Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method
The complex mechanical characteristics of the Xiyu conglomerate significantly influence the resistance and deformation features of its caverns’ surrounding rock, thereby constraining the construction of related water diversion tunnels. This paper introduces an improved SegFormer framework developed...
Ausführliche Beschreibung
Autor*in: |
Yutao Zhang [verfasserIn] Zijie He [verfasserIn] Ruonan Jiang [verfasserIn] Lei Liao [verfasserIn] Qingxiang Meng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 13(2023), 24, p 13000 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:24, p 13000 |
Links: |
---|
DOI / URN: |
10.3390/app132413000 |
---|
Katalog-ID: |
DOAJ098919032 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098919032 | ||
003 | DE-627 | ||
005 | 20240414004731.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app132413000 |2 doi | |
035 | |a (DE-627)DOAJ098919032 | ||
035 | |a (DE-599)DOAJec34cce9623b43b9b1443e816d5bf7df | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Yutao Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The complex mechanical characteristics of the Xiyu conglomerate significantly influence the resistance and deformation features of its caverns’ surrounding rock, thereby constraining the construction of related water diversion tunnels. This paper introduces an improved SegFormer framework developed for the detection of mesoscale geomaterial structures. Computerized tomography (CT) scan images of the Xiyu conglomerate were employed to establish a high-precision numerical model. From the results of segmentation, the proposed algorithm outperformed UNet, HRNet, and the original SegFormer neural network. The segmentation results were used to calculate the porosity, and biaxial compression numerical simulation experiments based on the real structure were carried out using the particle flow code (PFC). We observed the failure process of the model and obtained the shear strength of the Xiyu conglomerate. We explored the causes and influencing factors of the anisotropy of the Xiyu conglomerate from the microstructure perspective and provide a micro-observation basis for establishing an anisotropic mechanical model. | ||
650 | 4 | |a Xiyu conglomerate | |
650 | 4 | |a machine learning | |
650 | 4 | |a digital image | |
650 | 4 | |a discrete element method | |
650 | 4 | |a mechanical properties | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Zijie He |e verfasserin |4 aut | |
700 | 0 | |a Ruonan Jiang |e verfasserin |4 aut | |
700 | 0 | |a Lei Liao |e verfasserin |4 aut | |
700 | 0 | |a Qingxiang Meng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 13(2023), 24, p 13000 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:24, p 13000 |
856 | 4 | 0 | |u https://doi.org/10.3390/app132413000 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ec34cce9623b43b9b1443e816d5bf7df |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/13/24/13000 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 24, p 13000 |
author_variant |
y z yz z h zh r j rj l l ll q m qm |
---|---|
matchkey_str |
article:20763417:2023----::mrvdoptriinrmwrfreoclsmltooxycnlmrtui |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.3390/app132413000 doi (DE-627)DOAJ098919032 (DE-599)DOAJec34cce9623b43b9b1443e816d5bf7df DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yutao Zhang verfasserin aut Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The complex mechanical characteristics of the Xiyu conglomerate significantly influence the resistance and deformation features of its caverns’ surrounding rock, thereby constraining the construction of related water diversion tunnels. This paper introduces an improved SegFormer framework developed for the detection of mesoscale geomaterial structures. Computerized tomography (CT) scan images of the Xiyu conglomerate were employed to establish a high-precision numerical model. From the results of segmentation, the proposed algorithm outperformed UNet, HRNet, and the original SegFormer neural network. The segmentation results were used to calculate the porosity, and biaxial compression numerical simulation experiments based on the real structure were carried out using the particle flow code (PFC). We observed the failure process of the model and obtained the shear strength of the Xiyu conglomerate. We explored the causes and influencing factors of the anisotropy of the Xiyu conglomerate from the microstructure perspective and provide a micro-observation basis for establishing an anisotropic mechanical model. Xiyu conglomerate machine learning digital image discrete element method mechanical properties Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Zijie He verfasserin aut Ruonan Jiang verfasserin aut Lei Liao verfasserin aut Qingxiang Meng verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 24, p 13000 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:24, p 13000 https://doi.org/10.3390/app132413000 kostenfrei https://doaj.org/article/ec34cce9623b43b9b1443e816d5bf7df kostenfrei https://www.mdpi.com/2076-3417/13/24/13000 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 24, p 13000 |
spelling |
10.3390/app132413000 doi (DE-627)DOAJ098919032 (DE-599)DOAJec34cce9623b43b9b1443e816d5bf7df DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yutao Zhang verfasserin aut Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The complex mechanical characteristics of the Xiyu conglomerate significantly influence the resistance and deformation features of its caverns’ surrounding rock, thereby constraining the construction of related water diversion tunnels. This paper introduces an improved SegFormer framework developed for the detection of mesoscale geomaterial structures. Computerized tomography (CT) scan images of the Xiyu conglomerate were employed to establish a high-precision numerical model. From the results of segmentation, the proposed algorithm outperformed UNet, HRNet, and the original SegFormer neural network. The segmentation results were used to calculate the porosity, and biaxial compression numerical simulation experiments based on the real structure were carried out using the particle flow code (PFC). We observed the failure process of the model and obtained the shear strength of the Xiyu conglomerate. We explored the causes and influencing factors of the anisotropy of the Xiyu conglomerate from the microstructure perspective and provide a micro-observation basis for establishing an anisotropic mechanical model. Xiyu conglomerate machine learning digital image discrete element method mechanical properties Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Zijie He verfasserin aut Ruonan Jiang verfasserin aut Lei Liao verfasserin aut Qingxiang Meng verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 24, p 13000 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:24, p 13000 https://doi.org/10.3390/app132413000 kostenfrei https://doaj.org/article/ec34cce9623b43b9b1443e816d5bf7df kostenfrei https://www.mdpi.com/2076-3417/13/24/13000 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 24, p 13000 |
allfields_unstemmed |
10.3390/app132413000 doi (DE-627)DOAJ098919032 (DE-599)DOAJec34cce9623b43b9b1443e816d5bf7df DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yutao Zhang verfasserin aut Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The complex mechanical characteristics of the Xiyu conglomerate significantly influence the resistance and deformation features of its caverns’ surrounding rock, thereby constraining the construction of related water diversion tunnels. This paper introduces an improved SegFormer framework developed for the detection of mesoscale geomaterial structures. Computerized tomography (CT) scan images of the Xiyu conglomerate were employed to establish a high-precision numerical model. From the results of segmentation, the proposed algorithm outperformed UNet, HRNet, and the original SegFormer neural network. The segmentation results were used to calculate the porosity, and biaxial compression numerical simulation experiments based on the real structure were carried out using the particle flow code (PFC). We observed the failure process of the model and obtained the shear strength of the Xiyu conglomerate. We explored the causes and influencing factors of the anisotropy of the Xiyu conglomerate from the microstructure perspective and provide a micro-observation basis for establishing an anisotropic mechanical model. Xiyu conglomerate machine learning digital image discrete element method mechanical properties Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Zijie He verfasserin aut Ruonan Jiang verfasserin aut Lei Liao verfasserin aut Qingxiang Meng verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 24, p 13000 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:24, p 13000 https://doi.org/10.3390/app132413000 kostenfrei https://doaj.org/article/ec34cce9623b43b9b1443e816d5bf7df kostenfrei https://www.mdpi.com/2076-3417/13/24/13000 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 24, p 13000 |
allfieldsGer |
10.3390/app132413000 doi (DE-627)DOAJ098919032 (DE-599)DOAJec34cce9623b43b9b1443e816d5bf7df DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yutao Zhang verfasserin aut Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The complex mechanical characteristics of the Xiyu conglomerate significantly influence the resistance and deformation features of its caverns’ surrounding rock, thereby constraining the construction of related water diversion tunnels. This paper introduces an improved SegFormer framework developed for the detection of mesoscale geomaterial structures. Computerized tomography (CT) scan images of the Xiyu conglomerate were employed to establish a high-precision numerical model. From the results of segmentation, the proposed algorithm outperformed UNet, HRNet, and the original SegFormer neural network. The segmentation results were used to calculate the porosity, and biaxial compression numerical simulation experiments based on the real structure were carried out using the particle flow code (PFC). We observed the failure process of the model and obtained the shear strength of the Xiyu conglomerate. We explored the causes and influencing factors of the anisotropy of the Xiyu conglomerate from the microstructure perspective and provide a micro-observation basis for establishing an anisotropic mechanical model. Xiyu conglomerate machine learning digital image discrete element method mechanical properties Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Zijie He verfasserin aut Ruonan Jiang verfasserin aut Lei Liao verfasserin aut Qingxiang Meng verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 24, p 13000 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:24, p 13000 https://doi.org/10.3390/app132413000 kostenfrei https://doaj.org/article/ec34cce9623b43b9b1443e816d5bf7df kostenfrei https://www.mdpi.com/2076-3417/13/24/13000 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 24, p 13000 |
allfieldsSound |
10.3390/app132413000 doi (DE-627)DOAJ098919032 (DE-599)DOAJec34cce9623b43b9b1443e816d5bf7df DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yutao Zhang verfasserin aut Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The complex mechanical characteristics of the Xiyu conglomerate significantly influence the resistance and deformation features of its caverns’ surrounding rock, thereby constraining the construction of related water diversion tunnels. This paper introduces an improved SegFormer framework developed for the detection of mesoscale geomaterial structures. Computerized tomography (CT) scan images of the Xiyu conglomerate were employed to establish a high-precision numerical model. From the results of segmentation, the proposed algorithm outperformed UNet, HRNet, and the original SegFormer neural network. The segmentation results were used to calculate the porosity, and biaxial compression numerical simulation experiments based on the real structure were carried out using the particle flow code (PFC). We observed the failure process of the model and obtained the shear strength of the Xiyu conglomerate. We explored the causes and influencing factors of the anisotropy of the Xiyu conglomerate from the microstructure perspective and provide a micro-observation basis for establishing an anisotropic mechanical model. Xiyu conglomerate machine learning digital image discrete element method mechanical properties Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Zijie He verfasserin aut Ruonan Jiang verfasserin aut Lei Liao verfasserin aut Qingxiang Meng verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 24, p 13000 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:24, p 13000 https://doi.org/10.3390/app132413000 kostenfrei https://doaj.org/article/ec34cce9623b43b9b1443e816d5bf7df kostenfrei https://www.mdpi.com/2076-3417/13/24/13000 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 24, p 13000 |
language |
English |
source |
In Applied Sciences 13(2023), 24, p 13000 volume:13 year:2023 number:24, p 13000 |
sourceStr |
In Applied Sciences 13(2023), 24, p 13000 volume:13 year:2023 number:24, p 13000 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Xiyu conglomerate machine learning digital image discrete element method mechanical properties Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Yutao Zhang @@aut@@ Zijie He @@aut@@ Ruonan Jiang @@aut@@ Lei Liao @@aut@@ Qingxiang Meng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ098919032 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098919032</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414004731.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app132413000</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098919032</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJec34cce9623b43b9b1443e816d5bf7df</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yutao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The complex mechanical characteristics of the Xiyu conglomerate significantly influence the resistance and deformation features of its caverns’ surrounding rock, thereby constraining the construction of related water diversion tunnels. This paper introduces an improved SegFormer framework developed for the detection of mesoscale geomaterial structures. Computerized tomography (CT) scan images of the Xiyu conglomerate were employed to establish a high-precision numerical model. From the results of segmentation, the proposed algorithm outperformed UNet, HRNet, and the original SegFormer neural network. The segmentation results were used to calculate the porosity, and biaxial compression numerical simulation experiments based on the real structure were carried out using the particle flow code (PFC). We observed the failure process of the model and obtained the shear strength of the Xiyu conglomerate. We explored the causes and influencing factors of the anisotropy of the Xiyu conglomerate from the microstructure perspective and provide a micro-observation basis for establishing an anisotropic mechanical model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Xiyu conglomerate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechanical properties</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zijie He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ruonan Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingxiang Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 24, p 13000</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:24, p 13000</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app132413000</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ec34cce9623b43b9b1443e816d5bf7df</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/24/13000</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">24, p 13000</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yutao Zhang |
spellingShingle |
Yutao Zhang misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc Xiyu conglomerate misc machine learning misc digital image misc discrete element method misc mechanical properties misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method |
authorStr |
Yutao Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method Xiyu conglomerate machine learning digital image discrete element method mechanical properties |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc Xiyu conglomerate misc machine learning misc digital image misc discrete element method misc mechanical properties misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc Xiyu conglomerate misc machine learning misc digital image misc discrete element method misc mechanical properties misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc Xiyu conglomerate misc machine learning misc digital image misc discrete element method misc mechanical properties misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method |
ctrlnum |
(DE-627)DOAJ098919032 (DE-599)DOAJec34cce9623b43b9b1443e816d5bf7df |
title_full |
Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method |
author_sort |
Yutao Zhang |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Yutao Zhang Zijie He Ruonan Jiang Lei Liao Qingxiang Meng |
container_volume |
13 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Yutao Zhang |
doi_str_mv |
10.3390/app132413000 |
author2-role |
verfasserin |
title_sort |
improved computer vision framework for mesoscale simulation of xiyu conglomerate using the discrete element method |
callnumber |
TA1-2040 |
title_auth |
Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method |
abstract |
The complex mechanical characteristics of the Xiyu conglomerate significantly influence the resistance and deformation features of its caverns’ surrounding rock, thereby constraining the construction of related water diversion tunnels. This paper introduces an improved SegFormer framework developed for the detection of mesoscale geomaterial structures. Computerized tomography (CT) scan images of the Xiyu conglomerate were employed to establish a high-precision numerical model. From the results of segmentation, the proposed algorithm outperformed UNet, HRNet, and the original SegFormer neural network. The segmentation results were used to calculate the porosity, and biaxial compression numerical simulation experiments based on the real structure were carried out using the particle flow code (PFC). We observed the failure process of the model and obtained the shear strength of the Xiyu conglomerate. We explored the causes and influencing factors of the anisotropy of the Xiyu conglomerate from the microstructure perspective and provide a micro-observation basis for establishing an anisotropic mechanical model. |
abstractGer |
The complex mechanical characteristics of the Xiyu conglomerate significantly influence the resistance and deformation features of its caverns’ surrounding rock, thereby constraining the construction of related water diversion tunnels. This paper introduces an improved SegFormer framework developed for the detection of mesoscale geomaterial structures. Computerized tomography (CT) scan images of the Xiyu conglomerate were employed to establish a high-precision numerical model. From the results of segmentation, the proposed algorithm outperformed UNet, HRNet, and the original SegFormer neural network. The segmentation results were used to calculate the porosity, and biaxial compression numerical simulation experiments based on the real structure were carried out using the particle flow code (PFC). We observed the failure process of the model and obtained the shear strength of the Xiyu conglomerate. We explored the causes and influencing factors of the anisotropy of the Xiyu conglomerate from the microstructure perspective and provide a micro-observation basis for establishing an anisotropic mechanical model. |
abstract_unstemmed |
The complex mechanical characteristics of the Xiyu conglomerate significantly influence the resistance and deformation features of its caverns’ surrounding rock, thereby constraining the construction of related water diversion tunnels. This paper introduces an improved SegFormer framework developed for the detection of mesoscale geomaterial structures. Computerized tomography (CT) scan images of the Xiyu conglomerate were employed to establish a high-precision numerical model. From the results of segmentation, the proposed algorithm outperformed UNet, HRNet, and the original SegFormer neural network. The segmentation results were used to calculate the porosity, and biaxial compression numerical simulation experiments based on the real structure were carried out using the particle flow code (PFC). We observed the failure process of the model and obtained the shear strength of the Xiyu conglomerate. We explored the causes and influencing factors of the anisotropy of the Xiyu conglomerate from the microstructure perspective and provide a micro-observation basis for establishing an anisotropic mechanical model. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
24, p 13000 |
title_short |
Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method |
url |
https://doi.org/10.3390/app132413000 https://doaj.org/article/ec34cce9623b43b9b1443e816d5bf7df https://www.mdpi.com/2076-3417/13/24/13000 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Zijie He Ruonan Jiang Lei Liao Qingxiang Meng |
author2Str |
Zijie He Ruonan Jiang Lei Liao Qingxiang Meng |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app132413000 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T19:59:11.922Z |
_version_ |
1803589257185460224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098919032</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414004731.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app132413000</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098919032</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJec34cce9623b43b9b1443e816d5bf7df</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yutao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved Computer Vision Framework for Mesoscale Simulation of Xiyu Conglomerate Using the Discrete Element Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The complex mechanical characteristics of the Xiyu conglomerate significantly influence the resistance and deformation features of its caverns’ surrounding rock, thereby constraining the construction of related water diversion tunnels. This paper introduces an improved SegFormer framework developed for the detection of mesoscale geomaterial structures. Computerized tomography (CT) scan images of the Xiyu conglomerate were employed to establish a high-precision numerical model. From the results of segmentation, the proposed algorithm outperformed UNet, HRNet, and the original SegFormer neural network. The segmentation results were used to calculate the porosity, and biaxial compression numerical simulation experiments based on the real structure were carried out using the particle flow code (PFC). We observed the failure process of the model and obtained the shear strength of the Xiyu conglomerate. We explored the causes and influencing factors of the anisotropy of the Xiyu conglomerate from the microstructure perspective and provide a micro-observation basis for establishing an anisotropic mechanical model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Xiyu conglomerate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechanical properties</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zijie He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ruonan Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingxiang Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 24, p 13000</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:24, p 13000</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app132413000</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ec34cce9623b43b9b1443e816d5bf7df</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/24/13000</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">24, p 13000</subfield></datafield></record></collection>
|
score |
7.4004345 |