Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration
This research study was to develop a nano bioactive scaffold (NBAS) using gelatins (Gel), nanofibrin (Nano-FB), and glycerol (Gly) by film casting method for potential use in skin tissue engineering. The developed NBAS were characterized for their molecular interaction (Fourier transforms infrared s...
Ausführliche Beschreibung
Autor*in: |
Rethinam Senthil [verfasserIn] Weslen S. Vedakumari [verfasserIn] Santhosh Basavarajappa [verfasserIn] Mohamed Ibrahim Hashem [verfasserIn] Thangavelu Lakshmi [verfasserIn] T. Senthilvelan [verfasserIn] Serdar Batıkan Kavukcu [verfasserIn] Baskar Venkidasamy [verfasserIn] Ramachandran Vinayagam [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Saudi Chemical Society - Elsevier, 2016, 27(2023), 6, Seite 101747- |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:2023 ; number:6 ; pages:101747- |
Links: |
---|
DOI / URN: |
10.1016/j.jscs.2023.101747 |
---|
Katalog-ID: |
DOAJ098767526 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098767526 | ||
003 | DE-627 | ||
005 | 20240414161336.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jscs.2023.101747 |2 doi | |
035 | |a (DE-627)DOAJ098767526 | ||
035 | |a (DE-599)DOAJ04db187f72d249fa831c8774e7be4e91 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a Rethinam Senthil |e verfasserin |4 aut | |
245 | 1 | 0 | |a Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This research study was to develop a nano bioactive scaffold (NBAS) using gelatins (Gel), nanofibrin (Nano-FB), and glycerol (Gly) by film casting method for potential use in skin tissue engineering. The developed NBAS were characterized for their molecular interaction (Fourier transforms infrared spectroscopy (FTIR)), microstructure (scanning electron microscopy (S.E.M.)), mechanical strength (tensile strength (MPa), elongation at break (%), and flexibility (%)), and Cell viability (M.T.T. assay ((3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide)) were assessed in the biocompatibility study. The mechanical result of the N.B.F. possessed better (tensile strength of 5.22 ± 0.07 MPa), (elongation at break of 5.88 + 0.04%), and (flexibility of 9.18 ± 0.09%) properties. The Invitro study using a human keratinocyte (HaCaT) cell line proved the 100% biocompatibility of NBAS. Based outcome of this study, performed its mechanical properties and exhibited biocompatibility in skin tissue engineering. The study has devised a process for using slaughterhouse and fish waste in the production of valuable medical products like wound dressing materials. | ||
650 | 4 | |a Gelatin | |
650 | 4 | |a Nanofibrin | |
650 | 4 | |a Wound nanoscaffold | |
650 | 4 | |a Biocompatibility | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Weslen S. Vedakumari |e verfasserin |4 aut | |
700 | 0 | |a Santhosh Basavarajappa |e verfasserin |4 aut | |
700 | 0 | |a Mohamed Ibrahim Hashem |e verfasserin |4 aut | |
700 | 0 | |a Thangavelu Lakshmi |e verfasserin |4 aut | |
700 | 0 | |a T. Senthilvelan |e verfasserin |4 aut | |
700 | 0 | |a Serdar Batıkan Kavukcu |e verfasserin |4 aut | |
700 | 0 | |a Baskar Venkidasamy |e verfasserin |4 aut | |
700 | 0 | |a Ramachandran Vinayagam |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Saudi Chemical Society |d Elsevier, 2016 |g 27(2023), 6, Seite 101747- |w (DE-627)609401629 |w (DE-600)2515222-1 |x 13196103 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:2023 |g number:6 |g pages:101747- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jscs.2023.101747 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/04db187f72d249fa831c8774e7be4e91 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1319610323001515 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1319-6103 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 27 |j 2023 |e 6 |h 101747- |
author_variant |
r s rs w s v wsv s b sb m i h mih t l tl t s ts s b k sbk b v bv r v rv |
---|---|
matchkey_str |
article:13196103:2023----::eainnfbibociecfodrprdihnacdicmaiii |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QD |
publishDate |
2023 |
allfields |
10.1016/j.jscs.2023.101747 doi (DE-627)DOAJ098767526 (DE-599)DOAJ04db187f72d249fa831c8774e7be4e91 DE-627 ger DE-627 rakwb eng QD1-999 Rethinam Senthil verfasserin aut Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research study was to develop a nano bioactive scaffold (NBAS) using gelatins (Gel), nanofibrin (Nano-FB), and glycerol (Gly) by film casting method for potential use in skin tissue engineering. The developed NBAS were characterized for their molecular interaction (Fourier transforms infrared spectroscopy (FTIR)), microstructure (scanning electron microscopy (S.E.M.)), mechanical strength (tensile strength (MPa), elongation at break (%), and flexibility (%)), and Cell viability (M.T.T. assay ((3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide)) were assessed in the biocompatibility study. The mechanical result of the N.B.F. possessed better (tensile strength of 5.22 ± 0.07 MPa), (elongation at break of 5.88 + 0.04%), and (flexibility of 9.18 ± 0.09%) properties. The Invitro study using a human keratinocyte (HaCaT) cell line proved the 100% biocompatibility of NBAS. Based outcome of this study, performed its mechanical properties and exhibited biocompatibility in skin tissue engineering. The study has devised a process for using slaughterhouse and fish waste in the production of valuable medical products like wound dressing materials. Gelatin Nanofibrin Wound nanoscaffold Biocompatibility Chemistry Weslen S. Vedakumari verfasserin aut Santhosh Basavarajappa verfasserin aut Mohamed Ibrahim Hashem verfasserin aut Thangavelu Lakshmi verfasserin aut T. Senthilvelan verfasserin aut Serdar Batıkan Kavukcu verfasserin aut Baskar Venkidasamy verfasserin aut Ramachandran Vinayagam verfasserin aut In Journal of Saudi Chemical Society Elsevier, 2016 27(2023), 6, Seite 101747- (DE-627)609401629 (DE-600)2515222-1 13196103 nnns volume:27 year:2023 number:6 pages:101747- https://doi.org/10.1016/j.jscs.2023.101747 kostenfrei https://doaj.org/article/04db187f72d249fa831c8774e7be4e91 kostenfrei http://www.sciencedirect.com/science/article/pii/S1319610323001515 kostenfrei https://doaj.org/toc/1319-6103 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 27 2023 6 101747- |
spelling |
10.1016/j.jscs.2023.101747 doi (DE-627)DOAJ098767526 (DE-599)DOAJ04db187f72d249fa831c8774e7be4e91 DE-627 ger DE-627 rakwb eng QD1-999 Rethinam Senthil verfasserin aut Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research study was to develop a nano bioactive scaffold (NBAS) using gelatins (Gel), nanofibrin (Nano-FB), and glycerol (Gly) by film casting method for potential use in skin tissue engineering. The developed NBAS were characterized for their molecular interaction (Fourier transforms infrared spectroscopy (FTIR)), microstructure (scanning electron microscopy (S.E.M.)), mechanical strength (tensile strength (MPa), elongation at break (%), and flexibility (%)), and Cell viability (M.T.T. assay ((3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide)) were assessed in the biocompatibility study. The mechanical result of the N.B.F. possessed better (tensile strength of 5.22 ± 0.07 MPa), (elongation at break of 5.88 + 0.04%), and (flexibility of 9.18 ± 0.09%) properties. The Invitro study using a human keratinocyte (HaCaT) cell line proved the 100% biocompatibility of NBAS. Based outcome of this study, performed its mechanical properties and exhibited biocompatibility in skin tissue engineering. The study has devised a process for using slaughterhouse and fish waste in the production of valuable medical products like wound dressing materials. Gelatin Nanofibrin Wound nanoscaffold Biocompatibility Chemistry Weslen S. Vedakumari verfasserin aut Santhosh Basavarajappa verfasserin aut Mohamed Ibrahim Hashem verfasserin aut Thangavelu Lakshmi verfasserin aut T. Senthilvelan verfasserin aut Serdar Batıkan Kavukcu verfasserin aut Baskar Venkidasamy verfasserin aut Ramachandran Vinayagam verfasserin aut In Journal of Saudi Chemical Society Elsevier, 2016 27(2023), 6, Seite 101747- (DE-627)609401629 (DE-600)2515222-1 13196103 nnns volume:27 year:2023 number:6 pages:101747- https://doi.org/10.1016/j.jscs.2023.101747 kostenfrei https://doaj.org/article/04db187f72d249fa831c8774e7be4e91 kostenfrei http://www.sciencedirect.com/science/article/pii/S1319610323001515 kostenfrei https://doaj.org/toc/1319-6103 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 27 2023 6 101747- |
allfields_unstemmed |
10.1016/j.jscs.2023.101747 doi (DE-627)DOAJ098767526 (DE-599)DOAJ04db187f72d249fa831c8774e7be4e91 DE-627 ger DE-627 rakwb eng QD1-999 Rethinam Senthil verfasserin aut Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research study was to develop a nano bioactive scaffold (NBAS) using gelatins (Gel), nanofibrin (Nano-FB), and glycerol (Gly) by film casting method for potential use in skin tissue engineering. The developed NBAS were characterized for their molecular interaction (Fourier transforms infrared spectroscopy (FTIR)), microstructure (scanning electron microscopy (S.E.M.)), mechanical strength (tensile strength (MPa), elongation at break (%), and flexibility (%)), and Cell viability (M.T.T. assay ((3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide)) were assessed in the biocompatibility study. The mechanical result of the N.B.F. possessed better (tensile strength of 5.22 ± 0.07 MPa), (elongation at break of 5.88 + 0.04%), and (flexibility of 9.18 ± 0.09%) properties. The Invitro study using a human keratinocyte (HaCaT) cell line proved the 100% biocompatibility of NBAS. Based outcome of this study, performed its mechanical properties and exhibited biocompatibility in skin tissue engineering. The study has devised a process for using slaughterhouse and fish waste in the production of valuable medical products like wound dressing materials. Gelatin Nanofibrin Wound nanoscaffold Biocompatibility Chemistry Weslen S. Vedakumari verfasserin aut Santhosh Basavarajappa verfasserin aut Mohamed Ibrahim Hashem verfasserin aut Thangavelu Lakshmi verfasserin aut T. Senthilvelan verfasserin aut Serdar Batıkan Kavukcu verfasserin aut Baskar Venkidasamy verfasserin aut Ramachandran Vinayagam verfasserin aut In Journal of Saudi Chemical Society Elsevier, 2016 27(2023), 6, Seite 101747- (DE-627)609401629 (DE-600)2515222-1 13196103 nnns volume:27 year:2023 number:6 pages:101747- https://doi.org/10.1016/j.jscs.2023.101747 kostenfrei https://doaj.org/article/04db187f72d249fa831c8774e7be4e91 kostenfrei http://www.sciencedirect.com/science/article/pii/S1319610323001515 kostenfrei https://doaj.org/toc/1319-6103 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 27 2023 6 101747- |
allfieldsGer |
10.1016/j.jscs.2023.101747 doi (DE-627)DOAJ098767526 (DE-599)DOAJ04db187f72d249fa831c8774e7be4e91 DE-627 ger DE-627 rakwb eng QD1-999 Rethinam Senthil verfasserin aut Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research study was to develop a nano bioactive scaffold (NBAS) using gelatins (Gel), nanofibrin (Nano-FB), and glycerol (Gly) by film casting method for potential use in skin tissue engineering. The developed NBAS were characterized for their molecular interaction (Fourier transforms infrared spectroscopy (FTIR)), microstructure (scanning electron microscopy (S.E.M.)), mechanical strength (tensile strength (MPa), elongation at break (%), and flexibility (%)), and Cell viability (M.T.T. assay ((3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide)) were assessed in the biocompatibility study. The mechanical result of the N.B.F. possessed better (tensile strength of 5.22 ± 0.07 MPa), (elongation at break of 5.88 + 0.04%), and (flexibility of 9.18 ± 0.09%) properties. The Invitro study using a human keratinocyte (HaCaT) cell line proved the 100% biocompatibility of NBAS. Based outcome of this study, performed its mechanical properties and exhibited biocompatibility in skin tissue engineering. The study has devised a process for using slaughterhouse and fish waste in the production of valuable medical products like wound dressing materials. Gelatin Nanofibrin Wound nanoscaffold Biocompatibility Chemistry Weslen S. Vedakumari verfasserin aut Santhosh Basavarajappa verfasserin aut Mohamed Ibrahim Hashem verfasserin aut Thangavelu Lakshmi verfasserin aut T. Senthilvelan verfasserin aut Serdar Batıkan Kavukcu verfasserin aut Baskar Venkidasamy verfasserin aut Ramachandran Vinayagam verfasserin aut In Journal of Saudi Chemical Society Elsevier, 2016 27(2023), 6, Seite 101747- (DE-627)609401629 (DE-600)2515222-1 13196103 nnns volume:27 year:2023 number:6 pages:101747- https://doi.org/10.1016/j.jscs.2023.101747 kostenfrei https://doaj.org/article/04db187f72d249fa831c8774e7be4e91 kostenfrei http://www.sciencedirect.com/science/article/pii/S1319610323001515 kostenfrei https://doaj.org/toc/1319-6103 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 27 2023 6 101747- |
allfieldsSound |
10.1016/j.jscs.2023.101747 doi (DE-627)DOAJ098767526 (DE-599)DOAJ04db187f72d249fa831c8774e7be4e91 DE-627 ger DE-627 rakwb eng QD1-999 Rethinam Senthil verfasserin aut Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research study was to develop a nano bioactive scaffold (NBAS) using gelatins (Gel), nanofibrin (Nano-FB), and glycerol (Gly) by film casting method for potential use in skin tissue engineering. The developed NBAS were characterized for their molecular interaction (Fourier transforms infrared spectroscopy (FTIR)), microstructure (scanning electron microscopy (S.E.M.)), mechanical strength (tensile strength (MPa), elongation at break (%), and flexibility (%)), and Cell viability (M.T.T. assay ((3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide)) were assessed in the biocompatibility study. The mechanical result of the N.B.F. possessed better (tensile strength of 5.22 ± 0.07 MPa), (elongation at break of 5.88 + 0.04%), and (flexibility of 9.18 ± 0.09%) properties. The Invitro study using a human keratinocyte (HaCaT) cell line proved the 100% biocompatibility of NBAS. Based outcome of this study, performed its mechanical properties and exhibited biocompatibility in skin tissue engineering. The study has devised a process for using slaughterhouse and fish waste in the production of valuable medical products like wound dressing materials. Gelatin Nanofibrin Wound nanoscaffold Biocompatibility Chemistry Weslen S. Vedakumari verfasserin aut Santhosh Basavarajappa verfasserin aut Mohamed Ibrahim Hashem verfasserin aut Thangavelu Lakshmi verfasserin aut T. Senthilvelan verfasserin aut Serdar Batıkan Kavukcu verfasserin aut Baskar Venkidasamy verfasserin aut Ramachandran Vinayagam verfasserin aut In Journal of Saudi Chemical Society Elsevier, 2016 27(2023), 6, Seite 101747- (DE-627)609401629 (DE-600)2515222-1 13196103 nnns volume:27 year:2023 number:6 pages:101747- https://doi.org/10.1016/j.jscs.2023.101747 kostenfrei https://doaj.org/article/04db187f72d249fa831c8774e7be4e91 kostenfrei http://www.sciencedirect.com/science/article/pii/S1319610323001515 kostenfrei https://doaj.org/toc/1319-6103 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 27 2023 6 101747- |
language |
English |
source |
In Journal of Saudi Chemical Society 27(2023), 6, Seite 101747- volume:27 year:2023 number:6 pages:101747- |
sourceStr |
In Journal of Saudi Chemical Society 27(2023), 6, Seite 101747- volume:27 year:2023 number:6 pages:101747- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gelatin Nanofibrin Wound nanoscaffold Biocompatibility Chemistry |
isfreeaccess_bool |
true |
container_title |
Journal of Saudi Chemical Society |
authorswithroles_txt_mv |
Rethinam Senthil @@aut@@ Weslen S. Vedakumari @@aut@@ Santhosh Basavarajappa @@aut@@ Mohamed Ibrahim Hashem @@aut@@ Thangavelu Lakshmi @@aut@@ T. Senthilvelan @@aut@@ Serdar Batıkan Kavukcu @@aut@@ Baskar Venkidasamy @@aut@@ Ramachandran Vinayagam @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
609401629 |
id |
DOAJ098767526 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098767526</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414161336.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jscs.2023.101747</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098767526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ04db187f72d249fa831c8774e7be4e91</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rethinam Senthil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This research study was to develop a nano bioactive scaffold (NBAS) using gelatins (Gel), nanofibrin (Nano-FB), and glycerol (Gly) by film casting method for potential use in skin tissue engineering. The developed NBAS were characterized for their molecular interaction (Fourier transforms infrared spectroscopy (FTIR)), microstructure (scanning electron microscopy (S.E.M.)), mechanical strength (tensile strength (MPa), elongation at break (%), and flexibility (%)), and Cell viability (M.T.T. assay ((3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide)) were assessed in the biocompatibility study. The mechanical result of the N.B.F. possessed better (tensile strength of 5.22 ± 0.07 MPa), (elongation at break of 5.88 + 0.04%), and (flexibility of 9.18 ± 0.09%) properties. The Invitro study using a human keratinocyte (HaCaT) cell line proved the 100% biocompatibility of NBAS. Based outcome of this study, performed its mechanical properties and exhibited biocompatibility in skin tissue engineering. The study has devised a process for using slaughterhouse and fish waste in the production of valuable medical products like wound dressing materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gelatin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofibrin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wound nanoscaffold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biocompatibility</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weslen S. Vedakumari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Santhosh Basavarajappa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohamed Ibrahim Hashem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thangavelu Lakshmi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">T. Senthilvelan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Serdar Batıkan Kavukcu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baskar Venkidasamy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ramachandran Vinayagam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Saudi Chemical Society</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">27(2023), 6, Seite 101747-</subfield><subfield code="w">(DE-627)609401629</subfield><subfield code="w">(DE-600)2515222-1</subfield><subfield code="x">13196103</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:101747-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jscs.2023.101747</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/04db187f72d249fa831c8774e7be4e91</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1319610323001515</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1319-6103</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2023</subfield><subfield code="e">6</subfield><subfield code="h">101747-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Rethinam Senthil |
spellingShingle |
Rethinam Senthil misc QD1-999 misc Gelatin misc Nanofibrin misc Wound nanoscaffold misc Biocompatibility misc Chemistry Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration |
authorStr |
Rethinam Senthil |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)609401629 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
13196103 |
topic_title |
QD1-999 Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration Gelatin Nanofibrin Wound nanoscaffold Biocompatibility |
topic |
misc QD1-999 misc Gelatin misc Nanofibrin misc Wound nanoscaffold misc Biocompatibility misc Chemistry |
topic_unstemmed |
misc QD1-999 misc Gelatin misc Nanofibrin misc Wound nanoscaffold misc Biocompatibility misc Chemistry |
topic_browse |
misc QD1-999 misc Gelatin misc Nanofibrin misc Wound nanoscaffold misc Biocompatibility misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Saudi Chemical Society |
hierarchy_parent_id |
609401629 |
hierarchy_top_title |
Journal of Saudi Chemical Society |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)609401629 (DE-600)2515222-1 |
title |
Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration |
ctrlnum |
(DE-627)DOAJ098767526 (DE-599)DOAJ04db187f72d249fa831c8774e7be4e91 |
title_full |
Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration |
author_sort |
Rethinam Senthil |
journal |
Journal of Saudi Chemical Society |
journalStr |
Journal of Saudi Chemical Society |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
101747 |
author_browse |
Rethinam Senthil Weslen S. Vedakumari Santhosh Basavarajappa Mohamed Ibrahim Hashem Thangavelu Lakshmi T. Senthilvelan Serdar Batıkan Kavukcu Baskar Venkidasamy Ramachandran Vinayagam |
container_volume |
27 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Rethinam Senthil |
doi_str_mv |
10.1016/j.jscs.2023.101747 |
author2-role |
verfasserin |
title_sort |
gelatin/nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration |
callnumber |
QD1-999 |
title_auth |
Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration |
abstract |
This research study was to develop a nano bioactive scaffold (NBAS) using gelatins (Gel), nanofibrin (Nano-FB), and glycerol (Gly) by film casting method for potential use in skin tissue engineering. The developed NBAS were characterized for their molecular interaction (Fourier transforms infrared spectroscopy (FTIR)), microstructure (scanning electron microscopy (S.E.M.)), mechanical strength (tensile strength (MPa), elongation at break (%), and flexibility (%)), and Cell viability (M.T.T. assay ((3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide)) were assessed in the biocompatibility study. The mechanical result of the N.B.F. possessed better (tensile strength of 5.22 ± 0.07 MPa), (elongation at break of 5.88 + 0.04%), and (flexibility of 9.18 ± 0.09%) properties. The Invitro study using a human keratinocyte (HaCaT) cell line proved the 100% biocompatibility of NBAS. Based outcome of this study, performed its mechanical properties and exhibited biocompatibility in skin tissue engineering. The study has devised a process for using slaughterhouse and fish waste in the production of valuable medical products like wound dressing materials. |
abstractGer |
This research study was to develop a nano bioactive scaffold (NBAS) using gelatins (Gel), nanofibrin (Nano-FB), and glycerol (Gly) by film casting method for potential use in skin tissue engineering. The developed NBAS were characterized for their molecular interaction (Fourier transforms infrared spectroscopy (FTIR)), microstructure (scanning electron microscopy (S.E.M.)), mechanical strength (tensile strength (MPa), elongation at break (%), and flexibility (%)), and Cell viability (M.T.T. assay ((3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide)) were assessed in the biocompatibility study. The mechanical result of the N.B.F. possessed better (tensile strength of 5.22 ± 0.07 MPa), (elongation at break of 5.88 + 0.04%), and (flexibility of 9.18 ± 0.09%) properties. The Invitro study using a human keratinocyte (HaCaT) cell line proved the 100% biocompatibility of NBAS. Based outcome of this study, performed its mechanical properties and exhibited biocompatibility in skin tissue engineering. The study has devised a process for using slaughterhouse and fish waste in the production of valuable medical products like wound dressing materials. |
abstract_unstemmed |
This research study was to develop a nano bioactive scaffold (NBAS) using gelatins (Gel), nanofibrin (Nano-FB), and glycerol (Gly) by film casting method for potential use in skin tissue engineering. The developed NBAS were characterized for their molecular interaction (Fourier transforms infrared spectroscopy (FTIR)), microstructure (scanning electron microscopy (S.E.M.)), mechanical strength (tensile strength (MPa), elongation at break (%), and flexibility (%)), and Cell viability (M.T.T. assay ((3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide)) were assessed in the biocompatibility study. The mechanical result of the N.B.F. possessed better (tensile strength of 5.22 ± 0.07 MPa), (elongation at break of 5.88 + 0.04%), and (flexibility of 9.18 ± 0.09%) properties. The Invitro study using a human keratinocyte (HaCaT) cell line proved the 100% biocompatibility of NBAS. Based outcome of this study, performed its mechanical properties and exhibited biocompatibility in skin tissue engineering. The study has devised a process for using slaughterhouse and fish waste in the production of valuable medical products like wound dressing materials. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration |
url |
https://doi.org/10.1016/j.jscs.2023.101747 https://doaj.org/article/04db187f72d249fa831c8774e7be4e91 http://www.sciencedirect.com/science/article/pii/S1319610323001515 https://doaj.org/toc/1319-6103 |
remote_bool |
true |
author2 |
Weslen S. Vedakumari Santhosh Basavarajappa Mohamed Ibrahim Hashem Thangavelu Lakshmi T. Senthilvelan Serdar Batıkan Kavukcu Baskar Venkidasamy Ramachandran Vinayagam |
author2Str |
Weslen S. Vedakumari Santhosh Basavarajappa Mohamed Ibrahim Hashem Thangavelu Lakshmi T. Senthilvelan Serdar Batıkan Kavukcu Baskar Venkidasamy Ramachandran Vinayagam |
ppnlink |
609401629 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jscs.2023.101747 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T19:05:50.123Z |
_version_ |
1803585899963875328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098767526</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414161336.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jscs.2023.101747</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098767526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ04db187f72d249fa831c8774e7be4e91</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rethinam Senthil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gelatin/Nanofibrin bioactive scaffold prepared with enhanced biocompatibility for skin tissue regeneration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This research study was to develop a nano bioactive scaffold (NBAS) using gelatins (Gel), nanofibrin (Nano-FB), and glycerol (Gly) by film casting method for potential use in skin tissue engineering. The developed NBAS were characterized for their molecular interaction (Fourier transforms infrared spectroscopy (FTIR)), microstructure (scanning electron microscopy (S.E.M.)), mechanical strength (tensile strength (MPa), elongation at break (%), and flexibility (%)), and Cell viability (M.T.T. assay ((3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide)) were assessed in the biocompatibility study. The mechanical result of the N.B.F. possessed better (tensile strength of 5.22 ± 0.07 MPa), (elongation at break of 5.88 + 0.04%), and (flexibility of 9.18 ± 0.09%) properties. The Invitro study using a human keratinocyte (HaCaT) cell line proved the 100% biocompatibility of NBAS. Based outcome of this study, performed its mechanical properties and exhibited biocompatibility in skin tissue engineering. The study has devised a process for using slaughterhouse and fish waste in the production of valuable medical products like wound dressing materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gelatin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofibrin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wound nanoscaffold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biocompatibility</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weslen S. Vedakumari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Santhosh Basavarajappa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohamed Ibrahim Hashem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thangavelu Lakshmi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">T. Senthilvelan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Serdar Batıkan Kavukcu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baskar Venkidasamy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ramachandran Vinayagam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Saudi Chemical Society</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">27(2023), 6, Seite 101747-</subfield><subfield code="w">(DE-627)609401629</subfield><subfield code="w">(DE-600)2515222-1</subfield><subfield code="x">13196103</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:101747-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jscs.2023.101747</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/04db187f72d249fa831c8774e7be4e91</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1319610323001515</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1319-6103</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2023</subfield><subfield code="e">6</subfield><subfield code="h">101747-</subfield></datafield></record></collection>
|
score |
7.4022713 |