Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene
Abstract This study discusses the effect of long‐range interactions within the self‐consistent Hartree‐Fock (HF) approximation in comparison to short‐range atomic Hubbard interactions on the band structure of twisted bilayer graphene (TBG) at charge neutrality for various twist angles. Starting from...
Ausführliche Beschreibung
Autor*in: |
Alejandro Jimeno‐Pozo [verfasserIn] Zachary A. H. Goodwin [verfasserIn] Pierre A. Pantaleón [verfasserIn] Valerio Vitale [verfasserIn] Lennart Klebl [verfasserIn] Dante M. Kennes [verfasserIn] Arash A. Mostofi [verfasserIn] Johannes Lischner [verfasserIn] Francisco Guinea [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Advanced Physics Research ; 2(2023), 12, Seite n/a-n/a volume:2 ; year:2023 ; number:12 ; pages:n/a-n/a |
---|
Links: |
---|
DOI / URN: |
10.1002/apxr.202300048 |
---|
Katalog-ID: |
DOAJ099013975 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ099013975 | ||
003 | DE-627 | ||
005 | 20240414010738.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/apxr.202300048 |2 doi | |
035 | |a (DE-627)DOAJ099013975 | ||
035 | |a (DE-599)DOAJ5b3b90edb87e4a6d8bbdf27469e760ad | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Alejandro Jimeno‐Pozo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract This study discusses the effect of long‐range interactions within the self‐consistent Hartree‐Fock (HF) approximation in comparison to short‐range atomic Hubbard interactions on the band structure of twisted bilayer graphene (TBG) at charge neutrality for various twist angles. Starting from atomistic calculations, it determines the quasi‐particle band structure of TBG with Hubbard interactions for three magnetic orderings: modulated anti‐ferromagnetic (MAFM), (NAFM) and hexagonal anti‐ferromagnetic (HAFM). Then, it develops an approach to incorporate these magnetic orderings along with the HF potential in the continuum approximation. Away from the magic angle, it observes a drastic effect of the magnetic order on the band structure of TBG compared to the influence of the HF potential. Near the magic angle, the HF potential plays a major role in the band structure, with HAFM and MAFM being secondary effects, but NAFM appears to still significantly distort the electronic structure at the magic angle. These findings suggest that the spin‐valley degenerate broken symmetry state often found in HF calculations of charge neutral TBG near the magic angle should favor magnetic order, since the atomistic Hubbard interaction will break this symmetry in favor of spin polarization. | ||
650 | 4 | |a graphene | |
650 | 4 | |a magnetism | |
650 | 4 | |a twisted bilayer graphene | |
653 | 0 | |a Physics | |
700 | 0 | |a Zachary A. H. Goodwin |e verfasserin |4 aut | |
700 | 0 | |a Pierre A. Pantaleón |e verfasserin |4 aut | |
700 | 0 | |a Valerio Vitale |e verfasserin |4 aut | |
700 | 0 | |a Lennart Klebl |e verfasserin |4 aut | |
700 | 0 | |a Dante M. Kennes |e verfasserin |4 aut | |
700 | 0 | |a Arash A. Mostofi |e verfasserin |4 aut | |
700 | 0 | |a Johannes Lischner |e verfasserin |4 aut | |
700 | 0 | |a Francisco Guinea |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Advanced Physics Research |g 2(2023), 12, Seite n/a-n/a |
773 | 1 | 8 | |g volume:2 |g year:2023 |g number:12 |g pages:n/a-n/a |
856 | 4 | 0 | |u https://doi.org/10.1002/apxr.202300048 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5b3b90edb87e4a6d8bbdf27469e760ad |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/apxr.202300048 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2751-1200 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 2 |j 2023 |e 12 |h n/a-n/a |
author_variant |
a j aj z a h g zahg p a p pap v v vv l k lk d m k dmk a a m aam j l jl f g fg |
---|---|
matchkey_str |
alejandrojimenopozozacharyahgoodwinpierr:2023----:hrvrulnrnexhneneatosnwse |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QC |
publishDate |
2023 |
allfields |
10.1002/apxr.202300048 doi (DE-627)DOAJ099013975 (DE-599)DOAJ5b3b90edb87e4a6d8bbdf27469e760ad DE-627 ger DE-627 rakwb eng QC1-999 Alejandro Jimeno‐Pozo verfasserin aut Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This study discusses the effect of long‐range interactions within the self‐consistent Hartree‐Fock (HF) approximation in comparison to short‐range atomic Hubbard interactions on the band structure of twisted bilayer graphene (TBG) at charge neutrality for various twist angles. Starting from atomistic calculations, it determines the quasi‐particle band structure of TBG with Hubbard interactions for three magnetic orderings: modulated anti‐ferromagnetic (MAFM), (NAFM) and hexagonal anti‐ferromagnetic (HAFM). Then, it develops an approach to incorporate these magnetic orderings along with the HF potential in the continuum approximation. Away from the magic angle, it observes a drastic effect of the magnetic order on the band structure of TBG compared to the influence of the HF potential. Near the magic angle, the HF potential plays a major role in the band structure, with HAFM and MAFM being secondary effects, but NAFM appears to still significantly distort the electronic structure at the magic angle. These findings suggest that the spin‐valley degenerate broken symmetry state often found in HF calculations of charge neutral TBG near the magic angle should favor magnetic order, since the atomistic Hubbard interaction will break this symmetry in favor of spin polarization. graphene magnetism twisted bilayer graphene Physics Zachary A. H. Goodwin verfasserin aut Pierre A. Pantaleón verfasserin aut Valerio Vitale verfasserin aut Lennart Klebl verfasserin aut Dante M. Kennes verfasserin aut Arash A. Mostofi verfasserin aut Johannes Lischner verfasserin aut Francisco Guinea verfasserin aut In Advanced Physics Research 2(2023), 12, Seite n/a-n/a volume:2 year:2023 number:12 pages:n/a-n/a https://doi.org/10.1002/apxr.202300048 kostenfrei https://doaj.org/article/5b3b90edb87e4a6d8bbdf27469e760ad kostenfrei https://doi.org/10.1002/apxr.202300048 kostenfrei https://doaj.org/toc/2751-1200 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 2 2023 12 n/a-n/a |
spelling |
10.1002/apxr.202300048 doi (DE-627)DOAJ099013975 (DE-599)DOAJ5b3b90edb87e4a6d8bbdf27469e760ad DE-627 ger DE-627 rakwb eng QC1-999 Alejandro Jimeno‐Pozo verfasserin aut Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This study discusses the effect of long‐range interactions within the self‐consistent Hartree‐Fock (HF) approximation in comparison to short‐range atomic Hubbard interactions on the band structure of twisted bilayer graphene (TBG) at charge neutrality for various twist angles. Starting from atomistic calculations, it determines the quasi‐particle band structure of TBG with Hubbard interactions for three magnetic orderings: modulated anti‐ferromagnetic (MAFM), (NAFM) and hexagonal anti‐ferromagnetic (HAFM). Then, it develops an approach to incorporate these magnetic orderings along with the HF potential in the continuum approximation. Away from the magic angle, it observes a drastic effect of the magnetic order on the band structure of TBG compared to the influence of the HF potential. Near the magic angle, the HF potential plays a major role in the band structure, with HAFM and MAFM being secondary effects, but NAFM appears to still significantly distort the electronic structure at the magic angle. These findings suggest that the spin‐valley degenerate broken symmetry state often found in HF calculations of charge neutral TBG near the magic angle should favor magnetic order, since the atomistic Hubbard interaction will break this symmetry in favor of spin polarization. graphene magnetism twisted bilayer graphene Physics Zachary A. H. Goodwin verfasserin aut Pierre A. Pantaleón verfasserin aut Valerio Vitale verfasserin aut Lennart Klebl verfasserin aut Dante M. Kennes verfasserin aut Arash A. Mostofi verfasserin aut Johannes Lischner verfasserin aut Francisco Guinea verfasserin aut In Advanced Physics Research 2(2023), 12, Seite n/a-n/a volume:2 year:2023 number:12 pages:n/a-n/a https://doi.org/10.1002/apxr.202300048 kostenfrei https://doaj.org/article/5b3b90edb87e4a6d8bbdf27469e760ad kostenfrei https://doi.org/10.1002/apxr.202300048 kostenfrei https://doaj.org/toc/2751-1200 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 2 2023 12 n/a-n/a |
allfields_unstemmed |
10.1002/apxr.202300048 doi (DE-627)DOAJ099013975 (DE-599)DOAJ5b3b90edb87e4a6d8bbdf27469e760ad DE-627 ger DE-627 rakwb eng QC1-999 Alejandro Jimeno‐Pozo verfasserin aut Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This study discusses the effect of long‐range interactions within the self‐consistent Hartree‐Fock (HF) approximation in comparison to short‐range atomic Hubbard interactions on the band structure of twisted bilayer graphene (TBG) at charge neutrality for various twist angles. Starting from atomistic calculations, it determines the quasi‐particle band structure of TBG with Hubbard interactions for three magnetic orderings: modulated anti‐ferromagnetic (MAFM), (NAFM) and hexagonal anti‐ferromagnetic (HAFM). Then, it develops an approach to incorporate these magnetic orderings along with the HF potential in the continuum approximation. Away from the magic angle, it observes a drastic effect of the magnetic order on the band structure of TBG compared to the influence of the HF potential. Near the magic angle, the HF potential plays a major role in the band structure, with HAFM and MAFM being secondary effects, but NAFM appears to still significantly distort the electronic structure at the magic angle. These findings suggest that the spin‐valley degenerate broken symmetry state often found in HF calculations of charge neutral TBG near the magic angle should favor magnetic order, since the atomistic Hubbard interaction will break this symmetry in favor of spin polarization. graphene magnetism twisted bilayer graphene Physics Zachary A. H. Goodwin verfasserin aut Pierre A. Pantaleón verfasserin aut Valerio Vitale verfasserin aut Lennart Klebl verfasserin aut Dante M. Kennes verfasserin aut Arash A. Mostofi verfasserin aut Johannes Lischner verfasserin aut Francisco Guinea verfasserin aut In Advanced Physics Research 2(2023), 12, Seite n/a-n/a volume:2 year:2023 number:12 pages:n/a-n/a https://doi.org/10.1002/apxr.202300048 kostenfrei https://doaj.org/article/5b3b90edb87e4a6d8bbdf27469e760ad kostenfrei https://doi.org/10.1002/apxr.202300048 kostenfrei https://doaj.org/toc/2751-1200 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 2 2023 12 n/a-n/a |
allfieldsGer |
10.1002/apxr.202300048 doi (DE-627)DOAJ099013975 (DE-599)DOAJ5b3b90edb87e4a6d8bbdf27469e760ad DE-627 ger DE-627 rakwb eng QC1-999 Alejandro Jimeno‐Pozo verfasserin aut Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This study discusses the effect of long‐range interactions within the self‐consistent Hartree‐Fock (HF) approximation in comparison to short‐range atomic Hubbard interactions on the band structure of twisted bilayer graphene (TBG) at charge neutrality for various twist angles. Starting from atomistic calculations, it determines the quasi‐particle band structure of TBG with Hubbard interactions for three magnetic orderings: modulated anti‐ferromagnetic (MAFM), (NAFM) and hexagonal anti‐ferromagnetic (HAFM). Then, it develops an approach to incorporate these magnetic orderings along with the HF potential in the continuum approximation. Away from the magic angle, it observes a drastic effect of the magnetic order on the band structure of TBG compared to the influence of the HF potential. Near the magic angle, the HF potential plays a major role in the band structure, with HAFM and MAFM being secondary effects, but NAFM appears to still significantly distort the electronic structure at the magic angle. These findings suggest that the spin‐valley degenerate broken symmetry state often found in HF calculations of charge neutral TBG near the magic angle should favor magnetic order, since the atomistic Hubbard interaction will break this symmetry in favor of spin polarization. graphene magnetism twisted bilayer graphene Physics Zachary A. H. Goodwin verfasserin aut Pierre A. Pantaleón verfasserin aut Valerio Vitale verfasserin aut Lennart Klebl verfasserin aut Dante M. Kennes verfasserin aut Arash A. Mostofi verfasserin aut Johannes Lischner verfasserin aut Francisco Guinea verfasserin aut In Advanced Physics Research 2(2023), 12, Seite n/a-n/a volume:2 year:2023 number:12 pages:n/a-n/a https://doi.org/10.1002/apxr.202300048 kostenfrei https://doaj.org/article/5b3b90edb87e4a6d8bbdf27469e760ad kostenfrei https://doi.org/10.1002/apxr.202300048 kostenfrei https://doaj.org/toc/2751-1200 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 2 2023 12 n/a-n/a |
allfieldsSound |
10.1002/apxr.202300048 doi (DE-627)DOAJ099013975 (DE-599)DOAJ5b3b90edb87e4a6d8bbdf27469e760ad DE-627 ger DE-627 rakwb eng QC1-999 Alejandro Jimeno‐Pozo verfasserin aut Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This study discusses the effect of long‐range interactions within the self‐consistent Hartree‐Fock (HF) approximation in comparison to short‐range atomic Hubbard interactions on the band structure of twisted bilayer graphene (TBG) at charge neutrality for various twist angles. Starting from atomistic calculations, it determines the quasi‐particle band structure of TBG with Hubbard interactions for three magnetic orderings: modulated anti‐ferromagnetic (MAFM), (NAFM) and hexagonal anti‐ferromagnetic (HAFM). Then, it develops an approach to incorporate these magnetic orderings along with the HF potential in the continuum approximation. Away from the magic angle, it observes a drastic effect of the magnetic order on the band structure of TBG compared to the influence of the HF potential. Near the magic angle, the HF potential plays a major role in the band structure, with HAFM and MAFM being secondary effects, but NAFM appears to still significantly distort the electronic structure at the magic angle. These findings suggest that the spin‐valley degenerate broken symmetry state often found in HF calculations of charge neutral TBG near the magic angle should favor magnetic order, since the atomistic Hubbard interaction will break this symmetry in favor of spin polarization. graphene magnetism twisted bilayer graphene Physics Zachary A. H. Goodwin verfasserin aut Pierre A. Pantaleón verfasserin aut Valerio Vitale verfasserin aut Lennart Klebl verfasserin aut Dante M. Kennes verfasserin aut Arash A. Mostofi verfasserin aut Johannes Lischner verfasserin aut Francisco Guinea verfasserin aut In Advanced Physics Research 2(2023), 12, Seite n/a-n/a volume:2 year:2023 number:12 pages:n/a-n/a https://doi.org/10.1002/apxr.202300048 kostenfrei https://doaj.org/article/5b3b90edb87e4a6d8bbdf27469e760ad kostenfrei https://doi.org/10.1002/apxr.202300048 kostenfrei https://doaj.org/toc/2751-1200 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 2 2023 12 n/a-n/a |
language |
English |
source |
In Advanced Physics Research 2(2023), 12, Seite n/a-n/a volume:2 year:2023 number:12 pages:n/a-n/a |
sourceStr |
In Advanced Physics Research 2(2023), 12, Seite n/a-n/a volume:2 year:2023 number:12 pages:n/a-n/a |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
graphene magnetism twisted bilayer graphene Physics |
isfreeaccess_bool |
true |
container_title |
Advanced Physics Research |
authorswithroles_txt_mv |
Alejandro Jimeno‐Pozo @@aut@@ Zachary A. H. Goodwin @@aut@@ Pierre A. Pantaleón @@aut@@ Valerio Vitale @@aut@@ Lennart Klebl @@aut@@ Dante M. Kennes @@aut@@ Arash A. Mostofi @@aut@@ Johannes Lischner @@aut@@ Francisco Guinea @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
id |
DOAJ099013975 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099013975</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414010738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/apxr.202300048</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099013975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b3b90edb87e4a6d8bbdf27469e760ad</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alejandro Jimeno‐Pozo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study discusses the effect of long‐range interactions within the self‐consistent Hartree‐Fock (HF) approximation in comparison to short‐range atomic Hubbard interactions on the band structure of twisted bilayer graphene (TBG) at charge neutrality for various twist angles. Starting from atomistic calculations, it determines the quasi‐particle band structure of TBG with Hubbard interactions for three magnetic orderings: modulated anti‐ferromagnetic (MAFM), (NAFM) and hexagonal anti‐ferromagnetic (HAFM). Then, it develops an approach to incorporate these magnetic orderings along with the HF potential in the continuum approximation. Away from the magic angle, it observes a drastic effect of the magnetic order on the band structure of TBG compared to the influence of the HF potential. Near the magic angle, the HF potential plays a major role in the band structure, with HAFM and MAFM being secondary effects, but NAFM appears to still significantly distort the electronic structure at the magic angle. These findings suggest that the spin‐valley degenerate broken symmetry state often found in HF calculations of charge neutral TBG near the magic angle should favor magnetic order, since the atomistic Hubbard interaction will break this symmetry in favor of spin polarization.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graphene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">twisted bilayer graphene</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zachary A. H. Goodwin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pierre A. Pantaleón</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valerio Vitale</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lennart Klebl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dante M. Kennes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arash A. Mostofi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johannes Lischner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francisco Guinea</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advanced Physics Research</subfield><subfield code="g">2(2023), 12, Seite n/a-n/a</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/apxr.202300048</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b3b90edb87e4a6d8bbdf27469e760ad</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/apxr.202300048</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2751-1200</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2023</subfield><subfield code="e">12</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Alejandro Jimeno‐Pozo |
spellingShingle |
Alejandro Jimeno‐Pozo misc QC1-999 misc graphene misc magnetism misc twisted bilayer graphene misc Physics Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene |
authorStr |
Alejandro Jimeno‐Pozo |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
topic_title |
QC1-999 Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene graphene magnetism twisted bilayer graphene |
topic |
misc QC1-999 misc graphene misc magnetism misc twisted bilayer graphene misc Physics |
topic_unstemmed |
misc QC1-999 misc graphene misc magnetism misc twisted bilayer graphene misc Physics |
topic_browse |
misc QC1-999 misc graphene misc magnetism misc twisted bilayer graphene misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advanced Physics Research |
hierarchy_top_title |
Advanced Physics Research |
isfreeaccess_txt |
true |
title |
Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene |
ctrlnum |
(DE-627)DOAJ099013975 (DE-599)DOAJ5b3b90edb87e4a6d8bbdf27469e760ad |
title_full |
Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene |
author_sort |
Alejandro Jimeno‐Pozo |
journal |
Advanced Physics Research |
journalStr |
Advanced Physics Research |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Alejandro Jimeno‐Pozo Zachary A. H. Goodwin Pierre A. Pantaleón Valerio Vitale Lennart Klebl Dante M. Kennes Arash A. Mostofi Johannes Lischner Francisco Guinea |
container_volume |
2 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Alejandro Jimeno‐Pozo |
doi_str_mv |
10.1002/apxr.202300048 |
author2-role |
verfasserin |
title_sort |
short versus long range exchange interactions in twisted bilayer graphene |
callnumber |
QC1-999 |
title_auth |
Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene |
abstract |
Abstract This study discusses the effect of long‐range interactions within the self‐consistent Hartree‐Fock (HF) approximation in comparison to short‐range atomic Hubbard interactions on the band structure of twisted bilayer graphene (TBG) at charge neutrality for various twist angles. Starting from atomistic calculations, it determines the quasi‐particle band structure of TBG with Hubbard interactions for three magnetic orderings: modulated anti‐ferromagnetic (MAFM), (NAFM) and hexagonal anti‐ferromagnetic (HAFM). Then, it develops an approach to incorporate these magnetic orderings along with the HF potential in the continuum approximation. Away from the magic angle, it observes a drastic effect of the magnetic order on the band structure of TBG compared to the influence of the HF potential. Near the magic angle, the HF potential plays a major role in the band structure, with HAFM and MAFM being secondary effects, but NAFM appears to still significantly distort the electronic structure at the magic angle. These findings suggest that the spin‐valley degenerate broken symmetry state often found in HF calculations of charge neutral TBG near the magic angle should favor magnetic order, since the atomistic Hubbard interaction will break this symmetry in favor of spin polarization. |
abstractGer |
Abstract This study discusses the effect of long‐range interactions within the self‐consistent Hartree‐Fock (HF) approximation in comparison to short‐range atomic Hubbard interactions on the band structure of twisted bilayer graphene (TBG) at charge neutrality for various twist angles. Starting from atomistic calculations, it determines the quasi‐particle band structure of TBG with Hubbard interactions for three magnetic orderings: modulated anti‐ferromagnetic (MAFM), (NAFM) and hexagonal anti‐ferromagnetic (HAFM). Then, it develops an approach to incorporate these magnetic orderings along with the HF potential in the continuum approximation. Away from the magic angle, it observes a drastic effect of the magnetic order on the band structure of TBG compared to the influence of the HF potential. Near the magic angle, the HF potential plays a major role in the band structure, with HAFM and MAFM being secondary effects, but NAFM appears to still significantly distort the electronic structure at the magic angle. These findings suggest that the spin‐valley degenerate broken symmetry state often found in HF calculations of charge neutral TBG near the magic angle should favor magnetic order, since the atomistic Hubbard interaction will break this symmetry in favor of spin polarization. |
abstract_unstemmed |
Abstract This study discusses the effect of long‐range interactions within the self‐consistent Hartree‐Fock (HF) approximation in comparison to short‐range atomic Hubbard interactions on the band structure of twisted bilayer graphene (TBG) at charge neutrality for various twist angles. Starting from atomistic calculations, it determines the quasi‐particle band structure of TBG with Hubbard interactions for three magnetic orderings: modulated anti‐ferromagnetic (MAFM), (NAFM) and hexagonal anti‐ferromagnetic (HAFM). Then, it develops an approach to incorporate these magnetic orderings along with the HF potential in the continuum approximation. Away from the magic angle, it observes a drastic effect of the magnetic order on the band structure of TBG compared to the influence of the HF potential. Near the magic angle, the HF potential plays a major role in the band structure, with HAFM and MAFM being secondary effects, but NAFM appears to still significantly distort the electronic structure at the magic angle. These findings suggest that the spin‐valley degenerate broken symmetry state often found in HF calculations of charge neutral TBG near the magic angle should favor magnetic order, since the atomistic Hubbard interaction will break this symmetry in favor of spin polarization. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
12 |
title_short |
Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene |
url |
https://doi.org/10.1002/apxr.202300048 https://doaj.org/article/5b3b90edb87e4a6d8bbdf27469e760ad https://doaj.org/toc/2751-1200 |
remote_bool |
true |
author2 |
Zachary A. H. Goodwin Pierre A. Pantaleón Valerio Vitale Lennart Klebl Dante M. Kennes Arash A. Mostofi Johannes Lischner Francisco Guinea |
author2Str |
Zachary A. H. Goodwin Pierre A. Pantaleón Valerio Vitale Lennart Klebl Dante M. Kennes Arash A. Mostofi Johannes Lischner Francisco Guinea |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/apxr.202300048 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T20:31:28.898Z |
_version_ |
1803591288253054976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099013975</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414010738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/apxr.202300048</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099013975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b3b90edb87e4a6d8bbdf27469e760ad</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alejandro Jimeno‐Pozo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study discusses the effect of long‐range interactions within the self‐consistent Hartree‐Fock (HF) approximation in comparison to short‐range atomic Hubbard interactions on the band structure of twisted bilayer graphene (TBG) at charge neutrality for various twist angles. Starting from atomistic calculations, it determines the quasi‐particle band structure of TBG with Hubbard interactions for three magnetic orderings: modulated anti‐ferromagnetic (MAFM), (NAFM) and hexagonal anti‐ferromagnetic (HAFM). Then, it develops an approach to incorporate these magnetic orderings along with the HF potential in the continuum approximation. Away from the magic angle, it observes a drastic effect of the magnetic order on the band structure of TBG compared to the influence of the HF potential. Near the magic angle, the HF potential plays a major role in the band structure, with HAFM and MAFM being secondary effects, but NAFM appears to still significantly distort the electronic structure at the magic angle. These findings suggest that the spin‐valley degenerate broken symmetry state often found in HF calculations of charge neutral TBG near the magic angle should favor magnetic order, since the atomistic Hubbard interaction will break this symmetry in favor of spin polarization.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graphene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">twisted bilayer graphene</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zachary A. H. Goodwin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pierre A. Pantaleón</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valerio Vitale</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lennart Klebl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dante M. Kennes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arash A. Mostofi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johannes Lischner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francisco Guinea</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advanced Physics Research</subfield><subfield code="g">2(2023), 12, Seite n/a-n/a</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/apxr.202300048</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b3b90edb87e4a6d8bbdf27469e760ad</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/apxr.202300048</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2751-1200</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2023</subfield><subfield code="e">12</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
score |
7.4006186 |