Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii
We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of 435 M _⋆ < 10 ^10 M _⊙ galaxies in the redshift range of 0.5 < z < 2.3. We compare the resulting rest-frame 1.5–2 μ m half-light radii ( R _NIR ) with stellar half-mass radii ( ${R}_{{{M}}_{\star }}$ ) derived...
Ausführliche Beschreibung
Autor*in: |
Arjen van der Wel [verfasserIn] Marco Martorano [verfasserIn] Boris Häußler [verfasserIn] Kalina V. Nedkova [verfasserIn] Tim B. Miller [verfasserIn] Gabriel B. Brammer [verfasserIn] Glenn van de Ven [verfasserIn] Joel Leja [verfasserIn] Rachel S. Bezanson [verfasserIn] Adam Muzzin [verfasserIn] Danilo Marchesini [verfasserIn] Anna de Graaff [verfasserIn] Erica J. Nelson [verfasserIn] Mariska Kriek [verfasserIn] Eric F. Bell [verfasserIn] Marijn Franx [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 960(2023), 1, p 53 |
---|---|
Übergeordnetes Werk: |
volume:960 ; year:2023 ; number:1, p 53 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/ad02ee |
---|
Katalog-ID: |
DOAJ098971263 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098971263 | ||
003 | DE-627 | ||
005 | 20240414005750.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/ad02ee |2 doi | |
035 | |a (DE-627)DOAJ098971263 | ||
035 | |a (DE-599)DOAJ39f06aed39b5496892538eddb70896fe | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Arjen van der Wel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of 435 M _⋆ < 10 ^10 M _⊙ galaxies in the redshift range of 0.5 < z < 2.3. We compare the resulting rest-frame 1.5–2 μ m half-light radii ( R _NIR ) with stellar half-mass radii ( ${R}_{{{M}}_{\star }}$ ) derived with multicolor light profiles from CANDELS Hubble Space Telescope imaging. In general agreement with previous work, we find that R _NIR and ${R}_{{{M}}_{\star }}$ are up to 40% smaller than the rest-frame optical half-light radius R _opt . The agreement between R _NIR and ${R}_{{{M}}_{\star }}$ is excellent, with a negligible systematic offset (<0.03 dex) up to z = 2 for quiescent galaxies and up to z = 1.5 for star-forming galaxies. We also deproject the profiles to estimate ${R}_{{{M}}_{\star },3{\rm{D}}}$ , the radius of a sphere containing 50% of the stellar mass. We present the R − M _⋆ distribution of galaxies at 0.5 < z < 1.5, comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . The slope is significantly flatter for ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ compared to R _opt , mostly due to downward shifts in size for massive star-forming galaxies, while ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ do not show markedly different trends. Finally, we show rapid evolution of the size ( R ∝ (1 + z ) ^−1.7±0.1 ) of massive ( M _⋆ < 10 ^11 M _⊙ ) quiescent galaxies between z = 0.5 and z = 2.3, again comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . We conclude that the main tenets of the evolution of the size narrative established over the past 20 yr, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR. | ||
650 | 4 | |a Galaxy evolution | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Marco Martorano |e verfasserin |4 aut | |
700 | 0 | |a Boris Häußler |e verfasserin |4 aut | |
700 | 0 | |a Kalina V. Nedkova |e verfasserin |4 aut | |
700 | 0 | |a Tim B. Miller |e verfasserin |4 aut | |
700 | 0 | |a Gabriel B. Brammer |e verfasserin |4 aut | |
700 | 0 | |a Glenn van de Ven |e verfasserin |4 aut | |
700 | 0 | |a Joel Leja |e verfasserin |4 aut | |
700 | 0 | |a Rachel S. Bezanson |e verfasserin |4 aut | |
700 | 0 | |a Adam Muzzin |e verfasserin |4 aut | |
700 | 0 | |a Danilo Marchesini |e verfasserin |4 aut | |
700 | 0 | |a Anna de Graaff |e verfasserin |4 aut | |
700 | 0 | |a Erica J. Nelson |e verfasserin |4 aut | |
700 | 0 | |a Mariska Kriek |e verfasserin |4 aut | |
700 | 0 | |a Eric F. Bell |e verfasserin |4 aut | |
700 | 0 | |a Marijn Franx |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 960(2023), 1, p 53 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:960 |g year:2023 |g number:1, p 53 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad02ee |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/39f06aed39b5496892538eddb70896fe |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad02ee |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 960 |j 2023 |e 1, p 53 |
author_variant |
a v d w avdw m m mm b h bh k v n kvn t b m tbm g b b gbb g v d v gvdv j l jl r s b rsb a m am d m dm a d g adg e j n ejn m k mk e f b efb m f mf |
---|---|
matchkey_str |
article:15384357:2023----::tlahlmsrdif52glxecmaiowtjsn |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3847/1538-4357/ad02ee doi (DE-627)DOAJ098971263 (DE-599)DOAJ39f06aed39b5496892538eddb70896fe DE-627 ger DE-627 rakwb eng QB460-466 Arjen van der Wel verfasserin aut Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of 435 M _⋆ < 10 ^10 M _⊙ galaxies in the redshift range of 0.5 < z < 2.3. We compare the resulting rest-frame 1.5–2 μ m half-light radii ( R _NIR ) with stellar half-mass radii ( ${R}_{{{M}}_{\star }}$ ) derived with multicolor light profiles from CANDELS Hubble Space Telescope imaging. In general agreement with previous work, we find that R _NIR and ${R}_{{{M}}_{\star }}$ are up to 40% smaller than the rest-frame optical half-light radius R _opt . The agreement between R _NIR and ${R}_{{{M}}_{\star }}$ is excellent, with a negligible systematic offset (<0.03 dex) up to z = 2 for quiescent galaxies and up to z = 1.5 for star-forming galaxies. We also deproject the profiles to estimate ${R}_{{{M}}_{\star },3{\rm{D}}}$ , the radius of a sphere containing 50% of the stellar mass. We present the R − M _⋆ distribution of galaxies at 0.5 < z < 1.5, comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . The slope is significantly flatter for ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ compared to R _opt , mostly due to downward shifts in size for massive star-forming galaxies, while ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ do not show markedly different trends. Finally, we show rapid evolution of the size ( R ∝ (1 + z ) ^−1.7±0.1 ) of massive ( M _⋆ < 10 ^11 M _⊙ ) quiescent galaxies between z = 0.5 and z = 2.3, again comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . We conclude that the main tenets of the evolution of the size narrative established over the past 20 yr, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR. Galaxy evolution Astrophysics Marco Martorano verfasserin aut Boris Häußler verfasserin aut Kalina V. Nedkova verfasserin aut Tim B. Miller verfasserin aut Gabriel B. Brammer verfasserin aut Glenn van de Ven verfasserin aut Joel Leja verfasserin aut Rachel S. Bezanson verfasserin aut Adam Muzzin verfasserin aut Danilo Marchesini verfasserin aut Anna de Graaff verfasserin aut Erica J. Nelson verfasserin aut Mariska Kriek verfasserin aut Eric F. Bell verfasserin aut Marijn Franx verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 960(2023), 1, p 53 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:960 year:2023 number:1, p 53 https://doi.org/10.3847/1538-4357/ad02ee kostenfrei https://doaj.org/article/39f06aed39b5496892538eddb70896fe kostenfrei https://doi.org/10.3847/1538-4357/ad02ee kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 960 2023 1, p 53 |
spelling |
10.3847/1538-4357/ad02ee doi (DE-627)DOAJ098971263 (DE-599)DOAJ39f06aed39b5496892538eddb70896fe DE-627 ger DE-627 rakwb eng QB460-466 Arjen van der Wel verfasserin aut Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of 435 M _⋆ < 10 ^10 M _⊙ galaxies in the redshift range of 0.5 < z < 2.3. We compare the resulting rest-frame 1.5–2 μ m half-light radii ( R _NIR ) with stellar half-mass radii ( ${R}_{{{M}}_{\star }}$ ) derived with multicolor light profiles from CANDELS Hubble Space Telescope imaging. In general agreement with previous work, we find that R _NIR and ${R}_{{{M}}_{\star }}$ are up to 40% smaller than the rest-frame optical half-light radius R _opt . The agreement between R _NIR and ${R}_{{{M}}_{\star }}$ is excellent, with a negligible systematic offset (<0.03 dex) up to z = 2 for quiescent galaxies and up to z = 1.5 for star-forming galaxies. We also deproject the profiles to estimate ${R}_{{{M}}_{\star },3{\rm{D}}}$ , the radius of a sphere containing 50% of the stellar mass. We present the R − M _⋆ distribution of galaxies at 0.5 < z < 1.5, comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . The slope is significantly flatter for ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ compared to R _opt , mostly due to downward shifts in size for massive star-forming galaxies, while ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ do not show markedly different trends. Finally, we show rapid evolution of the size ( R ∝ (1 + z ) ^−1.7±0.1 ) of massive ( M _⋆ < 10 ^11 M _⊙ ) quiescent galaxies between z = 0.5 and z = 2.3, again comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . We conclude that the main tenets of the evolution of the size narrative established over the past 20 yr, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR. Galaxy evolution Astrophysics Marco Martorano verfasserin aut Boris Häußler verfasserin aut Kalina V. Nedkova verfasserin aut Tim B. Miller verfasserin aut Gabriel B. Brammer verfasserin aut Glenn van de Ven verfasserin aut Joel Leja verfasserin aut Rachel S. Bezanson verfasserin aut Adam Muzzin verfasserin aut Danilo Marchesini verfasserin aut Anna de Graaff verfasserin aut Erica J. Nelson verfasserin aut Mariska Kriek verfasserin aut Eric F. Bell verfasserin aut Marijn Franx verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 960(2023), 1, p 53 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:960 year:2023 number:1, p 53 https://doi.org/10.3847/1538-4357/ad02ee kostenfrei https://doaj.org/article/39f06aed39b5496892538eddb70896fe kostenfrei https://doi.org/10.3847/1538-4357/ad02ee kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 960 2023 1, p 53 |
allfields_unstemmed |
10.3847/1538-4357/ad02ee doi (DE-627)DOAJ098971263 (DE-599)DOAJ39f06aed39b5496892538eddb70896fe DE-627 ger DE-627 rakwb eng QB460-466 Arjen van der Wel verfasserin aut Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of 435 M _⋆ < 10 ^10 M _⊙ galaxies in the redshift range of 0.5 < z < 2.3. We compare the resulting rest-frame 1.5–2 μ m half-light radii ( R _NIR ) with stellar half-mass radii ( ${R}_{{{M}}_{\star }}$ ) derived with multicolor light profiles from CANDELS Hubble Space Telescope imaging. In general agreement with previous work, we find that R _NIR and ${R}_{{{M}}_{\star }}$ are up to 40% smaller than the rest-frame optical half-light radius R _opt . The agreement between R _NIR and ${R}_{{{M}}_{\star }}$ is excellent, with a negligible systematic offset (<0.03 dex) up to z = 2 for quiescent galaxies and up to z = 1.5 for star-forming galaxies. We also deproject the profiles to estimate ${R}_{{{M}}_{\star },3{\rm{D}}}$ , the radius of a sphere containing 50% of the stellar mass. We present the R − M _⋆ distribution of galaxies at 0.5 < z < 1.5, comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . The slope is significantly flatter for ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ compared to R _opt , mostly due to downward shifts in size for massive star-forming galaxies, while ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ do not show markedly different trends. Finally, we show rapid evolution of the size ( R ∝ (1 + z ) ^−1.7±0.1 ) of massive ( M _⋆ < 10 ^11 M _⊙ ) quiescent galaxies between z = 0.5 and z = 2.3, again comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . We conclude that the main tenets of the evolution of the size narrative established over the past 20 yr, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR. Galaxy evolution Astrophysics Marco Martorano verfasserin aut Boris Häußler verfasserin aut Kalina V. Nedkova verfasserin aut Tim B. Miller verfasserin aut Gabriel B. Brammer verfasserin aut Glenn van de Ven verfasserin aut Joel Leja verfasserin aut Rachel S. Bezanson verfasserin aut Adam Muzzin verfasserin aut Danilo Marchesini verfasserin aut Anna de Graaff verfasserin aut Erica J. Nelson verfasserin aut Mariska Kriek verfasserin aut Eric F. Bell verfasserin aut Marijn Franx verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 960(2023), 1, p 53 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:960 year:2023 number:1, p 53 https://doi.org/10.3847/1538-4357/ad02ee kostenfrei https://doaj.org/article/39f06aed39b5496892538eddb70896fe kostenfrei https://doi.org/10.3847/1538-4357/ad02ee kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 960 2023 1, p 53 |
allfieldsGer |
10.3847/1538-4357/ad02ee doi (DE-627)DOAJ098971263 (DE-599)DOAJ39f06aed39b5496892538eddb70896fe DE-627 ger DE-627 rakwb eng QB460-466 Arjen van der Wel verfasserin aut Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of 435 M _⋆ < 10 ^10 M _⊙ galaxies in the redshift range of 0.5 < z < 2.3. We compare the resulting rest-frame 1.5–2 μ m half-light radii ( R _NIR ) with stellar half-mass radii ( ${R}_{{{M}}_{\star }}$ ) derived with multicolor light profiles from CANDELS Hubble Space Telescope imaging. In general agreement with previous work, we find that R _NIR and ${R}_{{{M}}_{\star }}$ are up to 40% smaller than the rest-frame optical half-light radius R _opt . The agreement between R _NIR and ${R}_{{{M}}_{\star }}$ is excellent, with a negligible systematic offset (<0.03 dex) up to z = 2 for quiescent galaxies and up to z = 1.5 for star-forming galaxies. We also deproject the profiles to estimate ${R}_{{{M}}_{\star },3{\rm{D}}}$ , the radius of a sphere containing 50% of the stellar mass. We present the R − M _⋆ distribution of galaxies at 0.5 < z < 1.5, comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . The slope is significantly flatter for ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ compared to R _opt , mostly due to downward shifts in size for massive star-forming galaxies, while ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ do not show markedly different trends. Finally, we show rapid evolution of the size ( R ∝ (1 + z ) ^−1.7±0.1 ) of massive ( M _⋆ < 10 ^11 M _⊙ ) quiescent galaxies between z = 0.5 and z = 2.3, again comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . We conclude that the main tenets of the evolution of the size narrative established over the past 20 yr, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR. Galaxy evolution Astrophysics Marco Martorano verfasserin aut Boris Häußler verfasserin aut Kalina V. Nedkova verfasserin aut Tim B. Miller verfasserin aut Gabriel B. Brammer verfasserin aut Glenn van de Ven verfasserin aut Joel Leja verfasserin aut Rachel S. Bezanson verfasserin aut Adam Muzzin verfasserin aut Danilo Marchesini verfasserin aut Anna de Graaff verfasserin aut Erica J. Nelson verfasserin aut Mariska Kriek verfasserin aut Eric F. Bell verfasserin aut Marijn Franx verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 960(2023), 1, p 53 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:960 year:2023 number:1, p 53 https://doi.org/10.3847/1538-4357/ad02ee kostenfrei https://doaj.org/article/39f06aed39b5496892538eddb70896fe kostenfrei https://doi.org/10.3847/1538-4357/ad02ee kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 960 2023 1, p 53 |
allfieldsSound |
10.3847/1538-4357/ad02ee doi (DE-627)DOAJ098971263 (DE-599)DOAJ39f06aed39b5496892538eddb70896fe DE-627 ger DE-627 rakwb eng QB460-466 Arjen van der Wel verfasserin aut Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of 435 M _⋆ < 10 ^10 M _⊙ galaxies in the redshift range of 0.5 < z < 2.3. We compare the resulting rest-frame 1.5–2 μ m half-light radii ( R _NIR ) with stellar half-mass radii ( ${R}_{{{M}}_{\star }}$ ) derived with multicolor light profiles from CANDELS Hubble Space Telescope imaging. In general agreement with previous work, we find that R _NIR and ${R}_{{{M}}_{\star }}$ are up to 40% smaller than the rest-frame optical half-light radius R _opt . The agreement between R _NIR and ${R}_{{{M}}_{\star }}$ is excellent, with a negligible systematic offset (<0.03 dex) up to z = 2 for quiescent galaxies and up to z = 1.5 for star-forming galaxies. We also deproject the profiles to estimate ${R}_{{{M}}_{\star },3{\rm{D}}}$ , the radius of a sphere containing 50% of the stellar mass. We present the R − M _⋆ distribution of galaxies at 0.5 < z < 1.5, comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . The slope is significantly flatter for ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ compared to R _opt , mostly due to downward shifts in size for massive star-forming galaxies, while ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ do not show markedly different trends. Finally, we show rapid evolution of the size ( R ∝ (1 + z ) ^−1.7±0.1 ) of massive ( M _⋆ < 10 ^11 M _⊙ ) quiescent galaxies between z = 0.5 and z = 2.3, again comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . We conclude that the main tenets of the evolution of the size narrative established over the past 20 yr, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR. Galaxy evolution Astrophysics Marco Martorano verfasserin aut Boris Häußler verfasserin aut Kalina V. Nedkova verfasserin aut Tim B. Miller verfasserin aut Gabriel B. Brammer verfasserin aut Glenn van de Ven verfasserin aut Joel Leja verfasserin aut Rachel S. Bezanson verfasserin aut Adam Muzzin verfasserin aut Danilo Marchesini verfasserin aut Anna de Graaff verfasserin aut Erica J. Nelson verfasserin aut Mariska Kriek verfasserin aut Eric F. Bell verfasserin aut Marijn Franx verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 960(2023), 1, p 53 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:960 year:2023 number:1, p 53 https://doi.org/10.3847/1538-4357/ad02ee kostenfrei https://doaj.org/article/39f06aed39b5496892538eddb70896fe kostenfrei https://doi.org/10.3847/1538-4357/ad02ee kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 960 2023 1, p 53 |
language |
English |
source |
In The Astrophysical Journal 960(2023), 1, p 53 volume:960 year:2023 number:1, p 53 |
sourceStr |
In The Astrophysical Journal 960(2023), 1, p 53 volume:960 year:2023 number:1, p 53 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Galaxy evolution Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Arjen van der Wel @@aut@@ Marco Martorano @@aut@@ Boris Häußler @@aut@@ Kalina V. Nedkova @@aut@@ Tim B. Miller @@aut@@ Gabriel B. Brammer @@aut@@ Glenn van de Ven @@aut@@ Joel Leja @@aut@@ Rachel S. Bezanson @@aut@@ Adam Muzzin @@aut@@ Danilo Marchesini @@aut@@ Anna de Graaff @@aut@@ Erica J. Nelson @@aut@@ Mariska Kriek @@aut@@ Eric F. Bell @@aut@@ Marijn Franx @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ098971263 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098971263</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414005750.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad02ee</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098971263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ39f06aed39b5496892538eddb70896fe</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Arjen van der Wel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of 435 M _⋆ < 10 ^10 M _⊙ galaxies in the redshift range of 0.5 < z < 2.3. We compare the resulting rest-frame 1.5–2 μ m half-light radii ( R _NIR ) with stellar half-mass radii ( ${R}_{{{M}}_{\star }}$ ) derived with multicolor light profiles from CANDELS Hubble Space Telescope imaging. In general agreement with previous work, we find that R _NIR and ${R}_{{{M}}_{\star }}$ are up to 40% smaller than the rest-frame optical half-light radius R _opt . The agreement between R _NIR and ${R}_{{{M}}_{\star }}$ is excellent, with a negligible systematic offset (<0.03 dex) up to z = 2 for quiescent galaxies and up to z = 1.5 for star-forming galaxies. We also deproject the profiles to estimate ${R}_{{{M}}_{\star },3{\rm{D}}}$ , the radius of a sphere containing 50% of the stellar mass. We present the R − M _⋆ distribution of galaxies at 0.5 < z < 1.5, comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . The slope is significantly flatter for ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ compared to R _opt , mostly due to downward shifts in size for massive star-forming galaxies, while ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ do not show markedly different trends. Finally, we show rapid evolution of the size ( R ∝ (1 + z ) ^−1.7±0.1 ) of massive ( M _⋆ < 10 ^11 M _⊙ ) quiescent galaxies between z = 0.5 and z = 2.3, again comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . We conclude that the main tenets of the evolution of the size narrative established over the past 20 yr, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy evolution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Martorano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Boris Häußler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kalina V. Nedkova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tim B. Miller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriel B. Brammer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Glenn van de Ven</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joel Leja</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rachel S. Bezanson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adam Muzzin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Danilo Marchesini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna de Graaff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Erica J. Nelson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mariska Kriek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eric F. Bell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marijn Franx</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">960(2023), 1, p 53</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:960</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 53</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad02ee</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/39f06aed39b5496892538eddb70896fe</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad02ee</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">960</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 53</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Arjen van der Wel |
spellingShingle |
Arjen van der Wel misc QB460-466 misc Galaxy evolution misc Astrophysics Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii |
authorStr |
Arjen van der Wel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii Galaxy evolution |
topic |
misc QB460-466 misc Galaxy evolution misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Galaxy evolution misc Astrophysics |
topic_browse |
misc QB460-466 misc Galaxy evolution misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii |
ctrlnum |
(DE-627)DOAJ098971263 (DE-599)DOAJ39f06aed39b5496892538eddb70896fe |
title_full |
Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii |
author_sort |
Arjen van der Wel |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Arjen van der Wel Marco Martorano Boris Häußler Kalina V. Nedkova Tim B. Miller Gabriel B. Brammer Glenn van de Ven Joel Leja Rachel S. Bezanson Adam Muzzin Danilo Marchesini Anna de Graaff Erica J. Nelson Mariska Kriek Eric F. Bell Marijn Franx |
container_volume |
960 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Arjen van der Wel |
doi_str_mv |
10.3847/1538-4357/ad02ee |
author2-role |
verfasserin |
title_sort |
stellar half-mass radii of 0.5 z < 2.3 galaxies: comparison with jwst/nircam half-light radii |
callnumber |
QB460-466 |
title_auth |
Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii |
abstract |
We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of 435 M _⋆ < 10 ^10 M _⊙ galaxies in the redshift range of 0.5 < z < 2.3. We compare the resulting rest-frame 1.5–2 μ m half-light radii ( R _NIR ) with stellar half-mass radii ( ${R}_{{{M}}_{\star }}$ ) derived with multicolor light profiles from CANDELS Hubble Space Telescope imaging. In general agreement with previous work, we find that R _NIR and ${R}_{{{M}}_{\star }}$ are up to 40% smaller than the rest-frame optical half-light radius R _opt . The agreement between R _NIR and ${R}_{{{M}}_{\star }}$ is excellent, with a negligible systematic offset (<0.03 dex) up to z = 2 for quiescent galaxies and up to z = 1.5 for star-forming galaxies. We also deproject the profiles to estimate ${R}_{{{M}}_{\star },3{\rm{D}}}$ , the radius of a sphere containing 50% of the stellar mass. We present the R − M _⋆ distribution of galaxies at 0.5 < z < 1.5, comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . The slope is significantly flatter for ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ compared to R _opt , mostly due to downward shifts in size for massive star-forming galaxies, while ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ do not show markedly different trends. Finally, we show rapid evolution of the size ( R ∝ (1 + z ) ^−1.7±0.1 ) of massive ( M _⋆ < 10 ^11 M _⊙ ) quiescent galaxies between z = 0.5 and z = 2.3, again comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . We conclude that the main tenets of the evolution of the size narrative established over the past 20 yr, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR. |
abstractGer |
We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of 435 M _⋆ < 10 ^10 M _⊙ galaxies in the redshift range of 0.5 < z < 2.3. We compare the resulting rest-frame 1.5–2 μ m half-light radii ( R _NIR ) with stellar half-mass radii ( ${R}_{{{M}}_{\star }}$ ) derived with multicolor light profiles from CANDELS Hubble Space Telescope imaging. In general agreement with previous work, we find that R _NIR and ${R}_{{{M}}_{\star }}$ are up to 40% smaller than the rest-frame optical half-light radius R _opt . The agreement between R _NIR and ${R}_{{{M}}_{\star }}$ is excellent, with a negligible systematic offset (<0.03 dex) up to z = 2 for quiescent galaxies and up to z = 1.5 for star-forming galaxies. We also deproject the profiles to estimate ${R}_{{{M}}_{\star },3{\rm{D}}}$ , the radius of a sphere containing 50% of the stellar mass. We present the R − M _⋆ distribution of galaxies at 0.5 < z < 1.5, comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . The slope is significantly flatter for ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ compared to R _opt , mostly due to downward shifts in size for massive star-forming galaxies, while ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ do not show markedly different trends. Finally, we show rapid evolution of the size ( R ∝ (1 + z ) ^−1.7±0.1 ) of massive ( M _⋆ < 10 ^11 M _⊙ ) quiescent galaxies between z = 0.5 and z = 2.3, again comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . We conclude that the main tenets of the evolution of the size narrative established over the past 20 yr, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR. |
abstract_unstemmed |
We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of 435 M _⋆ < 10 ^10 M _⊙ galaxies in the redshift range of 0.5 < z < 2.3. We compare the resulting rest-frame 1.5–2 μ m half-light radii ( R _NIR ) with stellar half-mass radii ( ${R}_{{{M}}_{\star }}$ ) derived with multicolor light profiles from CANDELS Hubble Space Telescope imaging. In general agreement with previous work, we find that R _NIR and ${R}_{{{M}}_{\star }}$ are up to 40% smaller than the rest-frame optical half-light radius R _opt . The agreement between R _NIR and ${R}_{{{M}}_{\star }}$ is excellent, with a negligible systematic offset (<0.03 dex) up to z = 2 for quiescent galaxies and up to z = 1.5 for star-forming galaxies. We also deproject the profiles to estimate ${R}_{{{M}}_{\star },3{\rm{D}}}$ , the radius of a sphere containing 50% of the stellar mass. We present the R − M _⋆ distribution of galaxies at 0.5 < z < 1.5, comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . The slope is significantly flatter for ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ compared to R _opt , mostly due to downward shifts in size for massive star-forming galaxies, while ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ do not show markedly different trends. Finally, we show rapid evolution of the size ( R ∝ (1 + z ) ^−1.7±0.1 ) of massive ( M _⋆ < 10 ^11 M _⊙ ) quiescent galaxies between z = 0.5 and z = 2.3, again comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . We conclude that the main tenets of the evolution of the size narrative established over the past 20 yr, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 53 |
title_short |
Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii |
url |
https://doi.org/10.3847/1538-4357/ad02ee https://doaj.org/article/39f06aed39b5496892538eddb70896fe https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
Marco Martorano Boris Häußler Kalina V. Nedkova Tim B. Miller Gabriel B. Brammer Glenn van de Ven Joel Leja Rachel S. Bezanson Adam Muzzin Danilo Marchesini Anna de Graaff Erica J. Nelson Mariska Kriek Eric F. Bell Marijn Franx |
author2Str |
Marco Martorano Boris Häußler Kalina V. Nedkova Tim B. Miller Gabriel B. Brammer Glenn van de Ven Joel Leja Rachel S. Bezanson Adam Muzzin Danilo Marchesini Anna de Graaff Erica J. Nelson Mariska Kriek Eric F. Bell Marijn Franx |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/ad02ee |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T20:17:03.076Z |
_version_ |
1803590380371836928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ098971263</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414005750.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad02ee</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098971263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ39f06aed39b5496892538eddb70896fe</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Arjen van der Wel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stellar Half-mass Radii of 0.5 z < 2.3 Galaxies: Comparison with JWST/NIRCam Half-light Radii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of 435 M _⋆ < 10 ^10 M _⊙ galaxies in the redshift range of 0.5 < z < 2.3. We compare the resulting rest-frame 1.5–2 μ m half-light radii ( R _NIR ) with stellar half-mass radii ( ${R}_{{{M}}_{\star }}$ ) derived with multicolor light profiles from CANDELS Hubble Space Telescope imaging. In general agreement with previous work, we find that R _NIR and ${R}_{{{M}}_{\star }}$ are up to 40% smaller than the rest-frame optical half-light radius R _opt . The agreement between R _NIR and ${R}_{{{M}}_{\star }}$ is excellent, with a negligible systematic offset (<0.03 dex) up to z = 2 for quiescent galaxies and up to z = 1.5 for star-forming galaxies. We also deproject the profiles to estimate ${R}_{{{M}}_{\star },3{\rm{D}}}$ , the radius of a sphere containing 50% of the stellar mass. We present the R − M _⋆ distribution of galaxies at 0.5 < z < 1.5, comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . The slope is significantly flatter for ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ compared to R _opt , mostly due to downward shifts in size for massive star-forming galaxies, while ${R}_{{{M}}_{\star }}$ and ${R}_{{{M}}_{\star },3{\rm{D}}}$ do not show markedly different trends. Finally, we show rapid evolution of the size ( R ∝ (1 + z ) ^−1.7±0.1 ) of massive ( M _⋆ < 10 ^11 M _⊙ ) quiescent galaxies between z = 0.5 and z = 2.3, again comparing R _opt , ${R}_{{{M}}_{\star }}$ , and ${R}_{{{M}}_{\star },3{\rm{D}}}$ . We conclude that the main tenets of the evolution of the size narrative established over the past 20 yr, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy evolution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Martorano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Boris Häußler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kalina V. Nedkova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tim B. Miller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriel B. Brammer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Glenn van de Ven</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joel Leja</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rachel S. Bezanson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adam Muzzin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Danilo Marchesini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna de Graaff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Erica J. Nelson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mariska Kriek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eric F. Bell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marijn Franx</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">960(2023), 1, p 53</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:960</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 53</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad02ee</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/39f06aed39b5496892538eddb70896fe</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad02ee</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">960</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 53</subfield></datafield></record></collection>
|
score |
7.4010725 |