Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm
Sustainable building systems can effectively reduce environmental pressures and mitigate the deterioration of the global climate. The sustainability of complex building systems is influenced by various factors. This article quantitatively analyzes building systems from an ecological emergy and carbo...
Ausführliche Beschreibung
Autor*in: |
Ye Wang [verfasserIn] Hairuo Wang [verfasserIn] Junxue Zhang [verfasserIn] Meng Jia [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Processes - MDPI AG, 2013, 11(2023), 2829, p 2829 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; number:2829, p 2829 |
Links: |
---|
DOI / URN: |
10.3390/pr11102829 |
---|
Katalog-ID: |
DOAJ098338641 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098338641 | ||
003 | DE-627 | ||
005 | 20240413215225.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/pr11102829 |2 doi | |
035 | |a (DE-627)DOAJ098338641 | ||
035 | |a (DE-599)DOAJcf9753f7cf4943edb85c0ffbea4a2ca0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Ye Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Sustainable building systems can effectively reduce environmental pressures and mitigate the deterioration of the global climate. The sustainability of complex building systems is influenced by various factors. This article quantitatively analyzes building systems from an ecological emergy and carbon emissions perspective, and considers typical feedback structures’ impact. A neural network algorithm is employed for sustainability prediction analysis. The results demonstrate that both from an emergy and carbon emissions perspective, the operational phase of the building and the production phase of building materials are the main contributors (accounting for over 90%). Among the three types of feedback subsystems, the cross-feedback structure has a more significant impact and yields the best corrective effect. For example, the correction proportion of the building’s emergy sustainability parameter reaches 11.3%, while it is 15.8% for carbon emissions. The neural network model predicts a decreasing trend in the energy sustainability of buildings and increasing carbon emissions over time. To improve the sustainability of building systems, measures such as ecological landscape design and carbon sequestration in building materials are considered, which can enhance the sustainability of buildings to a certain extent. | ||
650 | 4 | |a sustainable process | |
650 | 4 | |a emergy and carbon emission | |
650 | 4 | |a neural network algorithm | |
650 | 4 | |a building system | |
653 | 0 | |a Chemical technology | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Hairuo Wang |e verfasserin |4 aut | |
700 | 0 | |a Junxue Zhang |e verfasserin |4 aut | |
700 | 0 | |a Meng Jia |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Processes |d MDPI AG, 2013 |g 11(2023), 2829, p 2829 |w (DE-627)750371439 |w (DE-600)2720994-5 |x 22279717 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g number:2829, p 2829 |
856 | 4 | 0 | |u https://doi.org/10.3390/pr11102829 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cf9753f7cf4943edb85c0ffbea4a2ca0 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9717/11/10/2829 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9717 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |e 2829, p 2829 |
author_variant |
y w yw h w hw j z jz m j mj |
---|---|
matchkey_str |
article:22279717:2023----::utialpoestdoeegadabnmsinnlssfuligytma |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TP |
publishDate |
2023 |
allfields |
10.3390/pr11102829 doi (DE-627)DOAJ098338641 (DE-599)DOAJcf9753f7cf4943edb85c0ffbea4a2ca0 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Ye Wang verfasserin aut Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sustainable building systems can effectively reduce environmental pressures and mitigate the deterioration of the global climate. The sustainability of complex building systems is influenced by various factors. This article quantitatively analyzes building systems from an ecological emergy and carbon emissions perspective, and considers typical feedback structures’ impact. A neural network algorithm is employed for sustainability prediction analysis. The results demonstrate that both from an emergy and carbon emissions perspective, the operational phase of the building and the production phase of building materials are the main contributors (accounting for over 90%). Among the three types of feedback subsystems, the cross-feedback structure has a more significant impact and yields the best corrective effect. For example, the correction proportion of the building’s emergy sustainability parameter reaches 11.3%, while it is 15.8% for carbon emissions. The neural network model predicts a decreasing trend in the energy sustainability of buildings and increasing carbon emissions over time. To improve the sustainability of building systems, measures such as ecological landscape design and carbon sequestration in building materials are considered, which can enhance the sustainability of buildings to a certain extent. sustainable process emergy and carbon emission neural network algorithm building system Chemical technology Chemistry Hairuo Wang verfasserin aut Junxue Zhang verfasserin aut Meng Jia verfasserin aut In Processes MDPI AG, 2013 11(2023), 2829, p 2829 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:2829, p 2829 https://doi.org/10.3390/pr11102829 kostenfrei https://doaj.org/article/cf9753f7cf4943edb85c0ffbea4a2ca0 kostenfrei https://www.mdpi.com/2227-9717/11/10/2829 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 2829, p 2829 |
spelling |
10.3390/pr11102829 doi (DE-627)DOAJ098338641 (DE-599)DOAJcf9753f7cf4943edb85c0ffbea4a2ca0 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Ye Wang verfasserin aut Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sustainable building systems can effectively reduce environmental pressures and mitigate the deterioration of the global climate. The sustainability of complex building systems is influenced by various factors. This article quantitatively analyzes building systems from an ecological emergy and carbon emissions perspective, and considers typical feedback structures’ impact. A neural network algorithm is employed for sustainability prediction analysis. The results demonstrate that both from an emergy and carbon emissions perspective, the operational phase of the building and the production phase of building materials are the main contributors (accounting for over 90%). Among the three types of feedback subsystems, the cross-feedback structure has a more significant impact and yields the best corrective effect. For example, the correction proportion of the building’s emergy sustainability parameter reaches 11.3%, while it is 15.8% for carbon emissions. The neural network model predicts a decreasing trend in the energy sustainability of buildings and increasing carbon emissions over time. To improve the sustainability of building systems, measures such as ecological landscape design and carbon sequestration in building materials are considered, which can enhance the sustainability of buildings to a certain extent. sustainable process emergy and carbon emission neural network algorithm building system Chemical technology Chemistry Hairuo Wang verfasserin aut Junxue Zhang verfasserin aut Meng Jia verfasserin aut In Processes MDPI AG, 2013 11(2023), 2829, p 2829 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:2829, p 2829 https://doi.org/10.3390/pr11102829 kostenfrei https://doaj.org/article/cf9753f7cf4943edb85c0ffbea4a2ca0 kostenfrei https://www.mdpi.com/2227-9717/11/10/2829 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 2829, p 2829 |
allfields_unstemmed |
10.3390/pr11102829 doi (DE-627)DOAJ098338641 (DE-599)DOAJcf9753f7cf4943edb85c0ffbea4a2ca0 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Ye Wang verfasserin aut Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sustainable building systems can effectively reduce environmental pressures and mitigate the deterioration of the global climate. The sustainability of complex building systems is influenced by various factors. This article quantitatively analyzes building systems from an ecological emergy and carbon emissions perspective, and considers typical feedback structures’ impact. A neural network algorithm is employed for sustainability prediction analysis. The results demonstrate that both from an emergy and carbon emissions perspective, the operational phase of the building and the production phase of building materials are the main contributors (accounting for over 90%). Among the three types of feedback subsystems, the cross-feedback structure has a more significant impact and yields the best corrective effect. For example, the correction proportion of the building’s emergy sustainability parameter reaches 11.3%, while it is 15.8% for carbon emissions. The neural network model predicts a decreasing trend in the energy sustainability of buildings and increasing carbon emissions over time. To improve the sustainability of building systems, measures such as ecological landscape design and carbon sequestration in building materials are considered, which can enhance the sustainability of buildings to a certain extent. sustainable process emergy and carbon emission neural network algorithm building system Chemical technology Chemistry Hairuo Wang verfasserin aut Junxue Zhang verfasserin aut Meng Jia verfasserin aut In Processes MDPI AG, 2013 11(2023), 2829, p 2829 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:2829, p 2829 https://doi.org/10.3390/pr11102829 kostenfrei https://doaj.org/article/cf9753f7cf4943edb85c0ffbea4a2ca0 kostenfrei https://www.mdpi.com/2227-9717/11/10/2829 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 2829, p 2829 |
allfieldsGer |
10.3390/pr11102829 doi (DE-627)DOAJ098338641 (DE-599)DOAJcf9753f7cf4943edb85c0ffbea4a2ca0 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Ye Wang verfasserin aut Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sustainable building systems can effectively reduce environmental pressures and mitigate the deterioration of the global climate. The sustainability of complex building systems is influenced by various factors. This article quantitatively analyzes building systems from an ecological emergy and carbon emissions perspective, and considers typical feedback structures’ impact. A neural network algorithm is employed for sustainability prediction analysis. The results demonstrate that both from an emergy and carbon emissions perspective, the operational phase of the building and the production phase of building materials are the main contributors (accounting for over 90%). Among the three types of feedback subsystems, the cross-feedback structure has a more significant impact and yields the best corrective effect. For example, the correction proportion of the building’s emergy sustainability parameter reaches 11.3%, while it is 15.8% for carbon emissions. The neural network model predicts a decreasing trend in the energy sustainability of buildings and increasing carbon emissions over time. To improve the sustainability of building systems, measures such as ecological landscape design and carbon sequestration in building materials are considered, which can enhance the sustainability of buildings to a certain extent. sustainable process emergy and carbon emission neural network algorithm building system Chemical technology Chemistry Hairuo Wang verfasserin aut Junxue Zhang verfasserin aut Meng Jia verfasserin aut In Processes MDPI AG, 2013 11(2023), 2829, p 2829 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:2829, p 2829 https://doi.org/10.3390/pr11102829 kostenfrei https://doaj.org/article/cf9753f7cf4943edb85c0ffbea4a2ca0 kostenfrei https://www.mdpi.com/2227-9717/11/10/2829 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 2829, p 2829 |
allfieldsSound |
10.3390/pr11102829 doi (DE-627)DOAJ098338641 (DE-599)DOAJcf9753f7cf4943edb85c0ffbea4a2ca0 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Ye Wang verfasserin aut Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sustainable building systems can effectively reduce environmental pressures and mitigate the deterioration of the global climate. The sustainability of complex building systems is influenced by various factors. This article quantitatively analyzes building systems from an ecological emergy and carbon emissions perspective, and considers typical feedback structures’ impact. A neural network algorithm is employed for sustainability prediction analysis. The results demonstrate that both from an emergy and carbon emissions perspective, the operational phase of the building and the production phase of building materials are the main contributors (accounting for over 90%). Among the three types of feedback subsystems, the cross-feedback structure has a more significant impact and yields the best corrective effect. For example, the correction proportion of the building’s emergy sustainability parameter reaches 11.3%, while it is 15.8% for carbon emissions. The neural network model predicts a decreasing trend in the energy sustainability of buildings and increasing carbon emissions over time. To improve the sustainability of building systems, measures such as ecological landscape design and carbon sequestration in building materials are considered, which can enhance the sustainability of buildings to a certain extent. sustainable process emergy and carbon emission neural network algorithm building system Chemical technology Chemistry Hairuo Wang verfasserin aut Junxue Zhang verfasserin aut Meng Jia verfasserin aut In Processes MDPI AG, 2013 11(2023), 2829, p 2829 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:2829, p 2829 https://doi.org/10.3390/pr11102829 kostenfrei https://doaj.org/article/cf9753f7cf4943edb85c0ffbea4a2ca0 kostenfrei https://www.mdpi.com/2227-9717/11/10/2829 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 2829, p 2829 |
language |
English |
source |
In Processes 11(2023), 2829, p 2829 volume:11 year:2023 number:2829, p 2829 |
sourceStr |
In Processes 11(2023), 2829, p 2829 volume:11 year:2023 number:2829, p 2829 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
sustainable process emergy and carbon emission neural network algorithm building system Chemical technology Chemistry |
isfreeaccess_bool |
true |
container_title |
Processes |
authorswithroles_txt_mv |
Ye Wang @@aut@@ Hairuo Wang @@aut@@ Junxue Zhang @@aut@@ Meng Jia @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
750371439 |
id |
DOAJ098338641 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098338641</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413215225.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr11102829</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098338641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcf9753f7cf4943edb85c0ffbea4a2ca0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ye Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sustainable building systems can effectively reduce environmental pressures and mitigate the deterioration of the global climate. The sustainability of complex building systems is influenced by various factors. This article quantitatively analyzes building systems from an ecological emergy and carbon emissions perspective, and considers typical feedback structures’ impact. A neural network algorithm is employed for sustainability prediction analysis. The results demonstrate that both from an emergy and carbon emissions perspective, the operational phase of the building and the production phase of building materials are the main contributors (accounting for over 90%). Among the three types of feedback subsystems, the cross-feedback structure has a more significant impact and yields the best corrective effect. For example, the correction proportion of the building’s emergy sustainability parameter reaches 11.3%, while it is 15.8% for carbon emissions. The neural network model predicts a decreasing trend in the energy sustainability of buildings and increasing carbon emissions over time. To improve the sustainability of building systems, measures such as ecological landscape design and carbon sequestration in building materials are considered, which can enhance the sustainability of buildings to a certain extent.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sustainable process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emergy and carbon emission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural network algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">building system</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hairuo Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junxue Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meng Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 2829, p 2829</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2829, p 2829</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr11102829</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cf9753f7cf4943edb85c0ffbea4a2ca0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/11/10/2829</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">2829, p 2829</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Ye Wang |
spellingShingle |
Ye Wang misc TP1-1185 misc QD1-999 misc sustainable process misc emergy and carbon emission misc neural network algorithm misc building system misc Chemical technology misc Chemistry Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm |
authorStr |
Ye Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750371439 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
22279717 |
topic_title |
TP1-1185 QD1-999 Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm sustainable process emergy and carbon emission neural network algorithm building system |
topic |
misc TP1-1185 misc QD1-999 misc sustainable process misc emergy and carbon emission misc neural network algorithm misc building system misc Chemical technology misc Chemistry |
topic_unstemmed |
misc TP1-1185 misc QD1-999 misc sustainable process misc emergy and carbon emission misc neural network algorithm misc building system misc Chemical technology misc Chemistry |
topic_browse |
misc TP1-1185 misc QD1-999 misc sustainable process misc emergy and carbon emission misc neural network algorithm misc building system misc Chemical technology misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Processes |
hierarchy_parent_id |
750371439 |
hierarchy_top_title |
Processes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750371439 (DE-600)2720994-5 |
title |
Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm |
ctrlnum |
(DE-627)DOAJ098338641 (DE-599)DOAJcf9753f7cf4943edb85c0ffbea4a2ca0 |
title_full |
Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm |
author_sort |
Ye Wang |
journal |
Processes |
journalStr |
Processes |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Ye Wang Hairuo Wang Junxue Zhang Meng Jia |
container_volume |
11 |
class |
TP1-1185 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Ye Wang |
doi_str_mv |
10.3390/pr11102829 |
author2-role |
verfasserin |
title_sort |
sustainable process study on emergy and carbon emission analysis of building system based on neural network algorithm |
callnumber |
TP1-1185 |
title_auth |
Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm |
abstract |
Sustainable building systems can effectively reduce environmental pressures and mitigate the deterioration of the global climate. The sustainability of complex building systems is influenced by various factors. This article quantitatively analyzes building systems from an ecological emergy and carbon emissions perspective, and considers typical feedback structures’ impact. A neural network algorithm is employed for sustainability prediction analysis. The results demonstrate that both from an emergy and carbon emissions perspective, the operational phase of the building and the production phase of building materials are the main contributors (accounting for over 90%). Among the three types of feedback subsystems, the cross-feedback structure has a more significant impact and yields the best corrective effect. For example, the correction proportion of the building’s emergy sustainability parameter reaches 11.3%, while it is 15.8% for carbon emissions. The neural network model predicts a decreasing trend in the energy sustainability of buildings and increasing carbon emissions over time. To improve the sustainability of building systems, measures such as ecological landscape design and carbon sequestration in building materials are considered, which can enhance the sustainability of buildings to a certain extent. |
abstractGer |
Sustainable building systems can effectively reduce environmental pressures and mitigate the deterioration of the global climate. The sustainability of complex building systems is influenced by various factors. This article quantitatively analyzes building systems from an ecological emergy and carbon emissions perspective, and considers typical feedback structures’ impact. A neural network algorithm is employed for sustainability prediction analysis. The results demonstrate that both from an emergy and carbon emissions perspective, the operational phase of the building and the production phase of building materials are the main contributors (accounting for over 90%). Among the three types of feedback subsystems, the cross-feedback structure has a more significant impact and yields the best corrective effect. For example, the correction proportion of the building’s emergy sustainability parameter reaches 11.3%, while it is 15.8% for carbon emissions. The neural network model predicts a decreasing trend in the energy sustainability of buildings and increasing carbon emissions over time. To improve the sustainability of building systems, measures such as ecological landscape design and carbon sequestration in building materials are considered, which can enhance the sustainability of buildings to a certain extent. |
abstract_unstemmed |
Sustainable building systems can effectively reduce environmental pressures and mitigate the deterioration of the global climate. The sustainability of complex building systems is influenced by various factors. This article quantitatively analyzes building systems from an ecological emergy and carbon emissions perspective, and considers typical feedback structures’ impact. A neural network algorithm is employed for sustainability prediction analysis. The results demonstrate that both from an emergy and carbon emissions perspective, the operational phase of the building and the production phase of building materials are the main contributors (accounting for over 90%). Among the three types of feedback subsystems, the cross-feedback structure has a more significant impact and yields the best corrective effect. For example, the correction proportion of the building’s emergy sustainability parameter reaches 11.3%, while it is 15.8% for carbon emissions. The neural network model predicts a decreasing trend in the energy sustainability of buildings and increasing carbon emissions over time. To improve the sustainability of building systems, measures such as ecological landscape design and carbon sequestration in building materials are considered, which can enhance the sustainability of buildings to a certain extent. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2829, p 2829 |
title_short |
Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm |
url |
https://doi.org/10.3390/pr11102829 https://doaj.org/article/cf9753f7cf4943edb85c0ffbea4a2ca0 https://www.mdpi.com/2227-9717/11/10/2829 https://doaj.org/toc/2227-9717 |
remote_bool |
true |
author2 |
Hairuo Wang Junxue Zhang Meng Jia |
author2Str |
Hairuo Wang Junxue Zhang Meng Jia |
ppnlink |
750371439 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/pr11102829 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T16:43:56.470Z |
_version_ |
1803576972642615296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098338641</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413215225.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr11102829</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098338641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcf9753f7cf4943edb85c0ffbea4a2ca0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ye Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sustainable Process Study on Emergy and Carbon Emission Analysis of Building System Based on Neural Network Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sustainable building systems can effectively reduce environmental pressures and mitigate the deterioration of the global climate. The sustainability of complex building systems is influenced by various factors. This article quantitatively analyzes building systems from an ecological emergy and carbon emissions perspective, and considers typical feedback structures’ impact. A neural network algorithm is employed for sustainability prediction analysis. The results demonstrate that both from an emergy and carbon emissions perspective, the operational phase of the building and the production phase of building materials are the main contributors (accounting for over 90%). Among the three types of feedback subsystems, the cross-feedback structure has a more significant impact and yields the best corrective effect. For example, the correction proportion of the building’s emergy sustainability parameter reaches 11.3%, while it is 15.8% for carbon emissions. The neural network model predicts a decreasing trend in the energy sustainability of buildings and increasing carbon emissions over time. To improve the sustainability of building systems, measures such as ecological landscape design and carbon sequestration in building materials are considered, which can enhance the sustainability of buildings to a certain extent.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sustainable process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emergy and carbon emission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural network algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">building system</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hairuo Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junxue Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meng Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 2829, p 2829</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2829, p 2829</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr11102829</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cf9753f7cf4943edb85c0ffbea4a2ca0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/11/10/2829</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">2829, p 2829</subfield></datafield></record></collection>
|
score |
7.402916 |