Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries
Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a...
Ausführliche Beschreibung
Autor*in: |
Alexander Mirandona-Olaeta [verfasserIn] Eider Goikolea [verfasserIn] Senentxu Lanceros-Mendez [verfasserIn] Arkaitz Fidalgo-Marijuan [verfasserIn] Idoia Ruiz de Larramendi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Batteries - MDPI AG, 2016, 9(2023), 12, p 588 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2023 ; number:12, p 588 |
Links: |
---|
DOI / URN: |
10.3390/batteries9120588 |
---|
Katalog-ID: |
DOAJ098912070 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098912070 | ||
003 | DE-627 | ||
005 | 20240414004614.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/batteries9120588 |2 doi | |
035 | |a (DE-627)DOAJ098912070 | ||
035 | |a (DE-599)DOAJ4df4e580b9d440c6b9045c65b07f400d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1001-1841 | |
050 | 0 | |a TP250-261 | |
100 | 0 | |a Alexander Mirandona-Olaeta |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10<sup<−4</sup< S cm<sup<−1</sup< at room temperature, in addition to an acceptable Na<sup<+</sup< transference number. Furthermore, the developed Na[EMIm][TFSI]Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na<sup<+</sup</Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries. | ||
650 | 4 | |a metal–organic framework | |
650 | 4 | |a ionic liquid | |
650 | 4 | |a solid-state electrolyte | |
650 | 4 | |a sodium battery | |
653 | 0 | |a Production of electric energy or power. Powerplants. Central stations | |
653 | 0 | |a Industrial electrochemistry | |
700 | 0 | |a Eider Goikolea |e verfasserin |4 aut | |
700 | 0 | |a Senentxu Lanceros-Mendez |e verfasserin |4 aut | |
700 | 0 | |a Arkaitz Fidalgo-Marijuan |e verfasserin |4 aut | |
700 | 0 | |a Idoia Ruiz de Larramendi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Batteries |d MDPI AG, 2016 |g 9(2023), 12, p 588 |w (DE-627)820684066 |w (DE-600)2813972-0 |x 23130105 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2023 |g number:12, p 588 |
856 | 4 | 0 | |u https://doi.org/10.3390/batteries9120588 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4df4e580b9d440c6b9045c65b07f400d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2313-0105/9/12/588 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2313-0105 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2023 |e 12, p 588 |
author_variant |
a m o amo e g eg s l m slm a f m afm i r d l irdl |
---|---|
matchkey_str |
article:23130105:2023----::oilqildnno7bsdoisaelcrlt |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.3390/batteries9120588 doi (DE-627)DOAJ098912070 (DE-599)DOAJ4df4e580b9d440c6b9045c65b07f400d DE-627 ger DE-627 rakwb eng TK1001-1841 TP250-261 Alexander Mirandona-Olaeta verfasserin aut Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10<sup<−4</sup< S cm<sup<−1</sup< at room temperature, in addition to an acceptable Na<sup<+</sup< transference number. Furthermore, the developed Na[EMIm][TFSI]Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na<sup<+</sup</Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries. metal–organic framework ionic liquid solid-state electrolyte sodium battery Production of electric energy or power. Powerplants. Central stations Industrial electrochemistry Eider Goikolea verfasserin aut Senentxu Lanceros-Mendez verfasserin aut Arkaitz Fidalgo-Marijuan verfasserin aut Idoia Ruiz de Larramendi verfasserin aut In Batteries MDPI AG, 2016 9(2023), 12, p 588 (DE-627)820684066 (DE-600)2813972-0 23130105 nnns volume:9 year:2023 number:12, p 588 https://doi.org/10.3390/batteries9120588 kostenfrei https://doaj.org/article/4df4e580b9d440c6b9045c65b07f400d kostenfrei https://www.mdpi.com/2313-0105/9/12/588 kostenfrei https://doaj.org/toc/2313-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 12, p 588 |
spelling |
10.3390/batteries9120588 doi (DE-627)DOAJ098912070 (DE-599)DOAJ4df4e580b9d440c6b9045c65b07f400d DE-627 ger DE-627 rakwb eng TK1001-1841 TP250-261 Alexander Mirandona-Olaeta verfasserin aut Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10<sup<−4</sup< S cm<sup<−1</sup< at room temperature, in addition to an acceptable Na<sup<+</sup< transference number. Furthermore, the developed Na[EMIm][TFSI]Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na<sup<+</sup</Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries. metal–organic framework ionic liquid solid-state electrolyte sodium battery Production of electric energy or power. Powerplants. Central stations Industrial electrochemistry Eider Goikolea verfasserin aut Senentxu Lanceros-Mendez verfasserin aut Arkaitz Fidalgo-Marijuan verfasserin aut Idoia Ruiz de Larramendi verfasserin aut In Batteries MDPI AG, 2016 9(2023), 12, p 588 (DE-627)820684066 (DE-600)2813972-0 23130105 nnns volume:9 year:2023 number:12, p 588 https://doi.org/10.3390/batteries9120588 kostenfrei https://doaj.org/article/4df4e580b9d440c6b9045c65b07f400d kostenfrei https://www.mdpi.com/2313-0105/9/12/588 kostenfrei https://doaj.org/toc/2313-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 12, p 588 |
allfields_unstemmed |
10.3390/batteries9120588 doi (DE-627)DOAJ098912070 (DE-599)DOAJ4df4e580b9d440c6b9045c65b07f400d DE-627 ger DE-627 rakwb eng TK1001-1841 TP250-261 Alexander Mirandona-Olaeta verfasserin aut Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10<sup<−4</sup< S cm<sup<−1</sup< at room temperature, in addition to an acceptable Na<sup<+</sup< transference number. Furthermore, the developed Na[EMIm][TFSI]Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na<sup<+</sup</Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries. metal–organic framework ionic liquid solid-state electrolyte sodium battery Production of electric energy or power. Powerplants. Central stations Industrial electrochemistry Eider Goikolea verfasserin aut Senentxu Lanceros-Mendez verfasserin aut Arkaitz Fidalgo-Marijuan verfasserin aut Idoia Ruiz de Larramendi verfasserin aut In Batteries MDPI AG, 2016 9(2023), 12, p 588 (DE-627)820684066 (DE-600)2813972-0 23130105 nnns volume:9 year:2023 number:12, p 588 https://doi.org/10.3390/batteries9120588 kostenfrei https://doaj.org/article/4df4e580b9d440c6b9045c65b07f400d kostenfrei https://www.mdpi.com/2313-0105/9/12/588 kostenfrei https://doaj.org/toc/2313-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 12, p 588 |
allfieldsGer |
10.3390/batteries9120588 doi (DE-627)DOAJ098912070 (DE-599)DOAJ4df4e580b9d440c6b9045c65b07f400d DE-627 ger DE-627 rakwb eng TK1001-1841 TP250-261 Alexander Mirandona-Olaeta verfasserin aut Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10<sup<−4</sup< S cm<sup<−1</sup< at room temperature, in addition to an acceptable Na<sup<+</sup< transference number. Furthermore, the developed Na[EMIm][TFSI]Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na<sup<+</sup</Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries. metal–organic framework ionic liquid solid-state electrolyte sodium battery Production of electric energy or power. Powerplants. Central stations Industrial electrochemistry Eider Goikolea verfasserin aut Senentxu Lanceros-Mendez verfasserin aut Arkaitz Fidalgo-Marijuan verfasserin aut Idoia Ruiz de Larramendi verfasserin aut In Batteries MDPI AG, 2016 9(2023), 12, p 588 (DE-627)820684066 (DE-600)2813972-0 23130105 nnns volume:9 year:2023 number:12, p 588 https://doi.org/10.3390/batteries9120588 kostenfrei https://doaj.org/article/4df4e580b9d440c6b9045c65b07f400d kostenfrei https://www.mdpi.com/2313-0105/9/12/588 kostenfrei https://doaj.org/toc/2313-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 12, p 588 |
allfieldsSound |
10.3390/batteries9120588 doi (DE-627)DOAJ098912070 (DE-599)DOAJ4df4e580b9d440c6b9045c65b07f400d DE-627 ger DE-627 rakwb eng TK1001-1841 TP250-261 Alexander Mirandona-Olaeta verfasserin aut Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10<sup<−4</sup< S cm<sup<−1</sup< at room temperature, in addition to an acceptable Na<sup<+</sup< transference number. Furthermore, the developed Na[EMIm][TFSI]Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na<sup<+</sup</Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries. metal–organic framework ionic liquid solid-state electrolyte sodium battery Production of electric energy or power. Powerplants. Central stations Industrial electrochemistry Eider Goikolea verfasserin aut Senentxu Lanceros-Mendez verfasserin aut Arkaitz Fidalgo-Marijuan verfasserin aut Idoia Ruiz de Larramendi verfasserin aut In Batteries MDPI AG, 2016 9(2023), 12, p 588 (DE-627)820684066 (DE-600)2813972-0 23130105 nnns volume:9 year:2023 number:12, p 588 https://doi.org/10.3390/batteries9120588 kostenfrei https://doaj.org/article/4df4e580b9d440c6b9045c65b07f400d kostenfrei https://www.mdpi.com/2313-0105/9/12/588 kostenfrei https://doaj.org/toc/2313-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 12, p 588 |
language |
English |
source |
In Batteries 9(2023), 12, p 588 volume:9 year:2023 number:12, p 588 |
sourceStr |
In Batteries 9(2023), 12, p 588 volume:9 year:2023 number:12, p 588 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
metal–organic framework ionic liquid solid-state electrolyte sodium battery Production of electric energy or power. Powerplants. Central stations Industrial electrochemistry |
isfreeaccess_bool |
true |
container_title |
Batteries |
authorswithroles_txt_mv |
Alexander Mirandona-Olaeta @@aut@@ Eider Goikolea @@aut@@ Senentxu Lanceros-Mendez @@aut@@ Arkaitz Fidalgo-Marijuan @@aut@@ Idoia Ruiz de Larramendi @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
820684066 |
id |
DOAJ098912070 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098912070</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414004614.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/batteries9120588</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098912070</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4df4e580b9d440c6b9045c65b07f400d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP250-261</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alexander Mirandona-Olaeta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10<sup<−4</sup< S cm<sup<−1</sup< at room temperature, in addition to an acceptable Na<sup<+</sup< transference number. Furthermore, the developed Na[EMIm][TFSI]Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na<sup<+</sup</Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metal–organic framework</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ionic liquid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solid-state electrolyte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sodium battery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial electrochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eider Goikolea</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Senentxu Lanceros-Mendez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arkaitz Fidalgo-Marijuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Idoia Ruiz de Larramendi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Batteries</subfield><subfield code="d">MDPI AG, 2016</subfield><subfield code="g">9(2023), 12, p 588</subfield><subfield code="w">(DE-627)820684066</subfield><subfield code="w">(DE-600)2813972-0</subfield><subfield code="x">23130105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12, p 588</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/batteries9120588</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4df4e580b9d440c6b9045c65b07f400d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2313-0105/9/12/588</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2313-0105</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2023</subfield><subfield code="e">12, p 588</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Alexander Mirandona-Olaeta |
spellingShingle |
Alexander Mirandona-Olaeta misc TK1001-1841 misc TP250-261 misc metal–organic framework misc ionic liquid misc solid-state electrolyte misc sodium battery misc Production of electric energy or power. Powerplants. Central stations misc Industrial electrochemistry Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries |
authorStr |
Alexander Mirandona-Olaeta |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820684066 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1001-1841 |
illustrated |
Not Illustrated |
issn |
23130105 |
topic_title |
TK1001-1841 TP250-261 Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries metal–organic framework ionic liquid solid-state electrolyte sodium battery |
topic |
misc TK1001-1841 misc TP250-261 misc metal–organic framework misc ionic liquid misc solid-state electrolyte misc sodium battery misc Production of electric energy or power. Powerplants. Central stations misc Industrial electrochemistry |
topic_unstemmed |
misc TK1001-1841 misc TP250-261 misc metal–organic framework misc ionic liquid misc solid-state electrolyte misc sodium battery misc Production of electric energy or power. Powerplants. Central stations misc Industrial electrochemistry |
topic_browse |
misc TK1001-1841 misc TP250-261 misc metal–organic framework misc ionic liquid misc solid-state electrolyte misc sodium battery misc Production of electric energy or power. Powerplants. Central stations misc Industrial electrochemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Batteries |
hierarchy_parent_id |
820684066 |
hierarchy_top_title |
Batteries |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820684066 (DE-600)2813972-0 |
title |
Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries |
ctrlnum |
(DE-627)DOAJ098912070 (DE-599)DOAJ4df4e580b9d440c6b9045c65b07f400d |
title_full |
Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries |
author_sort |
Alexander Mirandona-Olaeta |
journal |
Batteries |
journalStr |
Batteries |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Alexander Mirandona-Olaeta Eider Goikolea Senentxu Lanceros-Mendez Arkaitz Fidalgo-Marijuan Idoia Ruiz de Larramendi |
container_volume |
9 |
class |
TK1001-1841 TP250-261 |
format_se |
Elektronische Aufsätze |
author-letter |
Alexander Mirandona-Olaeta |
doi_str_mv |
10.3390/batteries9120588 |
author2-role |
verfasserin |
title_sort |
ionic liquid-laden zn-mof-74-based solid-state electrolyte for sodium batteries |
callnumber |
TK1001-1841 |
title_auth |
Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries |
abstract |
Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10<sup<−4</sup< S cm<sup<−1</sup< at room temperature, in addition to an acceptable Na<sup<+</sup< transference number. Furthermore, the developed Na[EMIm][TFSI]Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na<sup<+</sup</Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries. |
abstractGer |
Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10<sup<−4</sup< S cm<sup<−1</sup< at room temperature, in addition to an acceptable Na<sup<+</sup< transference number. Furthermore, the developed Na[EMIm][TFSI]Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na<sup<+</sup</Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries. |
abstract_unstemmed |
Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10<sup<−4</sup< S cm<sup<−1</sup< at room temperature, in addition to an acceptable Na<sup<+</sup< transference number. Furthermore, the developed Na[EMIm][TFSI]Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na<sup<+</sup</Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 588 |
title_short |
Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries |
url |
https://doi.org/10.3390/batteries9120588 https://doaj.org/article/4df4e580b9d440c6b9045c65b07f400d https://www.mdpi.com/2313-0105/9/12/588 https://doaj.org/toc/2313-0105 |
remote_bool |
true |
author2 |
Eider Goikolea Senentxu Lanceros-Mendez Arkaitz Fidalgo-Marijuan Idoia Ruiz de Larramendi |
author2Str |
Eider Goikolea Senentxu Lanceros-Mendez Arkaitz Fidalgo-Marijuan Idoia Ruiz de Larramendi |
ppnlink |
820684066 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/batteries9120588 |
callnumber-a |
TK1001-1841 |
up_date |
2024-07-03T19:56:46.463Z |
_version_ |
1803589104659595264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098912070</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414004614.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/batteries9120588</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098912070</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4df4e580b9d440c6b9045c65b07f400d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP250-261</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alexander Mirandona-Olaeta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10<sup<−4</sup< S cm<sup<−1</sup< at room temperature, in addition to an acceptable Na<sup<+</sup< transference number. Furthermore, the developed Na[EMIm][TFSI]Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na<sup<+</sup</Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metal–organic framework</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ionic liquid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solid-state electrolyte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sodium battery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial electrochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eider Goikolea</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Senentxu Lanceros-Mendez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arkaitz Fidalgo-Marijuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Idoia Ruiz de Larramendi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Batteries</subfield><subfield code="d">MDPI AG, 2016</subfield><subfield code="g">9(2023), 12, p 588</subfield><subfield code="w">(DE-627)820684066</subfield><subfield code="w">(DE-600)2813972-0</subfield><subfield code="x">23130105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12, p 588</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/batteries9120588</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4df4e580b9d440c6b9045c65b07f400d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2313-0105/9/12/588</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2313-0105</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2023</subfield><subfield code="e">12, p 588</subfield></datafield></record></collection>
|
score |
7.4011936 |