Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records
The application of natural language processing and machine learning (ML) in electronic health records (EHRs) may help reduce dementia underdiagnosis, but models that are not designed to reflect minority populations may instead perpetuate underdiagnosis. To improve the identification of undiagnosed d...
Ausführliche Beschreibung
Autor*in: |
Yijun Shao [verfasserIn] Kaitlin Todd [verfasserIn] Andrew Shutes-David [verfasserIn] Steven P. Millard [verfasserIn] Karl Brown [verfasserIn] Amy Thomas [verfasserIn] Kathryn Chen [verfasserIn] Katherine Wilson [verfasserIn] Qing T. Zeng [verfasserIn] Debby W. Tsuang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Big Data and Cognitive Computing - MDPI AG, 2018, 7(2023), 4, p 167 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2023 ; number:4, p 167 |
Links: |
---|
DOI / URN: |
10.3390/bdcc7040167 |
---|
Katalog-ID: |
DOAJ098911899 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098911899 | ||
003 | DE-627 | ||
005 | 20240414004612.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/bdcc7040167 |2 doi | |
035 | |a (DE-627)DOAJ098911899 | ||
035 | |a (DE-599)DOAJa9fe0796bd8e4353ba6b48e2c782da05 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Yijun Shao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The application of natural language processing and machine learning (ML) in electronic health records (EHRs) may help reduce dementia underdiagnosis, but models that are not designed to reflect minority populations may instead perpetuate underdiagnosis. To improve the identification of undiagnosed dementia, particularly in Black Americans (BAs), we developed support vector machine (SVM) ML models to assign dementia risk scores based on features identified in unstructured EHR data (via latent Dirichlet allocation and stable topic extraction in n = 1 M notes) and structured EHR data. We hypothesized that separate models would show differentiation between racial groups, so the models were fit separately for BAs (n = 5 K with dementia ICD codes, n = 5 K without) and White Americans (WAs; n = 5 K with codes, n = 5 K without). To validate our method, scores were generated for separate samples of BAs (n = 10 K) and WAs (n = 10 K) without dementia codes, and the EHRs of 1.2 K of these patients were reviewed by dementia experts. All subjects were age 65+ and drawn from the VA, which meant that the samples were disproportionately male. A strong positive relationship was observed between SVM-generated risk scores and undiagnosed dementia. BAs were more likely than WAs to have undiagnosed dementia per chart review, both overall (15.3% vs. 9.5%) and among Veterans with <90th percentile cutoff scores (25.6% vs. 15.3%). With chart reviews as the reference standard and varied cutoff scores, the BA model performed slightly better than the WA model (AUC = 0.86 with negative predictive value [NPV] = 0.98, positive predictive value [PPV] = 0.26, sensitivity = 0.61, specificity = 0.92 and accuracy = 0.91 at <90th percentile cutoff vs. AUC = 0.77 with NPV = 0.98, PPV = 0.15, sensitivity = 0.43, specificity = 0.91 and accuracy = 0.89 at <90th). Our findings suggest that race-specific ML models can help identify BAs who may have undiagnosed dementia. Future studies should examine model generalizability in settings with more females and test whether incorporating these models into clinical settings increases the referral of undiagnosed BAs to specialists. | ||
650 | 4 | |a electronic health record | |
650 | 4 | |a dementia | |
650 | 4 | |a machine learning | |
650 | 4 | |a underdiagnosis | |
650 | 4 | |a Veterans Health Administration | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Kaitlin Todd |e verfasserin |4 aut | |
700 | 0 | |a Andrew Shutes-David |e verfasserin |4 aut | |
700 | 0 | |a Steven P. Millard |e verfasserin |4 aut | |
700 | 0 | |a Karl Brown |e verfasserin |4 aut | |
700 | 0 | |a Amy Thomas |e verfasserin |4 aut | |
700 | 0 | |a Kathryn Chen |e verfasserin |4 aut | |
700 | 0 | |a Katherine Wilson |e verfasserin |4 aut | |
700 | 0 | |a Qing T. Zeng |e verfasserin |4 aut | |
700 | 0 | |a Debby W. Tsuang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Big Data and Cognitive Computing |d MDPI AG, 2018 |g 7(2023), 4, p 167 |w (DE-627)888151454 |w (DE-600)2895385-X |x 25042289 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2023 |g number:4, p 167 |
856 | 4 | 0 | |u https://doi.org/10.3390/bdcc7040167 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a9fe0796bd8e4353ba6b48e2c782da05 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2504-2289/7/4/167 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2504-2289 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2023 |e 4, p 167 |
author_variant |
y s ys k t kt a s d asd s p m spm k b kb a t at k c kc k w kw q t z qtz d w t dwt |
---|---|
matchkey_str |
article:25042289:2023----::dniynpoaldmniiudansdlcadhtaeiassnmcieerigneeaselh |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/bdcc7040167 doi (DE-627)DOAJ098911899 (DE-599)DOAJa9fe0796bd8e4353ba6b48e2c782da05 DE-627 ger DE-627 rakwb eng Yijun Shao verfasserin aut Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The application of natural language processing and machine learning (ML) in electronic health records (EHRs) may help reduce dementia underdiagnosis, but models that are not designed to reflect minority populations may instead perpetuate underdiagnosis. To improve the identification of undiagnosed dementia, particularly in Black Americans (BAs), we developed support vector machine (SVM) ML models to assign dementia risk scores based on features identified in unstructured EHR data (via latent Dirichlet allocation and stable topic extraction in n = 1 M notes) and structured EHR data. We hypothesized that separate models would show differentiation between racial groups, so the models were fit separately for BAs (n = 5 K with dementia ICD codes, n = 5 K without) and White Americans (WAs; n = 5 K with codes, n = 5 K without). To validate our method, scores were generated for separate samples of BAs (n = 10 K) and WAs (n = 10 K) without dementia codes, and the EHRs of 1.2 K of these patients were reviewed by dementia experts. All subjects were age 65+ and drawn from the VA, which meant that the samples were disproportionately male. A strong positive relationship was observed between SVM-generated risk scores and undiagnosed dementia. BAs were more likely than WAs to have undiagnosed dementia per chart review, both overall (15.3% vs. 9.5%) and among Veterans with <90th percentile cutoff scores (25.6% vs. 15.3%). With chart reviews as the reference standard and varied cutoff scores, the BA model performed slightly better than the WA model (AUC = 0.86 with negative predictive value [NPV] = 0.98, positive predictive value [PPV] = 0.26, sensitivity = 0.61, specificity = 0.92 and accuracy = 0.91 at <90th percentile cutoff vs. AUC = 0.77 with NPV = 0.98, PPV = 0.15, sensitivity = 0.43, specificity = 0.91 and accuracy = 0.89 at <90th). Our findings suggest that race-specific ML models can help identify BAs who may have undiagnosed dementia. Future studies should examine model generalizability in settings with more females and test whether incorporating these models into clinical settings increases the referral of undiagnosed BAs to specialists. electronic health record dementia machine learning underdiagnosis Veterans Health Administration Technology T Kaitlin Todd verfasserin aut Andrew Shutes-David verfasserin aut Steven P. Millard verfasserin aut Karl Brown verfasserin aut Amy Thomas verfasserin aut Kathryn Chen verfasserin aut Katherine Wilson verfasserin aut Qing T. Zeng verfasserin aut Debby W. Tsuang verfasserin aut In Big Data and Cognitive Computing MDPI AG, 2018 7(2023), 4, p 167 (DE-627)888151454 (DE-600)2895385-X 25042289 nnns volume:7 year:2023 number:4, p 167 https://doi.org/10.3390/bdcc7040167 kostenfrei https://doaj.org/article/a9fe0796bd8e4353ba6b48e2c782da05 kostenfrei https://www.mdpi.com/2504-2289/7/4/167 kostenfrei https://doaj.org/toc/2504-2289 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 4, p 167 |
spelling |
10.3390/bdcc7040167 doi (DE-627)DOAJ098911899 (DE-599)DOAJa9fe0796bd8e4353ba6b48e2c782da05 DE-627 ger DE-627 rakwb eng Yijun Shao verfasserin aut Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The application of natural language processing and machine learning (ML) in electronic health records (EHRs) may help reduce dementia underdiagnosis, but models that are not designed to reflect minority populations may instead perpetuate underdiagnosis. To improve the identification of undiagnosed dementia, particularly in Black Americans (BAs), we developed support vector machine (SVM) ML models to assign dementia risk scores based on features identified in unstructured EHR data (via latent Dirichlet allocation and stable topic extraction in n = 1 M notes) and structured EHR data. We hypothesized that separate models would show differentiation between racial groups, so the models were fit separately for BAs (n = 5 K with dementia ICD codes, n = 5 K without) and White Americans (WAs; n = 5 K with codes, n = 5 K without). To validate our method, scores were generated for separate samples of BAs (n = 10 K) and WAs (n = 10 K) without dementia codes, and the EHRs of 1.2 K of these patients were reviewed by dementia experts. All subjects were age 65+ and drawn from the VA, which meant that the samples were disproportionately male. A strong positive relationship was observed between SVM-generated risk scores and undiagnosed dementia. BAs were more likely than WAs to have undiagnosed dementia per chart review, both overall (15.3% vs. 9.5%) and among Veterans with <90th percentile cutoff scores (25.6% vs. 15.3%). With chart reviews as the reference standard and varied cutoff scores, the BA model performed slightly better than the WA model (AUC = 0.86 with negative predictive value [NPV] = 0.98, positive predictive value [PPV] = 0.26, sensitivity = 0.61, specificity = 0.92 and accuracy = 0.91 at <90th percentile cutoff vs. AUC = 0.77 with NPV = 0.98, PPV = 0.15, sensitivity = 0.43, specificity = 0.91 and accuracy = 0.89 at <90th). Our findings suggest that race-specific ML models can help identify BAs who may have undiagnosed dementia. Future studies should examine model generalizability in settings with more females and test whether incorporating these models into clinical settings increases the referral of undiagnosed BAs to specialists. electronic health record dementia machine learning underdiagnosis Veterans Health Administration Technology T Kaitlin Todd verfasserin aut Andrew Shutes-David verfasserin aut Steven P. Millard verfasserin aut Karl Brown verfasserin aut Amy Thomas verfasserin aut Kathryn Chen verfasserin aut Katherine Wilson verfasserin aut Qing T. Zeng verfasserin aut Debby W. Tsuang verfasserin aut In Big Data and Cognitive Computing MDPI AG, 2018 7(2023), 4, p 167 (DE-627)888151454 (DE-600)2895385-X 25042289 nnns volume:7 year:2023 number:4, p 167 https://doi.org/10.3390/bdcc7040167 kostenfrei https://doaj.org/article/a9fe0796bd8e4353ba6b48e2c782da05 kostenfrei https://www.mdpi.com/2504-2289/7/4/167 kostenfrei https://doaj.org/toc/2504-2289 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 4, p 167 |
allfields_unstemmed |
10.3390/bdcc7040167 doi (DE-627)DOAJ098911899 (DE-599)DOAJa9fe0796bd8e4353ba6b48e2c782da05 DE-627 ger DE-627 rakwb eng Yijun Shao verfasserin aut Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The application of natural language processing and machine learning (ML) in electronic health records (EHRs) may help reduce dementia underdiagnosis, but models that are not designed to reflect minority populations may instead perpetuate underdiagnosis. To improve the identification of undiagnosed dementia, particularly in Black Americans (BAs), we developed support vector machine (SVM) ML models to assign dementia risk scores based on features identified in unstructured EHR data (via latent Dirichlet allocation and stable topic extraction in n = 1 M notes) and structured EHR data. We hypothesized that separate models would show differentiation between racial groups, so the models were fit separately for BAs (n = 5 K with dementia ICD codes, n = 5 K without) and White Americans (WAs; n = 5 K with codes, n = 5 K without). To validate our method, scores were generated for separate samples of BAs (n = 10 K) and WAs (n = 10 K) without dementia codes, and the EHRs of 1.2 K of these patients were reviewed by dementia experts. All subjects were age 65+ and drawn from the VA, which meant that the samples were disproportionately male. A strong positive relationship was observed between SVM-generated risk scores and undiagnosed dementia. BAs were more likely than WAs to have undiagnosed dementia per chart review, both overall (15.3% vs. 9.5%) and among Veterans with <90th percentile cutoff scores (25.6% vs. 15.3%). With chart reviews as the reference standard and varied cutoff scores, the BA model performed slightly better than the WA model (AUC = 0.86 with negative predictive value [NPV] = 0.98, positive predictive value [PPV] = 0.26, sensitivity = 0.61, specificity = 0.92 and accuracy = 0.91 at <90th percentile cutoff vs. AUC = 0.77 with NPV = 0.98, PPV = 0.15, sensitivity = 0.43, specificity = 0.91 and accuracy = 0.89 at <90th). Our findings suggest that race-specific ML models can help identify BAs who may have undiagnosed dementia. Future studies should examine model generalizability in settings with more females and test whether incorporating these models into clinical settings increases the referral of undiagnosed BAs to specialists. electronic health record dementia machine learning underdiagnosis Veterans Health Administration Technology T Kaitlin Todd verfasserin aut Andrew Shutes-David verfasserin aut Steven P. Millard verfasserin aut Karl Brown verfasserin aut Amy Thomas verfasserin aut Kathryn Chen verfasserin aut Katherine Wilson verfasserin aut Qing T. Zeng verfasserin aut Debby W. Tsuang verfasserin aut In Big Data and Cognitive Computing MDPI AG, 2018 7(2023), 4, p 167 (DE-627)888151454 (DE-600)2895385-X 25042289 nnns volume:7 year:2023 number:4, p 167 https://doi.org/10.3390/bdcc7040167 kostenfrei https://doaj.org/article/a9fe0796bd8e4353ba6b48e2c782da05 kostenfrei https://www.mdpi.com/2504-2289/7/4/167 kostenfrei https://doaj.org/toc/2504-2289 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 4, p 167 |
allfieldsGer |
10.3390/bdcc7040167 doi (DE-627)DOAJ098911899 (DE-599)DOAJa9fe0796bd8e4353ba6b48e2c782da05 DE-627 ger DE-627 rakwb eng Yijun Shao verfasserin aut Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The application of natural language processing and machine learning (ML) in electronic health records (EHRs) may help reduce dementia underdiagnosis, but models that are not designed to reflect minority populations may instead perpetuate underdiagnosis. To improve the identification of undiagnosed dementia, particularly in Black Americans (BAs), we developed support vector machine (SVM) ML models to assign dementia risk scores based on features identified in unstructured EHR data (via latent Dirichlet allocation and stable topic extraction in n = 1 M notes) and structured EHR data. We hypothesized that separate models would show differentiation between racial groups, so the models were fit separately for BAs (n = 5 K with dementia ICD codes, n = 5 K without) and White Americans (WAs; n = 5 K with codes, n = 5 K without). To validate our method, scores were generated for separate samples of BAs (n = 10 K) and WAs (n = 10 K) without dementia codes, and the EHRs of 1.2 K of these patients were reviewed by dementia experts. All subjects were age 65+ and drawn from the VA, which meant that the samples were disproportionately male. A strong positive relationship was observed between SVM-generated risk scores and undiagnosed dementia. BAs were more likely than WAs to have undiagnosed dementia per chart review, both overall (15.3% vs. 9.5%) and among Veterans with <90th percentile cutoff scores (25.6% vs. 15.3%). With chart reviews as the reference standard and varied cutoff scores, the BA model performed slightly better than the WA model (AUC = 0.86 with negative predictive value [NPV] = 0.98, positive predictive value [PPV] = 0.26, sensitivity = 0.61, specificity = 0.92 and accuracy = 0.91 at <90th percentile cutoff vs. AUC = 0.77 with NPV = 0.98, PPV = 0.15, sensitivity = 0.43, specificity = 0.91 and accuracy = 0.89 at <90th). Our findings suggest that race-specific ML models can help identify BAs who may have undiagnosed dementia. Future studies should examine model generalizability in settings with more females and test whether incorporating these models into clinical settings increases the referral of undiagnosed BAs to specialists. electronic health record dementia machine learning underdiagnosis Veterans Health Administration Technology T Kaitlin Todd verfasserin aut Andrew Shutes-David verfasserin aut Steven P. Millard verfasserin aut Karl Brown verfasserin aut Amy Thomas verfasserin aut Kathryn Chen verfasserin aut Katherine Wilson verfasserin aut Qing T. Zeng verfasserin aut Debby W. Tsuang verfasserin aut In Big Data and Cognitive Computing MDPI AG, 2018 7(2023), 4, p 167 (DE-627)888151454 (DE-600)2895385-X 25042289 nnns volume:7 year:2023 number:4, p 167 https://doi.org/10.3390/bdcc7040167 kostenfrei https://doaj.org/article/a9fe0796bd8e4353ba6b48e2c782da05 kostenfrei https://www.mdpi.com/2504-2289/7/4/167 kostenfrei https://doaj.org/toc/2504-2289 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 4, p 167 |
allfieldsSound |
10.3390/bdcc7040167 doi (DE-627)DOAJ098911899 (DE-599)DOAJa9fe0796bd8e4353ba6b48e2c782da05 DE-627 ger DE-627 rakwb eng Yijun Shao verfasserin aut Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The application of natural language processing and machine learning (ML) in electronic health records (EHRs) may help reduce dementia underdiagnosis, but models that are not designed to reflect minority populations may instead perpetuate underdiagnosis. To improve the identification of undiagnosed dementia, particularly in Black Americans (BAs), we developed support vector machine (SVM) ML models to assign dementia risk scores based on features identified in unstructured EHR data (via latent Dirichlet allocation and stable topic extraction in n = 1 M notes) and structured EHR data. We hypothesized that separate models would show differentiation between racial groups, so the models were fit separately for BAs (n = 5 K with dementia ICD codes, n = 5 K without) and White Americans (WAs; n = 5 K with codes, n = 5 K without). To validate our method, scores were generated for separate samples of BAs (n = 10 K) and WAs (n = 10 K) without dementia codes, and the EHRs of 1.2 K of these patients were reviewed by dementia experts. All subjects were age 65+ and drawn from the VA, which meant that the samples were disproportionately male. A strong positive relationship was observed between SVM-generated risk scores and undiagnosed dementia. BAs were more likely than WAs to have undiagnosed dementia per chart review, both overall (15.3% vs. 9.5%) and among Veterans with <90th percentile cutoff scores (25.6% vs. 15.3%). With chart reviews as the reference standard and varied cutoff scores, the BA model performed slightly better than the WA model (AUC = 0.86 with negative predictive value [NPV] = 0.98, positive predictive value [PPV] = 0.26, sensitivity = 0.61, specificity = 0.92 and accuracy = 0.91 at <90th percentile cutoff vs. AUC = 0.77 with NPV = 0.98, PPV = 0.15, sensitivity = 0.43, specificity = 0.91 and accuracy = 0.89 at <90th). Our findings suggest that race-specific ML models can help identify BAs who may have undiagnosed dementia. Future studies should examine model generalizability in settings with more females and test whether incorporating these models into clinical settings increases the referral of undiagnosed BAs to specialists. electronic health record dementia machine learning underdiagnosis Veterans Health Administration Technology T Kaitlin Todd verfasserin aut Andrew Shutes-David verfasserin aut Steven P. Millard verfasserin aut Karl Brown verfasserin aut Amy Thomas verfasserin aut Kathryn Chen verfasserin aut Katherine Wilson verfasserin aut Qing T. Zeng verfasserin aut Debby W. Tsuang verfasserin aut In Big Data and Cognitive Computing MDPI AG, 2018 7(2023), 4, p 167 (DE-627)888151454 (DE-600)2895385-X 25042289 nnns volume:7 year:2023 number:4, p 167 https://doi.org/10.3390/bdcc7040167 kostenfrei https://doaj.org/article/a9fe0796bd8e4353ba6b48e2c782da05 kostenfrei https://www.mdpi.com/2504-2289/7/4/167 kostenfrei https://doaj.org/toc/2504-2289 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 4, p 167 |
language |
English |
source |
In Big Data and Cognitive Computing 7(2023), 4, p 167 volume:7 year:2023 number:4, p 167 |
sourceStr |
In Big Data and Cognitive Computing 7(2023), 4, p 167 volume:7 year:2023 number:4, p 167 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
electronic health record dementia machine learning underdiagnosis Veterans Health Administration Technology T |
isfreeaccess_bool |
true |
container_title |
Big Data and Cognitive Computing |
authorswithroles_txt_mv |
Yijun Shao @@aut@@ Kaitlin Todd @@aut@@ Andrew Shutes-David @@aut@@ Steven P. Millard @@aut@@ Karl Brown @@aut@@ Amy Thomas @@aut@@ Kathryn Chen @@aut@@ Katherine Wilson @@aut@@ Qing T. Zeng @@aut@@ Debby W. Tsuang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
888151454 |
id |
DOAJ098911899 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098911899</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414004612.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/bdcc7040167</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098911899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa9fe0796bd8e4353ba6b48e2c782da05</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yijun Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The application of natural language processing and machine learning (ML) in electronic health records (EHRs) may help reduce dementia underdiagnosis, but models that are not designed to reflect minority populations may instead perpetuate underdiagnosis. To improve the identification of undiagnosed dementia, particularly in Black Americans (BAs), we developed support vector machine (SVM) ML models to assign dementia risk scores based on features identified in unstructured EHR data (via latent Dirichlet allocation and stable topic extraction in n = 1 M notes) and structured EHR data. We hypothesized that separate models would show differentiation between racial groups, so the models were fit separately for BAs (n = 5 K with dementia ICD codes, n = 5 K without) and White Americans (WAs; n = 5 K with codes, n = 5 K without). To validate our method, scores were generated for separate samples of BAs (n = 10 K) and WAs (n = 10 K) without dementia codes, and the EHRs of 1.2 K of these patients were reviewed by dementia experts. All subjects were age 65+ and drawn from the VA, which meant that the samples were disproportionately male. A strong positive relationship was observed between SVM-generated risk scores and undiagnosed dementia. BAs were more likely than WAs to have undiagnosed dementia per chart review, both overall (15.3% vs. 9.5%) and among Veterans with <90th percentile cutoff scores (25.6% vs. 15.3%). With chart reviews as the reference standard and varied cutoff scores, the BA model performed slightly better than the WA model (AUC = 0.86 with negative predictive value [NPV] = 0.98, positive predictive value [PPV] = 0.26, sensitivity = 0.61, specificity = 0.92 and accuracy = 0.91 at <90th percentile cutoff vs. AUC = 0.77 with NPV = 0.98, PPV = 0.15, sensitivity = 0.43, specificity = 0.91 and accuracy = 0.89 at <90th). Our findings suggest that race-specific ML models can help identify BAs who may have undiagnosed dementia. Future studies should examine model generalizability in settings with more females and test whether incorporating these models into clinical settings increases the referral of undiagnosed BAs to specialists.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electronic health record</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dementia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">underdiagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Veterans Health Administration</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaitlin Todd</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrew Shutes-David</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Steven P. Millard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karl Brown</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amy Thomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kathryn Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katherine Wilson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qing T. Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Debby W. Tsuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Big Data and Cognitive Computing</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">7(2023), 4, p 167</subfield><subfield code="w">(DE-627)888151454</subfield><subfield code="w">(DE-600)2895385-X</subfield><subfield code="x">25042289</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 167</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/bdcc7040167</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a9fe0796bd8e4353ba6b48e2c782da05</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-2289/7/4/167</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-2289</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 167</subfield></datafield></record></collection>
|
author |
Yijun Shao |
spellingShingle |
Yijun Shao misc electronic health record misc dementia misc machine learning misc underdiagnosis misc Veterans Health Administration misc Technology misc T Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records |
authorStr |
Yijun Shao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)888151454 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
25042289 |
topic_title |
Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records electronic health record dementia machine learning underdiagnosis Veterans Health Administration |
topic |
misc electronic health record misc dementia misc machine learning misc underdiagnosis misc Veterans Health Administration misc Technology misc T |
topic_unstemmed |
misc electronic health record misc dementia misc machine learning misc underdiagnosis misc Veterans Health Administration misc Technology misc T |
topic_browse |
misc electronic health record misc dementia misc machine learning misc underdiagnosis misc Veterans Health Administration misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Big Data and Cognitive Computing |
hierarchy_parent_id |
888151454 |
hierarchy_top_title |
Big Data and Cognitive Computing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)888151454 (DE-600)2895385-X |
title |
Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records |
ctrlnum |
(DE-627)DOAJ098911899 (DE-599)DOAJa9fe0796bd8e4353ba6b48e2c782da05 |
title_full |
Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records |
author_sort |
Yijun Shao |
journal |
Big Data and Cognitive Computing |
journalStr |
Big Data and Cognitive Computing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Yijun Shao Kaitlin Todd Andrew Shutes-David Steven P. Millard Karl Brown Amy Thomas Kathryn Chen Katherine Wilson Qing T. Zeng Debby W. Tsuang |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Yijun Shao |
doi_str_mv |
10.3390/bdcc7040167 |
author2-role |
verfasserin |
title_sort |
identifying probable dementia in undiagnosed black and white americans using machine learning in veterans health administration electronic health records |
title_auth |
Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records |
abstract |
The application of natural language processing and machine learning (ML) in electronic health records (EHRs) may help reduce dementia underdiagnosis, but models that are not designed to reflect minority populations may instead perpetuate underdiagnosis. To improve the identification of undiagnosed dementia, particularly in Black Americans (BAs), we developed support vector machine (SVM) ML models to assign dementia risk scores based on features identified in unstructured EHR data (via latent Dirichlet allocation and stable topic extraction in n = 1 M notes) and structured EHR data. We hypothesized that separate models would show differentiation between racial groups, so the models were fit separately for BAs (n = 5 K with dementia ICD codes, n = 5 K without) and White Americans (WAs; n = 5 K with codes, n = 5 K without). To validate our method, scores were generated for separate samples of BAs (n = 10 K) and WAs (n = 10 K) without dementia codes, and the EHRs of 1.2 K of these patients were reviewed by dementia experts. All subjects were age 65+ and drawn from the VA, which meant that the samples were disproportionately male. A strong positive relationship was observed between SVM-generated risk scores and undiagnosed dementia. BAs were more likely than WAs to have undiagnosed dementia per chart review, both overall (15.3% vs. 9.5%) and among Veterans with <90th percentile cutoff scores (25.6% vs. 15.3%). With chart reviews as the reference standard and varied cutoff scores, the BA model performed slightly better than the WA model (AUC = 0.86 with negative predictive value [NPV] = 0.98, positive predictive value [PPV] = 0.26, sensitivity = 0.61, specificity = 0.92 and accuracy = 0.91 at <90th percentile cutoff vs. AUC = 0.77 with NPV = 0.98, PPV = 0.15, sensitivity = 0.43, specificity = 0.91 and accuracy = 0.89 at <90th). Our findings suggest that race-specific ML models can help identify BAs who may have undiagnosed dementia. Future studies should examine model generalizability in settings with more females and test whether incorporating these models into clinical settings increases the referral of undiagnosed BAs to specialists. |
abstractGer |
The application of natural language processing and machine learning (ML) in electronic health records (EHRs) may help reduce dementia underdiagnosis, but models that are not designed to reflect minority populations may instead perpetuate underdiagnosis. To improve the identification of undiagnosed dementia, particularly in Black Americans (BAs), we developed support vector machine (SVM) ML models to assign dementia risk scores based on features identified in unstructured EHR data (via latent Dirichlet allocation and stable topic extraction in n = 1 M notes) and structured EHR data. We hypothesized that separate models would show differentiation between racial groups, so the models were fit separately for BAs (n = 5 K with dementia ICD codes, n = 5 K without) and White Americans (WAs; n = 5 K with codes, n = 5 K without). To validate our method, scores were generated for separate samples of BAs (n = 10 K) and WAs (n = 10 K) without dementia codes, and the EHRs of 1.2 K of these patients were reviewed by dementia experts. All subjects were age 65+ and drawn from the VA, which meant that the samples were disproportionately male. A strong positive relationship was observed between SVM-generated risk scores and undiagnosed dementia. BAs were more likely than WAs to have undiagnosed dementia per chart review, both overall (15.3% vs. 9.5%) and among Veterans with <90th percentile cutoff scores (25.6% vs. 15.3%). With chart reviews as the reference standard and varied cutoff scores, the BA model performed slightly better than the WA model (AUC = 0.86 with negative predictive value [NPV] = 0.98, positive predictive value [PPV] = 0.26, sensitivity = 0.61, specificity = 0.92 and accuracy = 0.91 at <90th percentile cutoff vs. AUC = 0.77 with NPV = 0.98, PPV = 0.15, sensitivity = 0.43, specificity = 0.91 and accuracy = 0.89 at <90th). Our findings suggest that race-specific ML models can help identify BAs who may have undiagnosed dementia. Future studies should examine model generalizability in settings with more females and test whether incorporating these models into clinical settings increases the referral of undiagnosed BAs to specialists. |
abstract_unstemmed |
The application of natural language processing and machine learning (ML) in electronic health records (EHRs) may help reduce dementia underdiagnosis, but models that are not designed to reflect minority populations may instead perpetuate underdiagnosis. To improve the identification of undiagnosed dementia, particularly in Black Americans (BAs), we developed support vector machine (SVM) ML models to assign dementia risk scores based on features identified in unstructured EHR data (via latent Dirichlet allocation and stable topic extraction in n = 1 M notes) and structured EHR data. We hypothesized that separate models would show differentiation between racial groups, so the models were fit separately for BAs (n = 5 K with dementia ICD codes, n = 5 K without) and White Americans (WAs; n = 5 K with codes, n = 5 K without). To validate our method, scores were generated for separate samples of BAs (n = 10 K) and WAs (n = 10 K) without dementia codes, and the EHRs of 1.2 K of these patients were reviewed by dementia experts. All subjects were age 65+ and drawn from the VA, which meant that the samples were disproportionately male. A strong positive relationship was observed between SVM-generated risk scores and undiagnosed dementia. BAs were more likely than WAs to have undiagnosed dementia per chart review, both overall (15.3% vs. 9.5%) and among Veterans with <90th percentile cutoff scores (25.6% vs. 15.3%). With chart reviews as the reference standard and varied cutoff scores, the BA model performed slightly better than the WA model (AUC = 0.86 with negative predictive value [NPV] = 0.98, positive predictive value [PPV] = 0.26, sensitivity = 0.61, specificity = 0.92 and accuracy = 0.91 at <90th percentile cutoff vs. AUC = 0.77 with NPV = 0.98, PPV = 0.15, sensitivity = 0.43, specificity = 0.91 and accuracy = 0.89 at <90th). Our findings suggest that race-specific ML models can help identify BAs who may have undiagnosed dementia. Future studies should examine model generalizability in settings with more females and test whether incorporating these models into clinical settings increases the referral of undiagnosed BAs to specialists. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 167 |
title_short |
Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records |
url |
https://doi.org/10.3390/bdcc7040167 https://doaj.org/article/a9fe0796bd8e4353ba6b48e2c782da05 https://www.mdpi.com/2504-2289/7/4/167 https://doaj.org/toc/2504-2289 |
remote_bool |
true |
author2 |
Kaitlin Todd Andrew Shutes-David Steven P. Millard Karl Brown Amy Thomas Kathryn Chen Katherine Wilson Qing T. Zeng Debby W. Tsuang |
author2Str |
Kaitlin Todd Andrew Shutes-David Steven P. Millard Karl Brown Amy Thomas Kathryn Chen Katherine Wilson Qing T. Zeng Debby W. Tsuang |
ppnlink |
888151454 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/bdcc7040167 |
up_date |
2024-07-03T19:56:41.961Z |
_version_ |
1803589099941003264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098911899</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414004612.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/bdcc7040167</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098911899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa9fe0796bd8e4353ba6b48e2c782da05</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yijun Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identifying Probable Dementia in Undiagnosed Black and White Americans Using Machine Learning in Veterans Health Administration Electronic Health Records</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The application of natural language processing and machine learning (ML) in electronic health records (EHRs) may help reduce dementia underdiagnosis, but models that are not designed to reflect minority populations may instead perpetuate underdiagnosis. To improve the identification of undiagnosed dementia, particularly in Black Americans (BAs), we developed support vector machine (SVM) ML models to assign dementia risk scores based on features identified in unstructured EHR data (via latent Dirichlet allocation and stable topic extraction in n = 1 M notes) and structured EHR data. We hypothesized that separate models would show differentiation between racial groups, so the models were fit separately for BAs (n = 5 K with dementia ICD codes, n = 5 K without) and White Americans (WAs; n = 5 K with codes, n = 5 K without). To validate our method, scores were generated for separate samples of BAs (n = 10 K) and WAs (n = 10 K) without dementia codes, and the EHRs of 1.2 K of these patients were reviewed by dementia experts. All subjects were age 65+ and drawn from the VA, which meant that the samples were disproportionately male. A strong positive relationship was observed between SVM-generated risk scores and undiagnosed dementia. BAs were more likely than WAs to have undiagnosed dementia per chart review, both overall (15.3% vs. 9.5%) and among Veterans with <90th percentile cutoff scores (25.6% vs. 15.3%). With chart reviews as the reference standard and varied cutoff scores, the BA model performed slightly better than the WA model (AUC = 0.86 with negative predictive value [NPV] = 0.98, positive predictive value [PPV] = 0.26, sensitivity = 0.61, specificity = 0.92 and accuracy = 0.91 at <90th percentile cutoff vs. AUC = 0.77 with NPV = 0.98, PPV = 0.15, sensitivity = 0.43, specificity = 0.91 and accuracy = 0.89 at <90th). Our findings suggest that race-specific ML models can help identify BAs who may have undiagnosed dementia. Future studies should examine model generalizability in settings with more females and test whether incorporating these models into clinical settings increases the referral of undiagnosed BAs to specialists.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electronic health record</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dementia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">underdiagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Veterans Health Administration</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaitlin Todd</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrew Shutes-David</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Steven P. Millard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karl Brown</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amy Thomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kathryn Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katherine Wilson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qing T. Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Debby W. Tsuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Big Data and Cognitive Computing</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">7(2023), 4, p 167</subfield><subfield code="w">(DE-627)888151454</subfield><subfield code="w">(DE-600)2895385-X</subfield><subfield code="x">25042289</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 167</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/bdcc7040167</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a9fe0796bd8e4353ba6b48e2c782da05</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-2289/7/4/167</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-2289</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 167</subfield></datafield></record></collection>
|
score |
7.3993254 |