< changes in the water body was clarified. The results showed that the concentration of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in the water first decreased and then increased, showing a downward trend as a whole. The adsorption of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal led to a decrease in its concentration, which conformed to a pseudo-second-order kinetic model and Freundlich isothermal adsorption model, indicating that the adsorption process of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal is mainly carried out via chemical adsorption and multi-layer adsorption. The increase in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< concentration was caused by the hydrolysis of tryptophan and other protein-like substances in the water into nitrate under the action of microorganisms. |
abstract_unstemmed |
The coal pillar dam of underground reservoirs and residual coal in goaves have a direct impact on the quality of mine water. In this paper, the coal pillar dam of an underground reservoir and residual coal in the goaf and mine water in the Daliuta coal mine are used as research objects. The adsorption mechanism of residual coal with respect to <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in mine water was analyzed by carrying out adsorption experiments. The composition and variation of organic matter in mine water at different times were simulated using three-dimensional fluorescence spectrum analysis. The influence of residual coal and microorganisms in underground reservoirs on the change in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< contents in mine water was explored. Moreover, the mechanism of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< changes in the water body was clarified. The results showed that the concentration of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in the water first decreased and then increased, showing a downward trend as a whole. The adsorption of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal led to a decrease in its concentration, which conformed to a pseudo-second-order kinetic model and Freundlich isothermal adsorption model, indicating that the adsorption process of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal is mainly carried out via chemical adsorption and multi-layer adsorption. The increase in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< concentration was caused by the hydrolysis of tryptophan and other protein-like substances in the water into nitrate under the action of microorganisms. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2656, p 2656 |
title_short |
Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions |
url |
https://doi.org/10.3390/pr11092656 https://doaj.org/article/e981c9fd86cf49e5b7cf4f83468ae0ba https://www.mdpi.com/2227-9717/11/9/2656 https://doaj.org/toc/2227-9717 |
remote_bool |
true |
author2 |
Ze Zhao Zhiguo Cao Deqian Liu Jiawei Tang Haiqin Zhang Yuan Liu Dingcheng Liang |
author2Str |
Ze Zhao Zhiguo Cao Deqian Liu Jiawei Tang Haiqin Zhang Yuan Liu Dingcheng Liang |
ppnlink |
750371439 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/pr11092656 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T16:19:21.945Z |
_version_ |
1803575426497380352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098260847</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413211401.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr11092656</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098260847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe981c9fd86cf49e5b7cf4f83468ae0ba</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Binbin Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on the Migration and Transformation of Nitrogen in Mine Water under the Action of Water–Coal Interactions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The coal pillar dam of underground reservoirs and residual coal in goaves have a direct impact on the quality of mine water. In this paper, the coal pillar dam of an underground reservoir and residual coal in the goaf and mine water in the Daliuta coal mine are used as research objects. The adsorption mechanism of residual coal with respect to <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in mine water was analyzed by carrying out adsorption experiments. The composition and variation of organic matter in mine water at different times were simulated using three-dimensional fluorescence spectrum analysis. The influence of residual coal and microorganisms in underground reservoirs on the change in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< contents in mine water was explored. Moreover, the mechanism of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< changes in the water body was clarified. The results showed that the concentration of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< in the water first decreased and then increased, showing a downward trend as a whole. The adsorption of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal led to a decrease in its concentration, which conformed to a pseudo-second-order kinetic model and Freundlich isothermal adsorption model, indicating that the adsorption process of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< by residual coal is mainly carried out via chemical adsorption and multi-layer adsorption. The increase in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</semantics<</math<</inline-formula< concentration was caused by the hydrolysis of tryptophan and other protein-like substances in the water into nitrate under the action of microorganisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coal mine underground reservoir</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water–coal interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">migration transformation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ze Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiguo Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deqian Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawei Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiqin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dingcheng Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 2656, p 2656</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2656, p 2656</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr11092656</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e981c9fd86cf49e5b7cf4f83468ae0ba</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/11/9/2656</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">2656, p 2656</subfield></datafield></record></collection>
|
score |
7.3997517 |