BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging
Medical imaging-based biomarkers derived from small objects (e.g., cell nuclei) play a crucial role in medical applications. However, detecting and segmenting small objects (a.k.a. blobs) remains a challenging task. In this research, we propose a novel 3D small blob detector called BlobCUT. BlobCUT...
Ausführliche Beschreibung
Autor*in: |
Teng Li [verfasserIn] Yanzhe Xu [verfasserIn] Teresa Wu [verfasserIn] Jennifer R. Charlton [verfasserIn] Kevin M. Bennett [verfasserIn] Firas Al-Hindawi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Bioengineering - MDPI AG, 2014, 10(2023), 12, p 1372 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2023 ; number:12, p 1372 |
Links: |
---|
DOI / URN: |
10.3390/bioengineering10121372 |
---|
Katalog-ID: |
DOAJ098910523 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098910523 | ||
003 | DE-627 | ||
005 | 20240414004556.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/bioengineering10121372 |2 doi | |
035 | |a (DE-627)DOAJ098910523 | ||
035 | |a (DE-599)DOAJ0e5af824e5cf45eb8697affd266ec1e4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Teng Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Medical imaging-based biomarkers derived from small objects (e.g., cell nuclei) play a crucial role in medical applications. However, detecting and segmenting small objects (a.k.a. blobs) remains a challenging task. In this research, we propose a novel 3D small blob detector called BlobCUT. BlobCUT is an unpaired image-to-image (I2I) translation model that falls under the Contrastive Unpaired Translation paradigm. It employs a blob synthesis module to generate synthetic 3D blobs with corresponding masks. This is incorporated into the iterative model training as the ground truth. The I2I translation process is designed with two constraints: (1) a convexity consistency constraint that relies on Hessian analysis to preserve the geometric properties and (2) an intensity distribution consistency constraint based on Kullback-Leibler divergence to preserve the intensity distribution of blobs. BlobCUT learns the inherent noise distribution from the target noisy blob images and performs image translation from the noisy domain to the clean domain, effectively functioning as a denoising process to support blob identification. To validate the performance of BlobCUT, we evaluate it on a 3D simulated dataset of blobs and a 3D MRI dataset of mouse kidneys. We conduct a comparative analysis involving six state-of-the-art methods. Our findings reveal that BlobCUT exhibits superior performance and training efficiency, utilizing only 56.6% of the training time required by the state-of-the-art BlobDetGAN. This underscores the effectiveness of BlobCUT in accurately segmenting small blobs while achieving notable gains in training efficiency. | ||
650 | 4 | |a imaging biomarker | |
650 | 4 | |a blob detection | |
650 | 4 | |a glomeruli segmentation | |
650 | 4 | |a Hessian analysis | |
650 | 4 | |a contrastive learning | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Yanzhe Xu |e verfasserin |4 aut | |
700 | 0 | |a Teresa Wu |e verfasserin |4 aut | |
700 | 0 | |a Jennifer R. Charlton |e verfasserin |4 aut | |
700 | 0 | |a Kevin M. Bennett |e verfasserin |4 aut | |
700 | 0 | |a Firas Al-Hindawi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Bioengineering |d MDPI AG, 2014 |g 10(2023), 12, p 1372 |w (DE-627)774814020 |w (DE-600)2746191-9 |x 23065354 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2023 |g number:12, p 1372 |
856 | 4 | 0 | |u https://doi.org/10.3390/bioengineering10121372 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0e5af824e5cf45eb8697affd266ec1e4 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2306-5354/10/12/1372 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2306-5354 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2023 |e 12, p 1372 |
author_variant |
t l tl y x yx t w tw j r c jrc k m b kmb f a h fah |
---|---|
matchkey_str |
article:23065354:2023----::lbuaotatvlannmtotspotmlbodtc |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QH |
publishDate |
2023 |
allfields |
10.3390/bioengineering10121372 doi (DE-627)DOAJ098910523 (DE-599)DOAJ0e5af824e5cf45eb8697affd266ec1e4 DE-627 ger DE-627 rakwb eng QH301-705.5 Teng Li verfasserin aut BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical imaging-based biomarkers derived from small objects (e.g., cell nuclei) play a crucial role in medical applications. However, detecting and segmenting small objects (a.k.a. blobs) remains a challenging task. In this research, we propose a novel 3D small blob detector called BlobCUT. BlobCUT is an unpaired image-to-image (I2I) translation model that falls under the Contrastive Unpaired Translation paradigm. It employs a blob synthesis module to generate synthetic 3D blobs with corresponding masks. This is incorporated into the iterative model training as the ground truth. The I2I translation process is designed with two constraints: (1) a convexity consistency constraint that relies on Hessian analysis to preserve the geometric properties and (2) an intensity distribution consistency constraint based on Kullback-Leibler divergence to preserve the intensity distribution of blobs. BlobCUT learns the inherent noise distribution from the target noisy blob images and performs image translation from the noisy domain to the clean domain, effectively functioning as a denoising process to support blob identification. To validate the performance of BlobCUT, we evaluate it on a 3D simulated dataset of blobs and a 3D MRI dataset of mouse kidneys. We conduct a comparative analysis involving six state-of-the-art methods. Our findings reveal that BlobCUT exhibits superior performance and training efficiency, utilizing only 56.6% of the training time required by the state-of-the-art BlobDetGAN. This underscores the effectiveness of BlobCUT in accurately segmenting small blobs while achieving notable gains in training efficiency. imaging biomarker blob detection glomeruli segmentation Hessian analysis contrastive learning Technology T Biology (General) Yanzhe Xu verfasserin aut Teresa Wu verfasserin aut Jennifer R. Charlton verfasserin aut Kevin M. Bennett verfasserin aut Firas Al-Hindawi verfasserin aut In Bioengineering MDPI AG, 2014 10(2023), 12, p 1372 (DE-627)774814020 (DE-600)2746191-9 23065354 nnns volume:10 year:2023 number:12, p 1372 https://doi.org/10.3390/bioengineering10121372 kostenfrei https://doaj.org/article/0e5af824e5cf45eb8697affd266ec1e4 kostenfrei https://www.mdpi.com/2306-5354/10/12/1372 kostenfrei https://doaj.org/toc/2306-5354 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 12, p 1372 |
spelling |
10.3390/bioengineering10121372 doi (DE-627)DOAJ098910523 (DE-599)DOAJ0e5af824e5cf45eb8697affd266ec1e4 DE-627 ger DE-627 rakwb eng QH301-705.5 Teng Li verfasserin aut BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical imaging-based biomarkers derived from small objects (e.g., cell nuclei) play a crucial role in medical applications. However, detecting and segmenting small objects (a.k.a. blobs) remains a challenging task. In this research, we propose a novel 3D small blob detector called BlobCUT. BlobCUT is an unpaired image-to-image (I2I) translation model that falls under the Contrastive Unpaired Translation paradigm. It employs a blob synthesis module to generate synthetic 3D blobs with corresponding masks. This is incorporated into the iterative model training as the ground truth. The I2I translation process is designed with two constraints: (1) a convexity consistency constraint that relies on Hessian analysis to preserve the geometric properties and (2) an intensity distribution consistency constraint based on Kullback-Leibler divergence to preserve the intensity distribution of blobs. BlobCUT learns the inherent noise distribution from the target noisy blob images and performs image translation from the noisy domain to the clean domain, effectively functioning as a denoising process to support blob identification. To validate the performance of BlobCUT, we evaluate it on a 3D simulated dataset of blobs and a 3D MRI dataset of mouse kidneys. We conduct a comparative analysis involving six state-of-the-art methods. Our findings reveal that BlobCUT exhibits superior performance and training efficiency, utilizing only 56.6% of the training time required by the state-of-the-art BlobDetGAN. This underscores the effectiveness of BlobCUT in accurately segmenting small blobs while achieving notable gains in training efficiency. imaging biomarker blob detection glomeruli segmentation Hessian analysis contrastive learning Technology T Biology (General) Yanzhe Xu verfasserin aut Teresa Wu verfasserin aut Jennifer R. Charlton verfasserin aut Kevin M. Bennett verfasserin aut Firas Al-Hindawi verfasserin aut In Bioengineering MDPI AG, 2014 10(2023), 12, p 1372 (DE-627)774814020 (DE-600)2746191-9 23065354 nnns volume:10 year:2023 number:12, p 1372 https://doi.org/10.3390/bioengineering10121372 kostenfrei https://doaj.org/article/0e5af824e5cf45eb8697affd266ec1e4 kostenfrei https://www.mdpi.com/2306-5354/10/12/1372 kostenfrei https://doaj.org/toc/2306-5354 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 12, p 1372 |
allfields_unstemmed |
10.3390/bioengineering10121372 doi (DE-627)DOAJ098910523 (DE-599)DOAJ0e5af824e5cf45eb8697affd266ec1e4 DE-627 ger DE-627 rakwb eng QH301-705.5 Teng Li verfasserin aut BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical imaging-based biomarkers derived from small objects (e.g., cell nuclei) play a crucial role in medical applications. However, detecting and segmenting small objects (a.k.a. blobs) remains a challenging task. In this research, we propose a novel 3D small blob detector called BlobCUT. BlobCUT is an unpaired image-to-image (I2I) translation model that falls under the Contrastive Unpaired Translation paradigm. It employs a blob synthesis module to generate synthetic 3D blobs with corresponding masks. This is incorporated into the iterative model training as the ground truth. The I2I translation process is designed with two constraints: (1) a convexity consistency constraint that relies on Hessian analysis to preserve the geometric properties and (2) an intensity distribution consistency constraint based on Kullback-Leibler divergence to preserve the intensity distribution of blobs. BlobCUT learns the inherent noise distribution from the target noisy blob images and performs image translation from the noisy domain to the clean domain, effectively functioning as a denoising process to support blob identification. To validate the performance of BlobCUT, we evaluate it on a 3D simulated dataset of blobs and a 3D MRI dataset of mouse kidneys. We conduct a comparative analysis involving six state-of-the-art methods. Our findings reveal that BlobCUT exhibits superior performance and training efficiency, utilizing only 56.6% of the training time required by the state-of-the-art BlobDetGAN. This underscores the effectiveness of BlobCUT in accurately segmenting small blobs while achieving notable gains in training efficiency. imaging biomarker blob detection glomeruli segmentation Hessian analysis contrastive learning Technology T Biology (General) Yanzhe Xu verfasserin aut Teresa Wu verfasserin aut Jennifer R. Charlton verfasserin aut Kevin M. Bennett verfasserin aut Firas Al-Hindawi verfasserin aut In Bioengineering MDPI AG, 2014 10(2023), 12, p 1372 (DE-627)774814020 (DE-600)2746191-9 23065354 nnns volume:10 year:2023 number:12, p 1372 https://doi.org/10.3390/bioengineering10121372 kostenfrei https://doaj.org/article/0e5af824e5cf45eb8697affd266ec1e4 kostenfrei https://www.mdpi.com/2306-5354/10/12/1372 kostenfrei https://doaj.org/toc/2306-5354 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 12, p 1372 |
allfieldsGer |
10.3390/bioengineering10121372 doi (DE-627)DOAJ098910523 (DE-599)DOAJ0e5af824e5cf45eb8697affd266ec1e4 DE-627 ger DE-627 rakwb eng QH301-705.5 Teng Li verfasserin aut BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical imaging-based biomarkers derived from small objects (e.g., cell nuclei) play a crucial role in medical applications. However, detecting and segmenting small objects (a.k.a. blobs) remains a challenging task. In this research, we propose a novel 3D small blob detector called BlobCUT. BlobCUT is an unpaired image-to-image (I2I) translation model that falls under the Contrastive Unpaired Translation paradigm. It employs a blob synthesis module to generate synthetic 3D blobs with corresponding masks. This is incorporated into the iterative model training as the ground truth. The I2I translation process is designed with two constraints: (1) a convexity consistency constraint that relies on Hessian analysis to preserve the geometric properties and (2) an intensity distribution consistency constraint based on Kullback-Leibler divergence to preserve the intensity distribution of blobs. BlobCUT learns the inherent noise distribution from the target noisy blob images and performs image translation from the noisy domain to the clean domain, effectively functioning as a denoising process to support blob identification. To validate the performance of BlobCUT, we evaluate it on a 3D simulated dataset of blobs and a 3D MRI dataset of mouse kidneys. We conduct a comparative analysis involving six state-of-the-art methods. Our findings reveal that BlobCUT exhibits superior performance and training efficiency, utilizing only 56.6% of the training time required by the state-of-the-art BlobDetGAN. This underscores the effectiveness of BlobCUT in accurately segmenting small blobs while achieving notable gains in training efficiency. imaging biomarker blob detection glomeruli segmentation Hessian analysis contrastive learning Technology T Biology (General) Yanzhe Xu verfasserin aut Teresa Wu verfasserin aut Jennifer R. Charlton verfasserin aut Kevin M. Bennett verfasserin aut Firas Al-Hindawi verfasserin aut In Bioengineering MDPI AG, 2014 10(2023), 12, p 1372 (DE-627)774814020 (DE-600)2746191-9 23065354 nnns volume:10 year:2023 number:12, p 1372 https://doi.org/10.3390/bioengineering10121372 kostenfrei https://doaj.org/article/0e5af824e5cf45eb8697affd266ec1e4 kostenfrei https://www.mdpi.com/2306-5354/10/12/1372 kostenfrei https://doaj.org/toc/2306-5354 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 12, p 1372 |
allfieldsSound |
10.3390/bioengineering10121372 doi (DE-627)DOAJ098910523 (DE-599)DOAJ0e5af824e5cf45eb8697affd266ec1e4 DE-627 ger DE-627 rakwb eng QH301-705.5 Teng Li verfasserin aut BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical imaging-based biomarkers derived from small objects (e.g., cell nuclei) play a crucial role in medical applications. However, detecting and segmenting small objects (a.k.a. blobs) remains a challenging task. In this research, we propose a novel 3D small blob detector called BlobCUT. BlobCUT is an unpaired image-to-image (I2I) translation model that falls under the Contrastive Unpaired Translation paradigm. It employs a blob synthesis module to generate synthetic 3D blobs with corresponding masks. This is incorporated into the iterative model training as the ground truth. The I2I translation process is designed with two constraints: (1) a convexity consistency constraint that relies on Hessian analysis to preserve the geometric properties and (2) an intensity distribution consistency constraint based on Kullback-Leibler divergence to preserve the intensity distribution of blobs. BlobCUT learns the inherent noise distribution from the target noisy blob images and performs image translation from the noisy domain to the clean domain, effectively functioning as a denoising process to support blob identification. To validate the performance of BlobCUT, we evaluate it on a 3D simulated dataset of blobs and a 3D MRI dataset of mouse kidneys. We conduct a comparative analysis involving six state-of-the-art methods. Our findings reveal that BlobCUT exhibits superior performance and training efficiency, utilizing only 56.6% of the training time required by the state-of-the-art BlobDetGAN. This underscores the effectiveness of BlobCUT in accurately segmenting small blobs while achieving notable gains in training efficiency. imaging biomarker blob detection glomeruli segmentation Hessian analysis contrastive learning Technology T Biology (General) Yanzhe Xu verfasserin aut Teresa Wu verfasserin aut Jennifer R. Charlton verfasserin aut Kevin M. Bennett verfasserin aut Firas Al-Hindawi verfasserin aut In Bioengineering MDPI AG, 2014 10(2023), 12, p 1372 (DE-627)774814020 (DE-600)2746191-9 23065354 nnns volume:10 year:2023 number:12, p 1372 https://doi.org/10.3390/bioengineering10121372 kostenfrei https://doaj.org/article/0e5af824e5cf45eb8697affd266ec1e4 kostenfrei https://www.mdpi.com/2306-5354/10/12/1372 kostenfrei https://doaj.org/toc/2306-5354 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 12, p 1372 |
language |
English |
source |
In Bioengineering 10(2023), 12, p 1372 volume:10 year:2023 number:12, p 1372 |
sourceStr |
In Bioengineering 10(2023), 12, p 1372 volume:10 year:2023 number:12, p 1372 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
imaging biomarker blob detection glomeruli segmentation Hessian analysis contrastive learning Technology T Biology (General) |
isfreeaccess_bool |
true |
container_title |
Bioengineering |
authorswithroles_txt_mv |
Teng Li @@aut@@ Yanzhe Xu @@aut@@ Teresa Wu @@aut@@ Jennifer R. Charlton @@aut@@ Kevin M. Bennett @@aut@@ Firas Al-Hindawi @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
774814020 |
id |
DOAJ098910523 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098910523</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414004556.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/bioengineering10121372</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098910523</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0e5af824e5cf45eb8697affd266ec1e4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Teng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Medical imaging-based biomarkers derived from small objects (e.g., cell nuclei) play a crucial role in medical applications. However, detecting and segmenting small objects (a.k.a. blobs) remains a challenging task. In this research, we propose a novel 3D small blob detector called BlobCUT. BlobCUT is an unpaired image-to-image (I2I) translation model that falls under the Contrastive Unpaired Translation paradigm. It employs a blob synthesis module to generate synthetic 3D blobs with corresponding masks. This is incorporated into the iterative model training as the ground truth. The I2I translation process is designed with two constraints: (1) a convexity consistency constraint that relies on Hessian analysis to preserve the geometric properties and (2) an intensity distribution consistency constraint based on Kullback-Leibler divergence to preserve the intensity distribution of blobs. BlobCUT learns the inherent noise distribution from the target noisy blob images and performs image translation from the noisy domain to the clean domain, effectively functioning as a denoising process to support blob identification. To validate the performance of BlobCUT, we evaluate it on a 3D simulated dataset of blobs and a 3D MRI dataset of mouse kidneys. We conduct a comparative analysis involving six state-of-the-art methods. Our findings reveal that BlobCUT exhibits superior performance and training efficiency, utilizing only 56.6% of the training time required by the state-of-the-art BlobDetGAN. This underscores the effectiveness of BlobCUT in accurately segmenting small blobs while achieving notable gains in training efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">imaging biomarker</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">blob detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">glomeruli segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hessian analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">contrastive learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanzhe Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teresa Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jennifer R. Charlton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kevin M. Bennett</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Firas Al-Hindawi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Bioengineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2023), 12, p 1372</subfield><subfield code="w">(DE-627)774814020</subfield><subfield code="w">(DE-600)2746191-9</subfield><subfield code="x">23065354</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12, p 1372</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/bioengineering10121372</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0e5af824e5cf45eb8697affd266ec1e4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2306-5354/10/12/1372</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2306-5354</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">12, p 1372</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Teng Li |
spellingShingle |
Teng Li misc QH301-705.5 misc imaging biomarker misc blob detection misc glomeruli segmentation misc Hessian analysis misc contrastive learning misc Technology misc T misc Biology (General) BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging |
authorStr |
Teng Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)774814020 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
23065354 |
topic_title |
QH301-705.5 BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging imaging biomarker blob detection glomeruli segmentation Hessian analysis contrastive learning |
topic |
misc QH301-705.5 misc imaging biomarker misc blob detection misc glomeruli segmentation misc Hessian analysis misc contrastive learning misc Technology misc T misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc imaging biomarker misc blob detection misc glomeruli segmentation misc Hessian analysis misc contrastive learning misc Technology misc T misc Biology (General) |
topic_browse |
misc QH301-705.5 misc imaging biomarker misc blob detection misc glomeruli segmentation misc Hessian analysis misc contrastive learning misc Technology misc T misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Bioengineering |
hierarchy_parent_id |
774814020 |
hierarchy_top_title |
Bioengineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)774814020 (DE-600)2746191-9 |
title |
BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging |
ctrlnum |
(DE-627)DOAJ098910523 (DE-599)DOAJ0e5af824e5cf45eb8697affd266ec1e4 |
title_full |
BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging |
author_sort |
Teng Li |
journal |
Bioengineering |
journalStr |
Bioengineering |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Teng Li Yanzhe Xu Teresa Wu Jennifer R. Charlton Kevin M. Bennett Firas Al-Hindawi |
container_volume |
10 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Teng Li |
doi_str_mv |
10.3390/bioengineering10121372 |
author2-role |
verfasserin |
title_sort |
blobcut: a contrastive learning method to support small blob detection in medical imaging |
callnumber |
QH301-705.5 |
title_auth |
BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging |
abstract |
Medical imaging-based biomarkers derived from small objects (e.g., cell nuclei) play a crucial role in medical applications. However, detecting and segmenting small objects (a.k.a. blobs) remains a challenging task. In this research, we propose a novel 3D small blob detector called BlobCUT. BlobCUT is an unpaired image-to-image (I2I) translation model that falls under the Contrastive Unpaired Translation paradigm. It employs a blob synthesis module to generate synthetic 3D blobs with corresponding masks. This is incorporated into the iterative model training as the ground truth. The I2I translation process is designed with two constraints: (1) a convexity consistency constraint that relies on Hessian analysis to preserve the geometric properties and (2) an intensity distribution consistency constraint based on Kullback-Leibler divergence to preserve the intensity distribution of blobs. BlobCUT learns the inherent noise distribution from the target noisy blob images and performs image translation from the noisy domain to the clean domain, effectively functioning as a denoising process to support blob identification. To validate the performance of BlobCUT, we evaluate it on a 3D simulated dataset of blobs and a 3D MRI dataset of mouse kidneys. We conduct a comparative analysis involving six state-of-the-art methods. Our findings reveal that BlobCUT exhibits superior performance and training efficiency, utilizing only 56.6% of the training time required by the state-of-the-art BlobDetGAN. This underscores the effectiveness of BlobCUT in accurately segmenting small blobs while achieving notable gains in training efficiency. |
abstractGer |
Medical imaging-based biomarkers derived from small objects (e.g., cell nuclei) play a crucial role in medical applications. However, detecting and segmenting small objects (a.k.a. blobs) remains a challenging task. In this research, we propose a novel 3D small blob detector called BlobCUT. BlobCUT is an unpaired image-to-image (I2I) translation model that falls under the Contrastive Unpaired Translation paradigm. It employs a blob synthesis module to generate synthetic 3D blobs with corresponding masks. This is incorporated into the iterative model training as the ground truth. The I2I translation process is designed with two constraints: (1) a convexity consistency constraint that relies on Hessian analysis to preserve the geometric properties and (2) an intensity distribution consistency constraint based on Kullback-Leibler divergence to preserve the intensity distribution of blobs. BlobCUT learns the inherent noise distribution from the target noisy blob images and performs image translation from the noisy domain to the clean domain, effectively functioning as a denoising process to support blob identification. To validate the performance of BlobCUT, we evaluate it on a 3D simulated dataset of blobs and a 3D MRI dataset of mouse kidneys. We conduct a comparative analysis involving six state-of-the-art methods. Our findings reveal that BlobCUT exhibits superior performance and training efficiency, utilizing only 56.6% of the training time required by the state-of-the-art BlobDetGAN. This underscores the effectiveness of BlobCUT in accurately segmenting small blobs while achieving notable gains in training efficiency. |
abstract_unstemmed |
Medical imaging-based biomarkers derived from small objects (e.g., cell nuclei) play a crucial role in medical applications. However, detecting and segmenting small objects (a.k.a. blobs) remains a challenging task. In this research, we propose a novel 3D small blob detector called BlobCUT. BlobCUT is an unpaired image-to-image (I2I) translation model that falls under the Contrastive Unpaired Translation paradigm. It employs a blob synthesis module to generate synthetic 3D blobs with corresponding masks. This is incorporated into the iterative model training as the ground truth. The I2I translation process is designed with two constraints: (1) a convexity consistency constraint that relies on Hessian analysis to preserve the geometric properties and (2) an intensity distribution consistency constraint based on Kullback-Leibler divergence to preserve the intensity distribution of blobs. BlobCUT learns the inherent noise distribution from the target noisy blob images and performs image translation from the noisy domain to the clean domain, effectively functioning as a denoising process to support blob identification. To validate the performance of BlobCUT, we evaluate it on a 3D simulated dataset of blobs and a 3D MRI dataset of mouse kidneys. We conduct a comparative analysis involving six state-of-the-art methods. Our findings reveal that BlobCUT exhibits superior performance and training efficiency, utilizing only 56.6% of the training time required by the state-of-the-art BlobDetGAN. This underscores the effectiveness of BlobCUT in accurately segmenting small blobs while achieving notable gains in training efficiency. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 1372 |
title_short |
BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging |
url |
https://doi.org/10.3390/bioengineering10121372 https://doaj.org/article/0e5af824e5cf45eb8697affd266ec1e4 https://www.mdpi.com/2306-5354/10/12/1372 https://doaj.org/toc/2306-5354 |
remote_bool |
true |
author2 |
Yanzhe Xu Teresa Wu Jennifer R. Charlton Kevin M. Bennett Firas Al-Hindawi |
author2Str |
Yanzhe Xu Teresa Wu Jennifer R. Charlton Kevin M. Bennett Firas Al-Hindawi |
ppnlink |
774814020 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/bioengineering10121372 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T19:56:13.368Z |
_version_ |
1803589069963264000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098910523</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414004556.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/bioengineering10121372</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098910523</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0e5af824e5cf45eb8697affd266ec1e4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Teng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Medical imaging-based biomarkers derived from small objects (e.g., cell nuclei) play a crucial role in medical applications. However, detecting and segmenting small objects (a.k.a. blobs) remains a challenging task. In this research, we propose a novel 3D small blob detector called BlobCUT. BlobCUT is an unpaired image-to-image (I2I) translation model that falls under the Contrastive Unpaired Translation paradigm. It employs a blob synthesis module to generate synthetic 3D blobs with corresponding masks. This is incorporated into the iterative model training as the ground truth. The I2I translation process is designed with two constraints: (1) a convexity consistency constraint that relies on Hessian analysis to preserve the geometric properties and (2) an intensity distribution consistency constraint based on Kullback-Leibler divergence to preserve the intensity distribution of blobs. BlobCUT learns the inherent noise distribution from the target noisy blob images and performs image translation from the noisy domain to the clean domain, effectively functioning as a denoising process to support blob identification. To validate the performance of BlobCUT, we evaluate it on a 3D simulated dataset of blobs and a 3D MRI dataset of mouse kidneys. We conduct a comparative analysis involving six state-of-the-art methods. Our findings reveal that BlobCUT exhibits superior performance and training efficiency, utilizing only 56.6% of the training time required by the state-of-the-art BlobDetGAN. This underscores the effectiveness of BlobCUT in accurately segmenting small blobs while achieving notable gains in training efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">imaging biomarker</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">blob detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">glomeruli segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hessian analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">contrastive learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanzhe Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teresa Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jennifer R. Charlton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kevin M. Bennett</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Firas Al-Hindawi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Bioengineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2023), 12, p 1372</subfield><subfield code="w">(DE-627)774814020</subfield><subfield code="w">(DE-600)2746191-9</subfield><subfield code="x">23065354</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12, p 1372</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/bioengineering10121372</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0e5af824e5cf45eb8697affd266ec1e4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2306-5354/10/12/1372</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2306-5354</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">12, p 1372</subfield></datafield></record></collection>
|
score |
7.4005966 |