Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey
In the contemporary discourse, smart agriculture (SA) stands out as a potent driver for sustainable economic growth. The challenges of navigating SA transition are notably intricate in developing nations. To effectively embark on this transformative journey, strategic approaches are imperative, nece...
Ausführliche Beschreibung
Autor*in: |
Deniz Uztürk [verfasserIn] Gülçin Büyüközkan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Agriculture - MDPI AG, 2012, 13(2023), 12, p 2275 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:12, p 2275 |
Links: |
---|
DOI / URN: |
10.3390/agriculture13122275 |
---|
Katalog-ID: |
DOAJ098927698 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098927698 | ||
003 | DE-627 | ||
005 | 20240414004918.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/agriculture13122275 |2 doi | |
035 | |a (DE-627)DOAJ098927698 | ||
035 | |a (DE-599)DOAJ26361a55fde241c3a786ec070dbac3d4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a S1-972 | |
100 | 0 | |a Deniz Uztürk |e verfasserin |4 aut | |
245 | 1 | 0 | |a Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the contemporary discourse, smart agriculture (SA) stands out as a potent driver for sustainable economic growth. The challenges of navigating SA transition are notably intricate in developing nations. To effectively embark on this transformative journey, strategic approaches are imperative, necessitating a thorough examination of the prevailing agricultural ecosystem. This study seeks to formulate strategies that advance Turkey’s agricultural sector. The primary research questions focus on optimizing the benefits of SA by aligning strengths and opportunities with diverse socio-economic and environmental factors, while also exploring effective strategies to mitigate the impact of weaknesses and threats within the agricultural landscape. To achieve this objective, the utilization of the 2-Tuple linguistic (2TL) model integrated DEMATEL (Decision-Making Trial and Evaluation Laboratory) methodology in conjunction with SWOT (Strengths, Weaknesses, Opportunities, and Threats) and PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analyses is proposed. The integration of linguistic variables enhances the capacity to delve deeper into system analysis, aligning more closely with human cognitive processes. The research commences with SWOT and PESTLE analyses applied to Turkey’s agricultural sector. Subsequently, the 2TL-DEMATEL approach is employed to investigate interrelationships among analysis components. This inquiry aims to establish causal relations, facilitating the derivation of relevant strategies. The case study centers on Turkey, a developing country, with outcomes indicating that the highest-priority strategies revolve around addressing ‘environmental threats’ and ‘economic weaknesses’. The subsequent evaluation encompasses eight dimensions, resulting in the generation of fifteen distinct strategies, a process facilitated by collaboration with field experts. Importantly, both the results and strategies undergo rigorous validation, drawing upon insights from the recent literature and field experts. Significantly, these findings align seamlessly with the Sustainable Development Goals (SDGs), substantiating the study’s broader significance in fostering a sustainable future for Turkey. | ||
650 | 4 | |a smart agriculture | |
650 | 4 | |a strategy generation | |
650 | 4 | |a Turkey | |
650 | 4 | |a SWOT/PESTLE analysis | |
650 | 4 | |a DEMATEL | |
650 | 4 | |a 2-Tuple linguistic model | |
653 | 0 | |a Agriculture (General) | |
700 | 0 | |a Gülçin Büyüközkan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Agriculture |d MDPI AG, 2012 |g 13(2023), 12, p 2275 |w (DE-627)686948173 |w (DE-600)2651678-0 |x 20770472 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:12, p 2275 |
856 | 4 | 0 | |u https://doi.org/10.3390/agriculture13122275 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/26361a55fde241c3a786ec070dbac3d4 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2077-0472/13/12/2275 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2077-0472 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 12, p 2275 |
author_variant |
d u du g b gb |
---|---|
matchkey_str |
article:20770472:2023----::taeiaayifrdacnsatgiutrwttenltcwtet |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
S |
publishDate |
2023 |
allfields |
10.3390/agriculture13122275 doi (DE-627)DOAJ098927698 (DE-599)DOAJ26361a55fde241c3a786ec070dbac3d4 DE-627 ger DE-627 rakwb eng S1-972 Deniz Uztürk verfasserin aut Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the contemporary discourse, smart agriculture (SA) stands out as a potent driver for sustainable economic growth. The challenges of navigating SA transition are notably intricate in developing nations. To effectively embark on this transformative journey, strategic approaches are imperative, necessitating a thorough examination of the prevailing agricultural ecosystem. This study seeks to formulate strategies that advance Turkey’s agricultural sector. The primary research questions focus on optimizing the benefits of SA by aligning strengths and opportunities with diverse socio-economic and environmental factors, while also exploring effective strategies to mitigate the impact of weaknesses and threats within the agricultural landscape. To achieve this objective, the utilization of the 2-Tuple linguistic (2TL) model integrated DEMATEL (Decision-Making Trial and Evaluation Laboratory) methodology in conjunction with SWOT (Strengths, Weaknesses, Opportunities, and Threats) and PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analyses is proposed. The integration of linguistic variables enhances the capacity to delve deeper into system analysis, aligning more closely with human cognitive processes. The research commences with SWOT and PESTLE analyses applied to Turkey’s agricultural sector. Subsequently, the 2TL-DEMATEL approach is employed to investigate interrelationships among analysis components. This inquiry aims to establish causal relations, facilitating the derivation of relevant strategies. The case study centers on Turkey, a developing country, with outcomes indicating that the highest-priority strategies revolve around addressing ‘environmental threats’ and ‘economic weaknesses’. The subsequent evaluation encompasses eight dimensions, resulting in the generation of fifteen distinct strategies, a process facilitated by collaboration with field experts. Importantly, both the results and strategies undergo rigorous validation, drawing upon insights from the recent literature and field experts. Significantly, these findings align seamlessly with the Sustainable Development Goals (SDGs), substantiating the study’s broader significance in fostering a sustainable future for Turkey. smart agriculture strategy generation Turkey SWOT/PESTLE analysis DEMATEL 2-Tuple linguistic model Agriculture (General) Gülçin Büyüközkan verfasserin aut In Agriculture MDPI AG, 2012 13(2023), 12, p 2275 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:13 year:2023 number:12, p 2275 https://doi.org/10.3390/agriculture13122275 kostenfrei https://doaj.org/article/26361a55fde241c3a786ec070dbac3d4 kostenfrei https://www.mdpi.com/2077-0472/13/12/2275 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 12, p 2275 |
spelling |
10.3390/agriculture13122275 doi (DE-627)DOAJ098927698 (DE-599)DOAJ26361a55fde241c3a786ec070dbac3d4 DE-627 ger DE-627 rakwb eng S1-972 Deniz Uztürk verfasserin aut Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the contemporary discourse, smart agriculture (SA) stands out as a potent driver for sustainable economic growth. The challenges of navigating SA transition are notably intricate in developing nations. To effectively embark on this transformative journey, strategic approaches are imperative, necessitating a thorough examination of the prevailing agricultural ecosystem. This study seeks to formulate strategies that advance Turkey’s agricultural sector. The primary research questions focus on optimizing the benefits of SA by aligning strengths and opportunities with diverse socio-economic and environmental factors, while also exploring effective strategies to mitigate the impact of weaknesses and threats within the agricultural landscape. To achieve this objective, the utilization of the 2-Tuple linguistic (2TL) model integrated DEMATEL (Decision-Making Trial and Evaluation Laboratory) methodology in conjunction with SWOT (Strengths, Weaknesses, Opportunities, and Threats) and PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analyses is proposed. The integration of linguistic variables enhances the capacity to delve deeper into system analysis, aligning more closely with human cognitive processes. The research commences with SWOT and PESTLE analyses applied to Turkey’s agricultural sector. Subsequently, the 2TL-DEMATEL approach is employed to investigate interrelationships among analysis components. This inquiry aims to establish causal relations, facilitating the derivation of relevant strategies. The case study centers on Turkey, a developing country, with outcomes indicating that the highest-priority strategies revolve around addressing ‘environmental threats’ and ‘economic weaknesses’. The subsequent evaluation encompasses eight dimensions, resulting in the generation of fifteen distinct strategies, a process facilitated by collaboration with field experts. Importantly, both the results and strategies undergo rigorous validation, drawing upon insights from the recent literature and field experts. Significantly, these findings align seamlessly with the Sustainable Development Goals (SDGs), substantiating the study’s broader significance in fostering a sustainable future for Turkey. smart agriculture strategy generation Turkey SWOT/PESTLE analysis DEMATEL 2-Tuple linguistic model Agriculture (General) Gülçin Büyüközkan verfasserin aut In Agriculture MDPI AG, 2012 13(2023), 12, p 2275 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:13 year:2023 number:12, p 2275 https://doi.org/10.3390/agriculture13122275 kostenfrei https://doaj.org/article/26361a55fde241c3a786ec070dbac3d4 kostenfrei https://www.mdpi.com/2077-0472/13/12/2275 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 12, p 2275 |
allfields_unstemmed |
10.3390/agriculture13122275 doi (DE-627)DOAJ098927698 (DE-599)DOAJ26361a55fde241c3a786ec070dbac3d4 DE-627 ger DE-627 rakwb eng S1-972 Deniz Uztürk verfasserin aut Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the contemporary discourse, smart agriculture (SA) stands out as a potent driver for sustainable economic growth. The challenges of navigating SA transition are notably intricate in developing nations. To effectively embark on this transformative journey, strategic approaches are imperative, necessitating a thorough examination of the prevailing agricultural ecosystem. This study seeks to formulate strategies that advance Turkey’s agricultural sector. The primary research questions focus on optimizing the benefits of SA by aligning strengths and opportunities with diverse socio-economic and environmental factors, while also exploring effective strategies to mitigate the impact of weaknesses and threats within the agricultural landscape. To achieve this objective, the utilization of the 2-Tuple linguistic (2TL) model integrated DEMATEL (Decision-Making Trial and Evaluation Laboratory) methodology in conjunction with SWOT (Strengths, Weaknesses, Opportunities, and Threats) and PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analyses is proposed. The integration of linguistic variables enhances the capacity to delve deeper into system analysis, aligning more closely with human cognitive processes. The research commences with SWOT and PESTLE analyses applied to Turkey’s agricultural sector. Subsequently, the 2TL-DEMATEL approach is employed to investigate interrelationships among analysis components. This inquiry aims to establish causal relations, facilitating the derivation of relevant strategies. The case study centers on Turkey, a developing country, with outcomes indicating that the highest-priority strategies revolve around addressing ‘environmental threats’ and ‘economic weaknesses’. The subsequent evaluation encompasses eight dimensions, resulting in the generation of fifteen distinct strategies, a process facilitated by collaboration with field experts. Importantly, both the results and strategies undergo rigorous validation, drawing upon insights from the recent literature and field experts. Significantly, these findings align seamlessly with the Sustainable Development Goals (SDGs), substantiating the study’s broader significance in fostering a sustainable future for Turkey. smart agriculture strategy generation Turkey SWOT/PESTLE analysis DEMATEL 2-Tuple linguistic model Agriculture (General) Gülçin Büyüközkan verfasserin aut In Agriculture MDPI AG, 2012 13(2023), 12, p 2275 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:13 year:2023 number:12, p 2275 https://doi.org/10.3390/agriculture13122275 kostenfrei https://doaj.org/article/26361a55fde241c3a786ec070dbac3d4 kostenfrei https://www.mdpi.com/2077-0472/13/12/2275 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 12, p 2275 |
allfieldsGer |
10.3390/agriculture13122275 doi (DE-627)DOAJ098927698 (DE-599)DOAJ26361a55fde241c3a786ec070dbac3d4 DE-627 ger DE-627 rakwb eng S1-972 Deniz Uztürk verfasserin aut Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the contemporary discourse, smart agriculture (SA) stands out as a potent driver for sustainable economic growth. The challenges of navigating SA transition are notably intricate in developing nations. To effectively embark on this transformative journey, strategic approaches are imperative, necessitating a thorough examination of the prevailing agricultural ecosystem. This study seeks to formulate strategies that advance Turkey’s agricultural sector. The primary research questions focus on optimizing the benefits of SA by aligning strengths and opportunities with diverse socio-economic and environmental factors, while also exploring effective strategies to mitigate the impact of weaknesses and threats within the agricultural landscape. To achieve this objective, the utilization of the 2-Tuple linguistic (2TL) model integrated DEMATEL (Decision-Making Trial and Evaluation Laboratory) methodology in conjunction with SWOT (Strengths, Weaknesses, Opportunities, and Threats) and PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analyses is proposed. The integration of linguistic variables enhances the capacity to delve deeper into system analysis, aligning more closely with human cognitive processes. The research commences with SWOT and PESTLE analyses applied to Turkey’s agricultural sector. Subsequently, the 2TL-DEMATEL approach is employed to investigate interrelationships among analysis components. This inquiry aims to establish causal relations, facilitating the derivation of relevant strategies. The case study centers on Turkey, a developing country, with outcomes indicating that the highest-priority strategies revolve around addressing ‘environmental threats’ and ‘economic weaknesses’. The subsequent evaluation encompasses eight dimensions, resulting in the generation of fifteen distinct strategies, a process facilitated by collaboration with field experts. Importantly, both the results and strategies undergo rigorous validation, drawing upon insights from the recent literature and field experts. Significantly, these findings align seamlessly with the Sustainable Development Goals (SDGs), substantiating the study’s broader significance in fostering a sustainable future for Turkey. smart agriculture strategy generation Turkey SWOT/PESTLE analysis DEMATEL 2-Tuple linguistic model Agriculture (General) Gülçin Büyüközkan verfasserin aut In Agriculture MDPI AG, 2012 13(2023), 12, p 2275 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:13 year:2023 number:12, p 2275 https://doi.org/10.3390/agriculture13122275 kostenfrei https://doaj.org/article/26361a55fde241c3a786ec070dbac3d4 kostenfrei https://www.mdpi.com/2077-0472/13/12/2275 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 12, p 2275 |
allfieldsSound |
10.3390/agriculture13122275 doi (DE-627)DOAJ098927698 (DE-599)DOAJ26361a55fde241c3a786ec070dbac3d4 DE-627 ger DE-627 rakwb eng S1-972 Deniz Uztürk verfasserin aut Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the contemporary discourse, smart agriculture (SA) stands out as a potent driver for sustainable economic growth. The challenges of navigating SA transition are notably intricate in developing nations. To effectively embark on this transformative journey, strategic approaches are imperative, necessitating a thorough examination of the prevailing agricultural ecosystem. This study seeks to formulate strategies that advance Turkey’s agricultural sector. The primary research questions focus on optimizing the benefits of SA by aligning strengths and opportunities with diverse socio-economic and environmental factors, while also exploring effective strategies to mitigate the impact of weaknesses and threats within the agricultural landscape. To achieve this objective, the utilization of the 2-Tuple linguistic (2TL) model integrated DEMATEL (Decision-Making Trial and Evaluation Laboratory) methodology in conjunction with SWOT (Strengths, Weaknesses, Opportunities, and Threats) and PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analyses is proposed. The integration of linguistic variables enhances the capacity to delve deeper into system analysis, aligning more closely with human cognitive processes. The research commences with SWOT and PESTLE analyses applied to Turkey’s agricultural sector. Subsequently, the 2TL-DEMATEL approach is employed to investigate interrelationships among analysis components. This inquiry aims to establish causal relations, facilitating the derivation of relevant strategies. The case study centers on Turkey, a developing country, with outcomes indicating that the highest-priority strategies revolve around addressing ‘environmental threats’ and ‘economic weaknesses’. The subsequent evaluation encompasses eight dimensions, resulting in the generation of fifteen distinct strategies, a process facilitated by collaboration with field experts. Importantly, both the results and strategies undergo rigorous validation, drawing upon insights from the recent literature and field experts. Significantly, these findings align seamlessly with the Sustainable Development Goals (SDGs), substantiating the study’s broader significance in fostering a sustainable future for Turkey. smart agriculture strategy generation Turkey SWOT/PESTLE analysis DEMATEL 2-Tuple linguistic model Agriculture (General) Gülçin Büyüközkan verfasserin aut In Agriculture MDPI AG, 2012 13(2023), 12, p 2275 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:13 year:2023 number:12, p 2275 https://doi.org/10.3390/agriculture13122275 kostenfrei https://doaj.org/article/26361a55fde241c3a786ec070dbac3d4 kostenfrei https://www.mdpi.com/2077-0472/13/12/2275 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 12, p 2275 |
language |
English |
source |
In Agriculture 13(2023), 12, p 2275 volume:13 year:2023 number:12, p 2275 |
sourceStr |
In Agriculture 13(2023), 12, p 2275 volume:13 year:2023 number:12, p 2275 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
smart agriculture strategy generation Turkey SWOT/PESTLE analysis DEMATEL 2-Tuple linguistic model Agriculture (General) |
isfreeaccess_bool |
true |
container_title |
Agriculture |
authorswithroles_txt_mv |
Deniz Uztürk @@aut@@ Gülçin Büyüközkan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
686948173 |
id |
DOAJ098927698 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098927698</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414004918.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agriculture13122275</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098927698</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ26361a55fde241c3a786ec070dbac3d4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Deniz Uztürk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the contemporary discourse, smart agriculture (SA) stands out as a potent driver for sustainable economic growth. The challenges of navigating SA transition are notably intricate in developing nations. To effectively embark on this transformative journey, strategic approaches are imperative, necessitating a thorough examination of the prevailing agricultural ecosystem. This study seeks to formulate strategies that advance Turkey’s agricultural sector. The primary research questions focus on optimizing the benefits of SA by aligning strengths and opportunities with diverse socio-economic and environmental factors, while also exploring effective strategies to mitigate the impact of weaknesses and threats within the agricultural landscape. To achieve this objective, the utilization of the 2-Tuple linguistic (2TL) model integrated DEMATEL (Decision-Making Trial and Evaluation Laboratory) methodology in conjunction with SWOT (Strengths, Weaknesses, Opportunities, and Threats) and PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analyses is proposed. The integration of linguistic variables enhances the capacity to delve deeper into system analysis, aligning more closely with human cognitive processes. The research commences with SWOT and PESTLE analyses applied to Turkey’s agricultural sector. Subsequently, the 2TL-DEMATEL approach is employed to investigate interrelationships among analysis components. This inquiry aims to establish causal relations, facilitating the derivation of relevant strategies. The case study centers on Turkey, a developing country, with outcomes indicating that the highest-priority strategies revolve around addressing ‘environmental threats’ and ‘economic weaknesses’. The subsequent evaluation encompasses eight dimensions, resulting in the generation of fifteen distinct strategies, a process facilitated by collaboration with field experts. Importantly, both the results and strategies undergo rigorous validation, drawing upon insights from the recent literature and field experts. Significantly, these findings align seamlessly with the Sustainable Development Goals (SDGs), substantiating the study’s broader significance in fostering a sustainable future for Turkey.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strategy generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turkey</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SWOT/PESTLE analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DEMATEL</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2-Tuple linguistic model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gülçin Büyüközkan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agriculture</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 12, p 2275</subfield><subfield code="w">(DE-627)686948173</subfield><subfield code="w">(DE-600)2651678-0</subfield><subfield code="x">20770472</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12, p 2275</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agriculture13122275</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/26361a55fde241c3a786ec070dbac3d4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-0472/13/12/2275</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-0472</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">12, p 2275</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Deniz Uztürk |
spellingShingle |
Deniz Uztürk misc S1-972 misc smart agriculture misc strategy generation misc Turkey misc SWOT/PESTLE analysis misc DEMATEL misc 2-Tuple linguistic model misc Agriculture (General) Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey |
authorStr |
Deniz Uztürk |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)686948173 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
S1-972 |
illustrated |
Not Illustrated |
issn |
20770472 |
topic_title |
S1-972 Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey smart agriculture strategy generation Turkey SWOT/PESTLE analysis DEMATEL 2-Tuple linguistic model |
topic |
misc S1-972 misc smart agriculture misc strategy generation misc Turkey misc SWOT/PESTLE analysis misc DEMATEL misc 2-Tuple linguistic model misc Agriculture (General) |
topic_unstemmed |
misc S1-972 misc smart agriculture misc strategy generation misc Turkey misc SWOT/PESTLE analysis misc DEMATEL misc 2-Tuple linguistic model misc Agriculture (General) |
topic_browse |
misc S1-972 misc smart agriculture misc strategy generation misc Turkey misc SWOT/PESTLE analysis misc DEMATEL misc 2-Tuple linguistic model misc Agriculture (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agriculture |
hierarchy_parent_id |
686948173 |
hierarchy_top_title |
Agriculture |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)686948173 (DE-600)2651678-0 |
title |
Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey |
ctrlnum |
(DE-627)DOAJ098927698 (DE-599)DOAJ26361a55fde241c3a786ec070dbac3d4 |
title_full |
Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey |
author_sort |
Deniz Uztürk |
journal |
Agriculture |
journalStr |
Agriculture |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Deniz Uztürk Gülçin Büyüközkan |
container_volume |
13 |
class |
S1-972 |
format_se |
Elektronische Aufsätze |
author-letter |
Deniz Uztürk |
doi_str_mv |
10.3390/agriculture13122275 |
author2-role |
verfasserin |
title_sort |
strategic analysis for advancing smart agriculture with the analytic swot/pestle framework: a case for turkey |
callnumber |
S1-972 |
title_auth |
Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey |
abstract |
In the contemporary discourse, smart agriculture (SA) stands out as a potent driver for sustainable economic growth. The challenges of navigating SA transition are notably intricate in developing nations. To effectively embark on this transformative journey, strategic approaches are imperative, necessitating a thorough examination of the prevailing agricultural ecosystem. This study seeks to formulate strategies that advance Turkey’s agricultural sector. The primary research questions focus on optimizing the benefits of SA by aligning strengths and opportunities with diverse socio-economic and environmental factors, while also exploring effective strategies to mitigate the impact of weaknesses and threats within the agricultural landscape. To achieve this objective, the utilization of the 2-Tuple linguistic (2TL) model integrated DEMATEL (Decision-Making Trial and Evaluation Laboratory) methodology in conjunction with SWOT (Strengths, Weaknesses, Opportunities, and Threats) and PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analyses is proposed. The integration of linguistic variables enhances the capacity to delve deeper into system analysis, aligning more closely with human cognitive processes. The research commences with SWOT and PESTLE analyses applied to Turkey’s agricultural sector. Subsequently, the 2TL-DEMATEL approach is employed to investigate interrelationships among analysis components. This inquiry aims to establish causal relations, facilitating the derivation of relevant strategies. The case study centers on Turkey, a developing country, with outcomes indicating that the highest-priority strategies revolve around addressing ‘environmental threats’ and ‘economic weaknesses’. The subsequent evaluation encompasses eight dimensions, resulting in the generation of fifteen distinct strategies, a process facilitated by collaboration with field experts. Importantly, both the results and strategies undergo rigorous validation, drawing upon insights from the recent literature and field experts. Significantly, these findings align seamlessly with the Sustainable Development Goals (SDGs), substantiating the study’s broader significance in fostering a sustainable future for Turkey. |
abstractGer |
In the contemporary discourse, smart agriculture (SA) stands out as a potent driver for sustainable economic growth. The challenges of navigating SA transition are notably intricate in developing nations. To effectively embark on this transformative journey, strategic approaches are imperative, necessitating a thorough examination of the prevailing agricultural ecosystem. This study seeks to formulate strategies that advance Turkey’s agricultural sector. The primary research questions focus on optimizing the benefits of SA by aligning strengths and opportunities with diverse socio-economic and environmental factors, while also exploring effective strategies to mitigate the impact of weaknesses and threats within the agricultural landscape. To achieve this objective, the utilization of the 2-Tuple linguistic (2TL) model integrated DEMATEL (Decision-Making Trial and Evaluation Laboratory) methodology in conjunction with SWOT (Strengths, Weaknesses, Opportunities, and Threats) and PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analyses is proposed. The integration of linguistic variables enhances the capacity to delve deeper into system analysis, aligning more closely with human cognitive processes. The research commences with SWOT and PESTLE analyses applied to Turkey’s agricultural sector. Subsequently, the 2TL-DEMATEL approach is employed to investigate interrelationships among analysis components. This inquiry aims to establish causal relations, facilitating the derivation of relevant strategies. The case study centers on Turkey, a developing country, with outcomes indicating that the highest-priority strategies revolve around addressing ‘environmental threats’ and ‘economic weaknesses’. The subsequent evaluation encompasses eight dimensions, resulting in the generation of fifteen distinct strategies, a process facilitated by collaboration with field experts. Importantly, both the results and strategies undergo rigorous validation, drawing upon insights from the recent literature and field experts. Significantly, these findings align seamlessly with the Sustainable Development Goals (SDGs), substantiating the study’s broader significance in fostering a sustainable future for Turkey. |
abstract_unstemmed |
In the contemporary discourse, smart agriculture (SA) stands out as a potent driver for sustainable economic growth. The challenges of navigating SA transition are notably intricate in developing nations. To effectively embark on this transformative journey, strategic approaches are imperative, necessitating a thorough examination of the prevailing agricultural ecosystem. This study seeks to formulate strategies that advance Turkey’s agricultural sector. The primary research questions focus on optimizing the benefits of SA by aligning strengths and opportunities with diverse socio-economic and environmental factors, while also exploring effective strategies to mitigate the impact of weaknesses and threats within the agricultural landscape. To achieve this objective, the utilization of the 2-Tuple linguistic (2TL) model integrated DEMATEL (Decision-Making Trial and Evaluation Laboratory) methodology in conjunction with SWOT (Strengths, Weaknesses, Opportunities, and Threats) and PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analyses is proposed. The integration of linguistic variables enhances the capacity to delve deeper into system analysis, aligning more closely with human cognitive processes. The research commences with SWOT and PESTLE analyses applied to Turkey’s agricultural sector. Subsequently, the 2TL-DEMATEL approach is employed to investigate interrelationships among analysis components. This inquiry aims to establish causal relations, facilitating the derivation of relevant strategies. The case study centers on Turkey, a developing country, with outcomes indicating that the highest-priority strategies revolve around addressing ‘environmental threats’ and ‘economic weaknesses’. The subsequent evaluation encompasses eight dimensions, resulting in the generation of fifteen distinct strategies, a process facilitated by collaboration with field experts. Importantly, both the results and strategies undergo rigorous validation, drawing upon insights from the recent literature and field experts. Significantly, these findings align seamlessly with the Sustainable Development Goals (SDGs), substantiating the study’s broader significance in fostering a sustainable future for Turkey. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 2275 |
title_short |
Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey |
url |
https://doi.org/10.3390/agriculture13122275 https://doaj.org/article/26361a55fde241c3a786ec070dbac3d4 https://www.mdpi.com/2077-0472/13/12/2275 https://doaj.org/toc/2077-0472 |
remote_bool |
true |
author2 |
Gülçin Büyüközkan |
author2Str |
Gülçin Büyüközkan |
ppnlink |
686948173 |
callnumber-subject |
S - General Agriculture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/agriculture13122275 |
callnumber-a |
S1-972 |
up_date |
2024-07-03T20:02:44.847Z |
_version_ |
1803589480460845056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098927698</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414004918.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agriculture13122275</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098927698</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ26361a55fde241c3a786ec070dbac3d4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Deniz Uztürk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the contemporary discourse, smart agriculture (SA) stands out as a potent driver for sustainable economic growth. The challenges of navigating SA transition are notably intricate in developing nations. To effectively embark on this transformative journey, strategic approaches are imperative, necessitating a thorough examination of the prevailing agricultural ecosystem. This study seeks to formulate strategies that advance Turkey’s agricultural sector. The primary research questions focus on optimizing the benefits of SA by aligning strengths and opportunities with diverse socio-economic and environmental factors, while also exploring effective strategies to mitigate the impact of weaknesses and threats within the agricultural landscape. To achieve this objective, the utilization of the 2-Tuple linguistic (2TL) model integrated DEMATEL (Decision-Making Trial and Evaluation Laboratory) methodology in conjunction with SWOT (Strengths, Weaknesses, Opportunities, and Threats) and PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analyses is proposed. The integration of linguistic variables enhances the capacity to delve deeper into system analysis, aligning more closely with human cognitive processes. The research commences with SWOT and PESTLE analyses applied to Turkey’s agricultural sector. Subsequently, the 2TL-DEMATEL approach is employed to investigate interrelationships among analysis components. This inquiry aims to establish causal relations, facilitating the derivation of relevant strategies. The case study centers on Turkey, a developing country, with outcomes indicating that the highest-priority strategies revolve around addressing ‘environmental threats’ and ‘economic weaknesses’. The subsequent evaluation encompasses eight dimensions, resulting in the generation of fifteen distinct strategies, a process facilitated by collaboration with field experts. Importantly, both the results and strategies undergo rigorous validation, drawing upon insights from the recent literature and field experts. Significantly, these findings align seamlessly with the Sustainable Development Goals (SDGs), substantiating the study’s broader significance in fostering a sustainable future for Turkey.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strategy generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turkey</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SWOT/PESTLE analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DEMATEL</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2-Tuple linguistic model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gülçin Büyüközkan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agriculture</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 12, p 2275</subfield><subfield code="w">(DE-627)686948173</subfield><subfield code="w">(DE-600)2651678-0</subfield><subfield code="x">20770472</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12, p 2275</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agriculture13122275</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/26361a55fde241c3a786ec070dbac3d4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-0472/13/12/2275</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-0472</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">12, p 2275</subfield></datafield></record></collection>
|
score |
7.40154 |