Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China
AbstractWe conducted a scientific quantitative analysis of the spatiotemporal evolution and driving factors of land use in Henan Province using a spatial zoning approach. The province was divided into five distinctive regions. Employing methods, such as information mapping, we analyzed land use data...
Ausführliche Beschreibung
Autor*in: |
Hua Wang [verfasserIn] Qiaonan Wan [verfasserIn] Wei Huang [verfasserIn] Jiqiang Niu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Geocarto International - Taylor & Francis Group, 2023, 38(2023), 1 |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2023 ; number:1 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1080/10106049.2023.2271442 |
---|
Katalog-ID: |
DOAJ098377302 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098377302 | ||
003 | DE-627 | ||
005 | 20240414090911.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/10106049.2023.2271442 |2 doi | |
035 | |a (DE-627)DOAJ098377302 | ||
035 | |a (DE-599)DOAJ4e588aa65d5c4e52b26edc056a038fcf | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a GB3-5030 | |
100 | 0 | |a Hua Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a AbstractWe conducted a scientific quantitative analysis of the spatiotemporal evolution and driving factors of land use in Henan Province using a spatial zoning approach. The province was divided into five distinctive regions. Employing methods, such as information mapping, we analyzed land use data for 1990, 2000, 2010, and 2020, investigating spatiotemporal evolution and differences. Additionally, we employed a geographic detector model to explore the dominant factors behind land use changes in 2010 and 2020. Primary land classes in Henan Province included cultivated land, forests, and construction, with cultivated land transitioning mainly to forests and construction. However, regional analyses revealed diverse outcomes. In the Yudong area, cultivated land dominated with an 80% area proportion, shifting mostly to construction. In the Yubei area, grassland transformed into cultivated land and forests, with escalating grassland loss. The Yuxi area exhibited a 40% forest area proportion, with frequent mutual conversions between forests, cultivated land, and grassland. Spatiotemporal evolution indicated active changes in cultivated land. The geographic detector revealed a shift in influential factors from natural to economic drivers for cultivated land changes in Henan Province between 2010 and 2020. By uncovering land use disparities across regions, we contribute suggestions for sustainable development decisions regarding land use in Henan. | ||
650 | 4 | |a Land use | |
650 | 4 | |a geological information mapping | |
650 | 4 | |a spatial heterogeneity | |
650 | 4 | |a drivers | |
650 | 4 | |a geographic detector | |
653 | 0 | |a Physical geography | |
700 | 0 | |a Qiaonan Wan |e verfasserin |4 aut | |
700 | 0 | |a Wei Huang |e verfasserin |4 aut | |
700 | 0 | |a Jiqiang Niu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Geocarto International |d Taylor & Francis Group, 2023 |g 38(2023), 1 |w (DE-627)364462809 |w (DE-600)2109550-4 |x 17520762 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:2023 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.1080/10106049.2023.2271442 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4e588aa65d5c4e52b26edc056a038fcf |z kostenfrei |
856 | 4 | 0 | |u https://www.tandfonline.com/doi/10.1080/10106049.2023.2271442 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1010-6049 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1752-0762 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 38 |j 2023 |e 1 |
author_variant |
h w hw q w qw w h wh j n jn |
---|---|
matchkey_str |
article:17520762:2023----::ptahtrgniyhrceitcadrvnmcaimfadsca |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
GB |
publishDate |
2023 |
allfields |
10.1080/10106049.2023.2271442 doi (DE-627)DOAJ098377302 (DE-599)DOAJ4e588aa65d5c4e52b26edc056a038fcf DE-627 ger DE-627 rakwb eng GB3-5030 Hua Wang verfasserin aut Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier AbstractWe conducted a scientific quantitative analysis of the spatiotemporal evolution and driving factors of land use in Henan Province using a spatial zoning approach. The province was divided into five distinctive regions. Employing methods, such as information mapping, we analyzed land use data for 1990, 2000, 2010, and 2020, investigating spatiotemporal evolution and differences. Additionally, we employed a geographic detector model to explore the dominant factors behind land use changes in 2010 and 2020. Primary land classes in Henan Province included cultivated land, forests, and construction, with cultivated land transitioning mainly to forests and construction. However, regional analyses revealed diverse outcomes. In the Yudong area, cultivated land dominated with an 80% area proportion, shifting mostly to construction. In the Yubei area, grassland transformed into cultivated land and forests, with escalating grassland loss. The Yuxi area exhibited a 40% forest area proportion, with frequent mutual conversions between forests, cultivated land, and grassland. Spatiotemporal evolution indicated active changes in cultivated land. The geographic detector revealed a shift in influential factors from natural to economic drivers for cultivated land changes in Henan Province between 2010 and 2020. By uncovering land use disparities across regions, we contribute suggestions for sustainable development decisions regarding land use in Henan. Land use geological information mapping spatial heterogeneity drivers geographic detector Physical geography Qiaonan Wan verfasserin aut Wei Huang verfasserin aut Jiqiang Niu verfasserin aut In Geocarto International Taylor & Francis Group, 2023 38(2023), 1 (DE-627)364462809 (DE-600)2109550-4 17520762 nnns volume:38 year:2023 number:1 https://doi.org/10.1080/10106049.2023.2271442 kostenfrei https://doaj.org/article/4e588aa65d5c4e52b26edc056a038fcf kostenfrei https://www.tandfonline.com/doi/10.1080/10106049.2023.2271442 kostenfrei https://doaj.org/toc/1010-6049 Journal toc kostenfrei https://doaj.org/toc/1752-0762 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2026 GBV_ILN_2034 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 38 2023 1 |
spelling |
10.1080/10106049.2023.2271442 doi (DE-627)DOAJ098377302 (DE-599)DOAJ4e588aa65d5c4e52b26edc056a038fcf DE-627 ger DE-627 rakwb eng GB3-5030 Hua Wang verfasserin aut Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier AbstractWe conducted a scientific quantitative analysis of the spatiotemporal evolution and driving factors of land use in Henan Province using a spatial zoning approach. The province was divided into five distinctive regions. Employing methods, such as information mapping, we analyzed land use data for 1990, 2000, 2010, and 2020, investigating spatiotemporal evolution and differences. Additionally, we employed a geographic detector model to explore the dominant factors behind land use changes in 2010 and 2020. Primary land classes in Henan Province included cultivated land, forests, and construction, with cultivated land transitioning mainly to forests and construction. However, regional analyses revealed diverse outcomes. In the Yudong area, cultivated land dominated with an 80% area proportion, shifting mostly to construction. In the Yubei area, grassland transformed into cultivated land and forests, with escalating grassland loss. The Yuxi area exhibited a 40% forest area proportion, with frequent mutual conversions between forests, cultivated land, and grassland. Spatiotemporal evolution indicated active changes in cultivated land. The geographic detector revealed a shift in influential factors from natural to economic drivers for cultivated land changes in Henan Province between 2010 and 2020. By uncovering land use disparities across regions, we contribute suggestions for sustainable development decisions regarding land use in Henan. Land use geological information mapping spatial heterogeneity drivers geographic detector Physical geography Qiaonan Wan verfasserin aut Wei Huang verfasserin aut Jiqiang Niu verfasserin aut In Geocarto International Taylor & Francis Group, 2023 38(2023), 1 (DE-627)364462809 (DE-600)2109550-4 17520762 nnns volume:38 year:2023 number:1 https://doi.org/10.1080/10106049.2023.2271442 kostenfrei https://doaj.org/article/4e588aa65d5c4e52b26edc056a038fcf kostenfrei https://www.tandfonline.com/doi/10.1080/10106049.2023.2271442 kostenfrei https://doaj.org/toc/1010-6049 Journal toc kostenfrei https://doaj.org/toc/1752-0762 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2026 GBV_ILN_2034 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 38 2023 1 |
allfields_unstemmed |
10.1080/10106049.2023.2271442 doi (DE-627)DOAJ098377302 (DE-599)DOAJ4e588aa65d5c4e52b26edc056a038fcf DE-627 ger DE-627 rakwb eng GB3-5030 Hua Wang verfasserin aut Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier AbstractWe conducted a scientific quantitative analysis of the spatiotemporal evolution and driving factors of land use in Henan Province using a spatial zoning approach. The province was divided into five distinctive regions. Employing methods, such as information mapping, we analyzed land use data for 1990, 2000, 2010, and 2020, investigating spatiotemporal evolution and differences. Additionally, we employed a geographic detector model to explore the dominant factors behind land use changes in 2010 and 2020. Primary land classes in Henan Province included cultivated land, forests, and construction, with cultivated land transitioning mainly to forests and construction. However, regional analyses revealed diverse outcomes. In the Yudong area, cultivated land dominated with an 80% area proportion, shifting mostly to construction. In the Yubei area, grassland transformed into cultivated land and forests, with escalating grassland loss. The Yuxi area exhibited a 40% forest area proportion, with frequent mutual conversions between forests, cultivated land, and grassland. Spatiotemporal evolution indicated active changes in cultivated land. The geographic detector revealed a shift in influential factors from natural to economic drivers for cultivated land changes in Henan Province between 2010 and 2020. By uncovering land use disparities across regions, we contribute suggestions for sustainable development decisions regarding land use in Henan. Land use geological information mapping spatial heterogeneity drivers geographic detector Physical geography Qiaonan Wan verfasserin aut Wei Huang verfasserin aut Jiqiang Niu verfasserin aut In Geocarto International Taylor & Francis Group, 2023 38(2023), 1 (DE-627)364462809 (DE-600)2109550-4 17520762 nnns volume:38 year:2023 number:1 https://doi.org/10.1080/10106049.2023.2271442 kostenfrei https://doaj.org/article/4e588aa65d5c4e52b26edc056a038fcf kostenfrei https://www.tandfonline.com/doi/10.1080/10106049.2023.2271442 kostenfrei https://doaj.org/toc/1010-6049 Journal toc kostenfrei https://doaj.org/toc/1752-0762 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2026 GBV_ILN_2034 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 38 2023 1 |
allfieldsGer |
10.1080/10106049.2023.2271442 doi (DE-627)DOAJ098377302 (DE-599)DOAJ4e588aa65d5c4e52b26edc056a038fcf DE-627 ger DE-627 rakwb eng GB3-5030 Hua Wang verfasserin aut Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier AbstractWe conducted a scientific quantitative analysis of the spatiotemporal evolution and driving factors of land use in Henan Province using a spatial zoning approach. The province was divided into five distinctive regions. Employing methods, such as information mapping, we analyzed land use data for 1990, 2000, 2010, and 2020, investigating spatiotemporal evolution and differences. Additionally, we employed a geographic detector model to explore the dominant factors behind land use changes in 2010 and 2020. Primary land classes in Henan Province included cultivated land, forests, and construction, with cultivated land transitioning mainly to forests and construction. However, regional analyses revealed diverse outcomes. In the Yudong area, cultivated land dominated with an 80% area proportion, shifting mostly to construction. In the Yubei area, grassland transformed into cultivated land and forests, with escalating grassland loss. The Yuxi area exhibited a 40% forest area proportion, with frequent mutual conversions between forests, cultivated land, and grassland. Spatiotemporal evolution indicated active changes in cultivated land. The geographic detector revealed a shift in influential factors from natural to economic drivers for cultivated land changes in Henan Province between 2010 and 2020. By uncovering land use disparities across regions, we contribute suggestions for sustainable development decisions regarding land use in Henan. Land use geological information mapping spatial heterogeneity drivers geographic detector Physical geography Qiaonan Wan verfasserin aut Wei Huang verfasserin aut Jiqiang Niu verfasserin aut In Geocarto International Taylor & Francis Group, 2023 38(2023), 1 (DE-627)364462809 (DE-600)2109550-4 17520762 nnns volume:38 year:2023 number:1 https://doi.org/10.1080/10106049.2023.2271442 kostenfrei https://doaj.org/article/4e588aa65d5c4e52b26edc056a038fcf kostenfrei https://www.tandfonline.com/doi/10.1080/10106049.2023.2271442 kostenfrei https://doaj.org/toc/1010-6049 Journal toc kostenfrei https://doaj.org/toc/1752-0762 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2026 GBV_ILN_2034 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 38 2023 1 |
allfieldsSound |
10.1080/10106049.2023.2271442 doi (DE-627)DOAJ098377302 (DE-599)DOAJ4e588aa65d5c4e52b26edc056a038fcf DE-627 ger DE-627 rakwb eng GB3-5030 Hua Wang verfasserin aut Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier AbstractWe conducted a scientific quantitative analysis of the spatiotemporal evolution and driving factors of land use in Henan Province using a spatial zoning approach. The province was divided into five distinctive regions. Employing methods, such as information mapping, we analyzed land use data for 1990, 2000, 2010, and 2020, investigating spatiotemporal evolution and differences. Additionally, we employed a geographic detector model to explore the dominant factors behind land use changes in 2010 and 2020. Primary land classes in Henan Province included cultivated land, forests, and construction, with cultivated land transitioning mainly to forests and construction. However, regional analyses revealed diverse outcomes. In the Yudong area, cultivated land dominated with an 80% area proportion, shifting mostly to construction. In the Yubei area, grassland transformed into cultivated land and forests, with escalating grassland loss. The Yuxi area exhibited a 40% forest area proportion, with frequent mutual conversions between forests, cultivated land, and grassland. Spatiotemporal evolution indicated active changes in cultivated land. The geographic detector revealed a shift in influential factors from natural to economic drivers for cultivated land changes in Henan Province between 2010 and 2020. By uncovering land use disparities across regions, we contribute suggestions for sustainable development decisions regarding land use in Henan. Land use geological information mapping spatial heterogeneity drivers geographic detector Physical geography Qiaonan Wan verfasserin aut Wei Huang verfasserin aut Jiqiang Niu verfasserin aut In Geocarto International Taylor & Francis Group, 2023 38(2023), 1 (DE-627)364462809 (DE-600)2109550-4 17520762 nnns volume:38 year:2023 number:1 https://doi.org/10.1080/10106049.2023.2271442 kostenfrei https://doaj.org/article/4e588aa65d5c4e52b26edc056a038fcf kostenfrei https://www.tandfonline.com/doi/10.1080/10106049.2023.2271442 kostenfrei https://doaj.org/toc/1010-6049 Journal toc kostenfrei https://doaj.org/toc/1752-0762 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2026 GBV_ILN_2034 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 38 2023 1 |
language |
English |
source |
In Geocarto International 38(2023), 1 volume:38 year:2023 number:1 |
sourceStr |
In Geocarto International 38(2023), 1 volume:38 year:2023 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Land use geological information mapping spatial heterogeneity drivers geographic detector Physical geography |
isfreeaccess_bool |
true |
container_title |
Geocarto International |
authorswithroles_txt_mv |
Hua Wang @@aut@@ Qiaonan Wan @@aut@@ Wei Huang @@aut@@ Jiqiang Niu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
364462809 |
id |
DOAJ098377302 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ098377302</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414090911.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/10106049.2023.2271442</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098377302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4e588aa65d5c4e52b26edc056a038fcf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GB3-5030</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hua Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">AbstractWe conducted a scientific quantitative analysis of the spatiotemporal evolution and driving factors of land use in Henan Province using a spatial zoning approach. The province was divided into five distinctive regions. Employing methods, such as information mapping, we analyzed land use data for 1990, 2000, 2010, and 2020, investigating spatiotemporal evolution and differences. Additionally, we employed a geographic detector model to explore the dominant factors behind land use changes in 2010 and 2020. Primary land classes in Henan Province included cultivated land, forests, and construction, with cultivated land transitioning mainly to forests and construction. However, regional analyses revealed diverse outcomes. In the Yudong area, cultivated land dominated with an 80% area proportion, shifting mostly to construction. In the Yubei area, grassland transformed into cultivated land and forests, with escalating grassland loss. The Yuxi area exhibited a 40% forest area proportion, with frequent mutual conversions between forests, cultivated land, and grassland. Spatiotemporal evolution indicated active changes in cultivated land. The geographic detector revealed a shift in influential factors from natural to economic drivers for cultivated land changes in Henan Province between 2010 and 2020. By uncovering land use disparities across regions, we contribute suggestions for sustainable development decisions regarding land use in Henan.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Land use</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geological information mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial heterogeneity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geographic detector</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physical geography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiaonan Wan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiqiang Niu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geocarto International</subfield><subfield code="d">Taylor & Francis Group, 2023</subfield><subfield code="g">38(2023), 1</subfield><subfield code="w">(DE-627)364462809</subfield><subfield code="w">(DE-600)2109550-4</subfield><subfield code="x">17520762</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/10106049.2023.2271442</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4e588aa65d5c4e52b26edc056a038fcf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/10.1080/10106049.2023.2271442</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1010-6049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1752-0762</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Hua Wang |
spellingShingle |
Hua Wang misc GB3-5030 misc Land use misc geological information mapping misc spatial heterogeneity misc drivers misc geographic detector misc Physical geography Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China |
authorStr |
Hua Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)364462809 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GB3-5030 |
illustrated |
Not Illustrated |
issn |
17520762 |
topic_title |
GB3-5030 Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China Land use geological information mapping spatial heterogeneity drivers geographic detector |
topic |
misc GB3-5030 misc Land use misc geological information mapping misc spatial heterogeneity misc drivers misc geographic detector misc Physical geography |
topic_unstemmed |
misc GB3-5030 misc Land use misc geological information mapping misc spatial heterogeneity misc drivers misc geographic detector misc Physical geography |
topic_browse |
misc GB3-5030 misc Land use misc geological information mapping misc spatial heterogeneity misc drivers misc geographic detector misc Physical geography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geocarto International |
hierarchy_parent_id |
364462809 |
hierarchy_top_title |
Geocarto International |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)364462809 (DE-600)2109550-4 |
title |
Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China |
ctrlnum |
(DE-627)DOAJ098377302 (DE-599)DOAJ4e588aa65d5c4e52b26edc056a038fcf |
title_full |
Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China |
author_sort |
Hua Wang |
journal |
Geocarto International |
journalStr |
Geocarto International |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Hua Wang Qiaonan Wan Wei Huang Jiqiang Niu |
container_volume |
38 |
class |
GB3-5030 |
format_se |
Elektronische Aufsätze |
author-letter |
Hua Wang |
doi_str_mv |
10.1080/10106049.2023.2271442 |
author2-role |
verfasserin |
title_sort |
spatial heterogeneity characteristics and driving mechanism of land use change in henan province, china |
callnumber |
GB3-5030 |
title_auth |
Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China |
abstract |
AbstractWe conducted a scientific quantitative analysis of the spatiotemporal evolution and driving factors of land use in Henan Province using a spatial zoning approach. The province was divided into five distinctive regions. Employing methods, such as information mapping, we analyzed land use data for 1990, 2000, 2010, and 2020, investigating spatiotemporal evolution and differences. Additionally, we employed a geographic detector model to explore the dominant factors behind land use changes in 2010 and 2020. Primary land classes in Henan Province included cultivated land, forests, and construction, with cultivated land transitioning mainly to forests and construction. However, regional analyses revealed diverse outcomes. In the Yudong area, cultivated land dominated with an 80% area proportion, shifting mostly to construction. In the Yubei area, grassland transformed into cultivated land and forests, with escalating grassland loss. The Yuxi area exhibited a 40% forest area proportion, with frequent mutual conversions between forests, cultivated land, and grassland. Spatiotemporal evolution indicated active changes in cultivated land. The geographic detector revealed a shift in influential factors from natural to economic drivers for cultivated land changes in Henan Province between 2010 and 2020. By uncovering land use disparities across regions, we contribute suggestions for sustainable development decisions regarding land use in Henan. |
abstractGer |
AbstractWe conducted a scientific quantitative analysis of the spatiotemporal evolution and driving factors of land use in Henan Province using a spatial zoning approach. The province was divided into five distinctive regions. Employing methods, such as information mapping, we analyzed land use data for 1990, 2000, 2010, and 2020, investigating spatiotemporal evolution and differences. Additionally, we employed a geographic detector model to explore the dominant factors behind land use changes in 2010 and 2020. Primary land classes in Henan Province included cultivated land, forests, and construction, with cultivated land transitioning mainly to forests and construction. However, regional analyses revealed diverse outcomes. In the Yudong area, cultivated land dominated with an 80% area proportion, shifting mostly to construction. In the Yubei area, grassland transformed into cultivated land and forests, with escalating grassland loss. The Yuxi area exhibited a 40% forest area proportion, with frequent mutual conversions between forests, cultivated land, and grassland. Spatiotemporal evolution indicated active changes in cultivated land. The geographic detector revealed a shift in influential factors from natural to economic drivers for cultivated land changes in Henan Province between 2010 and 2020. By uncovering land use disparities across regions, we contribute suggestions for sustainable development decisions regarding land use in Henan. |
abstract_unstemmed |
AbstractWe conducted a scientific quantitative analysis of the spatiotemporal evolution and driving factors of land use in Henan Province using a spatial zoning approach. The province was divided into five distinctive regions. Employing methods, such as information mapping, we analyzed land use data for 1990, 2000, 2010, and 2020, investigating spatiotemporal evolution and differences. Additionally, we employed a geographic detector model to explore the dominant factors behind land use changes in 2010 and 2020. Primary land classes in Henan Province included cultivated land, forests, and construction, with cultivated land transitioning mainly to forests and construction. However, regional analyses revealed diverse outcomes. In the Yudong area, cultivated land dominated with an 80% area proportion, shifting mostly to construction. In the Yubei area, grassland transformed into cultivated land and forests, with escalating grassland loss. The Yuxi area exhibited a 40% forest area proportion, with frequent mutual conversions between forests, cultivated land, and grassland. Spatiotemporal evolution indicated active changes in cultivated land. The geographic detector revealed a shift in influential factors from natural to economic drivers for cultivated land changes in Henan Province between 2010 and 2020. By uncovering land use disparities across regions, we contribute suggestions for sustainable development decisions regarding land use in Henan. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2026 GBV_ILN_2034 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China |
url |
https://doi.org/10.1080/10106049.2023.2271442 https://doaj.org/article/4e588aa65d5c4e52b26edc056a038fcf https://www.tandfonline.com/doi/10.1080/10106049.2023.2271442 https://doaj.org/toc/1010-6049 https://doaj.org/toc/1752-0762 |
remote_bool |
true |
author2 |
Qiaonan Wan Wei Huang Jiqiang Niu |
author2Str |
Qiaonan Wan Wei Huang Jiqiang Niu |
ppnlink |
364462809 |
callnumber-subject |
GB - Physical Geography |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/10106049.2023.2271442 |
callnumber-a |
GB3-5030 |
up_date |
2024-07-03T16:55:40.014Z |
_version_ |
1803577710361968640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ098377302</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414090911.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/10106049.2023.2271442</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098377302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4e588aa65d5c4e52b26edc056a038fcf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GB3-5030</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hua Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial heterogeneity characteristics and driving mechanism of land use change in Henan Province, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">AbstractWe conducted a scientific quantitative analysis of the spatiotemporal evolution and driving factors of land use in Henan Province using a spatial zoning approach. The province was divided into five distinctive regions. Employing methods, such as information mapping, we analyzed land use data for 1990, 2000, 2010, and 2020, investigating spatiotemporal evolution and differences. Additionally, we employed a geographic detector model to explore the dominant factors behind land use changes in 2010 and 2020. Primary land classes in Henan Province included cultivated land, forests, and construction, with cultivated land transitioning mainly to forests and construction. However, regional analyses revealed diverse outcomes. In the Yudong area, cultivated land dominated with an 80% area proportion, shifting mostly to construction. In the Yubei area, grassland transformed into cultivated land and forests, with escalating grassland loss. The Yuxi area exhibited a 40% forest area proportion, with frequent mutual conversions between forests, cultivated land, and grassland. Spatiotemporal evolution indicated active changes in cultivated land. The geographic detector revealed a shift in influential factors from natural to economic drivers for cultivated land changes in Henan Province between 2010 and 2020. By uncovering land use disparities across regions, we contribute suggestions for sustainable development decisions regarding land use in Henan.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Land use</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geological information mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial heterogeneity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geographic detector</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physical geography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiaonan Wan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiqiang Niu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geocarto International</subfield><subfield code="d">Taylor & Francis Group, 2023</subfield><subfield code="g">38(2023), 1</subfield><subfield code="w">(DE-627)364462809</subfield><subfield code="w">(DE-600)2109550-4</subfield><subfield code="x">17520762</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/10106049.2023.2271442</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4e588aa65d5c4e52b26edc056a038fcf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/10.1080/10106049.2023.2271442</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1010-6049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1752-0762</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.400075 |