Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat
Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit...
Ausführliche Beschreibung
Autor*in: |
Alessandro Carella [verfasserIn] Roberto Massenti [verfasserIn] Riccardo Lo Bianco [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Plant Science - Frontiers Media S.A., 2011, 14(2023) |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2023 |
Links: |
---|
DOI / URN: |
10.3389/fpls.2023.1294195 |
---|
Katalog-ID: |
DOAJ099021897 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ099021897 | ||
003 | DE-627 | ||
005 | 20240414011010.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fpls.2023.1294195 |2 doi | |
035 | |a (DE-627)DOAJ099021897 | ||
035 | |a (DE-599)DOAJd21a80a428864e44a3e6f9feb95b3d16 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a SB1-1110 | |
100 | 0 | |a Alessandro Carella |e verfasserin |4 aut | |
245 | 1 | 0 | |a Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit growth responses to VPD may also be useful to optimize horticultural management practices under specific atmospheric conditions. Climate data to calculate VPD and fruit relative growth rates (RGR) by fruit gauges were monitored in peach at cell division, pit hardening and cell expansion stages; in two mango cultivars at cell division, cell expansion and maturation stages; in two olive cultivars, either full irrigated or rainfed, at early and late cell expansion stages; in ‘Valencia’ orange at early and late cell division stage, before and after mature fruit harvest; in loquat at cell expansion and maturation stages. At the fruit cell division stage, sensitivity of fruit growth to VPD seems to vary with species, time, and probably soil and atmospheric water deficit. ‘Keitt’ mango and ‘Valencia’ orange fruit growth responded to VPD in opposite ways, and this could be due to very different time of the year and VPD levels in the monitoring periods of the two species. At pit hardening stage of peach fruit growth, a relatively weak relationship was observed between VPD and RGR, and this is not surprising as fruit growth in size at this stage slows down significantly. A consistent and marked negative relationship between VPD and RGR was observed at cell expansion stage, when fruit growth is directly depending on water intake driving cell turgor. Another behavior common to all observed species was the gradual loss of relationship between VPD and RGR at the onset of fruit maturation, when fruit growth in size is generally programmed to stop. Finally, regardless of fruit type, VPD may have a significant effect on fruit growth and could be a useful parameter to be monitored for tree water management mainly when the cell expansion process prevails during fruit growth. | ||
650 | 4 | |a cell division | |
650 | 4 | |a cell expansion | |
650 | 4 | |a fruit diameter | |
650 | 4 | |a fruit gauge | |
650 | 4 | |a fruit maturation | |
650 | 4 | |a fruit water relations | |
653 | 0 | |a Plant culture | |
700 | 0 | |a Roberto Massenti |e verfasserin |4 aut | |
700 | 0 | |a Riccardo Lo Bianco |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Plant Science |d Frontiers Media S.A., 2011 |g 14(2023) |w (DE-627)662359240 |w (DE-600)2613694-6 |x 1664462X |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2023 |
856 | 4 | 0 | |u https://doi.org/10.3389/fpls.2023.1294195 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d21a80a428864e44a3e6f9feb95b3d16 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fpls.2023.1294195/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1664-462X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2023 |
author_variant |
a c ac r m rm r l b rlb |
---|---|
matchkey_str |
article:1664462X:2023----::etnefcsfaopesrdfctnrigotaoprtvapocuigec |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
SB |
publishDate |
2023 |
allfields |
10.3389/fpls.2023.1294195 doi (DE-627)DOAJ099021897 (DE-599)DOAJd21a80a428864e44a3e6f9feb95b3d16 DE-627 ger DE-627 rakwb eng SB1-1110 Alessandro Carella verfasserin aut Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit growth responses to VPD may also be useful to optimize horticultural management practices under specific atmospheric conditions. Climate data to calculate VPD and fruit relative growth rates (RGR) by fruit gauges were monitored in peach at cell division, pit hardening and cell expansion stages; in two mango cultivars at cell division, cell expansion and maturation stages; in two olive cultivars, either full irrigated or rainfed, at early and late cell expansion stages; in ‘Valencia’ orange at early and late cell division stage, before and after mature fruit harvest; in loquat at cell expansion and maturation stages. At the fruit cell division stage, sensitivity of fruit growth to VPD seems to vary with species, time, and probably soil and atmospheric water deficit. ‘Keitt’ mango and ‘Valencia’ orange fruit growth responded to VPD in opposite ways, and this could be due to very different time of the year and VPD levels in the monitoring periods of the two species. At pit hardening stage of peach fruit growth, a relatively weak relationship was observed between VPD and RGR, and this is not surprising as fruit growth in size at this stage slows down significantly. A consistent and marked negative relationship between VPD and RGR was observed at cell expansion stage, when fruit growth is directly depending on water intake driving cell turgor. Another behavior common to all observed species was the gradual loss of relationship between VPD and RGR at the onset of fruit maturation, when fruit growth in size is generally programmed to stop. Finally, regardless of fruit type, VPD may have a significant effect on fruit growth and could be a useful parameter to be monitored for tree water management mainly when the cell expansion process prevails during fruit growth. cell division cell expansion fruit diameter fruit gauge fruit maturation fruit water relations Plant culture Roberto Massenti verfasserin aut Riccardo Lo Bianco verfasserin aut In Frontiers in Plant Science Frontiers Media S.A., 2011 14(2023) (DE-627)662359240 (DE-600)2613694-6 1664462X nnns volume:14 year:2023 https://doi.org/10.3389/fpls.2023.1294195 kostenfrei https://doaj.org/article/d21a80a428864e44a3e6f9feb95b3d16 kostenfrei https://www.frontiersin.org/articles/10.3389/fpls.2023.1294195/full kostenfrei https://doaj.org/toc/1664-462X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 |
spelling |
10.3389/fpls.2023.1294195 doi (DE-627)DOAJ099021897 (DE-599)DOAJd21a80a428864e44a3e6f9feb95b3d16 DE-627 ger DE-627 rakwb eng SB1-1110 Alessandro Carella verfasserin aut Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit growth responses to VPD may also be useful to optimize horticultural management practices under specific atmospheric conditions. Climate data to calculate VPD and fruit relative growth rates (RGR) by fruit gauges were monitored in peach at cell division, pit hardening and cell expansion stages; in two mango cultivars at cell division, cell expansion and maturation stages; in two olive cultivars, either full irrigated or rainfed, at early and late cell expansion stages; in ‘Valencia’ orange at early and late cell division stage, before and after mature fruit harvest; in loquat at cell expansion and maturation stages. At the fruit cell division stage, sensitivity of fruit growth to VPD seems to vary with species, time, and probably soil and atmospheric water deficit. ‘Keitt’ mango and ‘Valencia’ orange fruit growth responded to VPD in opposite ways, and this could be due to very different time of the year and VPD levels in the monitoring periods of the two species. At pit hardening stage of peach fruit growth, a relatively weak relationship was observed between VPD and RGR, and this is not surprising as fruit growth in size at this stage slows down significantly. A consistent and marked negative relationship between VPD and RGR was observed at cell expansion stage, when fruit growth is directly depending on water intake driving cell turgor. Another behavior common to all observed species was the gradual loss of relationship between VPD and RGR at the onset of fruit maturation, when fruit growth in size is generally programmed to stop. Finally, regardless of fruit type, VPD may have a significant effect on fruit growth and could be a useful parameter to be monitored for tree water management mainly when the cell expansion process prevails during fruit growth. cell division cell expansion fruit diameter fruit gauge fruit maturation fruit water relations Plant culture Roberto Massenti verfasserin aut Riccardo Lo Bianco verfasserin aut In Frontiers in Plant Science Frontiers Media S.A., 2011 14(2023) (DE-627)662359240 (DE-600)2613694-6 1664462X nnns volume:14 year:2023 https://doi.org/10.3389/fpls.2023.1294195 kostenfrei https://doaj.org/article/d21a80a428864e44a3e6f9feb95b3d16 kostenfrei https://www.frontiersin.org/articles/10.3389/fpls.2023.1294195/full kostenfrei https://doaj.org/toc/1664-462X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 |
allfields_unstemmed |
10.3389/fpls.2023.1294195 doi (DE-627)DOAJ099021897 (DE-599)DOAJd21a80a428864e44a3e6f9feb95b3d16 DE-627 ger DE-627 rakwb eng SB1-1110 Alessandro Carella verfasserin aut Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit growth responses to VPD may also be useful to optimize horticultural management practices under specific atmospheric conditions. Climate data to calculate VPD and fruit relative growth rates (RGR) by fruit gauges were monitored in peach at cell division, pit hardening and cell expansion stages; in two mango cultivars at cell division, cell expansion and maturation stages; in two olive cultivars, either full irrigated or rainfed, at early and late cell expansion stages; in ‘Valencia’ orange at early and late cell division stage, before and after mature fruit harvest; in loquat at cell expansion and maturation stages. At the fruit cell division stage, sensitivity of fruit growth to VPD seems to vary with species, time, and probably soil and atmospheric water deficit. ‘Keitt’ mango and ‘Valencia’ orange fruit growth responded to VPD in opposite ways, and this could be due to very different time of the year and VPD levels in the monitoring periods of the two species. At pit hardening stage of peach fruit growth, a relatively weak relationship was observed between VPD and RGR, and this is not surprising as fruit growth in size at this stage slows down significantly. A consistent and marked negative relationship between VPD and RGR was observed at cell expansion stage, when fruit growth is directly depending on water intake driving cell turgor. Another behavior common to all observed species was the gradual loss of relationship between VPD and RGR at the onset of fruit maturation, when fruit growth in size is generally programmed to stop. Finally, regardless of fruit type, VPD may have a significant effect on fruit growth and could be a useful parameter to be monitored for tree water management mainly when the cell expansion process prevails during fruit growth. cell division cell expansion fruit diameter fruit gauge fruit maturation fruit water relations Plant culture Roberto Massenti verfasserin aut Riccardo Lo Bianco verfasserin aut In Frontiers in Plant Science Frontiers Media S.A., 2011 14(2023) (DE-627)662359240 (DE-600)2613694-6 1664462X nnns volume:14 year:2023 https://doi.org/10.3389/fpls.2023.1294195 kostenfrei https://doaj.org/article/d21a80a428864e44a3e6f9feb95b3d16 kostenfrei https://www.frontiersin.org/articles/10.3389/fpls.2023.1294195/full kostenfrei https://doaj.org/toc/1664-462X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 |
allfieldsGer |
10.3389/fpls.2023.1294195 doi (DE-627)DOAJ099021897 (DE-599)DOAJd21a80a428864e44a3e6f9feb95b3d16 DE-627 ger DE-627 rakwb eng SB1-1110 Alessandro Carella verfasserin aut Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit growth responses to VPD may also be useful to optimize horticultural management practices under specific atmospheric conditions. Climate data to calculate VPD and fruit relative growth rates (RGR) by fruit gauges were monitored in peach at cell division, pit hardening and cell expansion stages; in two mango cultivars at cell division, cell expansion and maturation stages; in two olive cultivars, either full irrigated or rainfed, at early and late cell expansion stages; in ‘Valencia’ orange at early and late cell division stage, before and after mature fruit harvest; in loquat at cell expansion and maturation stages. At the fruit cell division stage, sensitivity of fruit growth to VPD seems to vary with species, time, and probably soil and atmospheric water deficit. ‘Keitt’ mango and ‘Valencia’ orange fruit growth responded to VPD in opposite ways, and this could be due to very different time of the year and VPD levels in the monitoring periods of the two species. At pit hardening stage of peach fruit growth, a relatively weak relationship was observed between VPD and RGR, and this is not surprising as fruit growth in size at this stage slows down significantly. A consistent and marked negative relationship between VPD and RGR was observed at cell expansion stage, when fruit growth is directly depending on water intake driving cell turgor. Another behavior common to all observed species was the gradual loss of relationship between VPD and RGR at the onset of fruit maturation, when fruit growth in size is generally programmed to stop. Finally, regardless of fruit type, VPD may have a significant effect on fruit growth and could be a useful parameter to be monitored for tree water management mainly when the cell expansion process prevails during fruit growth. cell division cell expansion fruit diameter fruit gauge fruit maturation fruit water relations Plant culture Roberto Massenti verfasserin aut Riccardo Lo Bianco verfasserin aut In Frontiers in Plant Science Frontiers Media S.A., 2011 14(2023) (DE-627)662359240 (DE-600)2613694-6 1664462X nnns volume:14 year:2023 https://doi.org/10.3389/fpls.2023.1294195 kostenfrei https://doaj.org/article/d21a80a428864e44a3e6f9feb95b3d16 kostenfrei https://www.frontiersin.org/articles/10.3389/fpls.2023.1294195/full kostenfrei https://doaj.org/toc/1664-462X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 |
allfieldsSound |
10.3389/fpls.2023.1294195 doi (DE-627)DOAJ099021897 (DE-599)DOAJd21a80a428864e44a3e6f9feb95b3d16 DE-627 ger DE-627 rakwb eng SB1-1110 Alessandro Carella verfasserin aut Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit growth responses to VPD may also be useful to optimize horticultural management practices under specific atmospheric conditions. Climate data to calculate VPD and fruit relative growth rates (RGR) by fruit gauges were monitored in peach at cell division, pit hardening and cell expansion stages; in two mango cultivars at cell division, cell expansion and maturation stages; in two olive cultivars, either full irrigated or rainfed, at early and late cell expansion stages; in ‘Valencia’ orange at early and late cell division stage, before and after mature fruit harvest; in loquat at cell expansion and maturation stages. At the fruit cell division stage, sensitivity of fruit growth to VPD seems to vary with species, time, and probably soil and atmospheric water deficit. ‘Keitt’ mango and ‘Valencia’ orange fruit growth responded to VPD in opposite ways, and this could be due to very different time of the year and VPD levels in the monitoring periods of the two species. At pit hardening stage of peach fruit growth, a relatively weak relationship was observed between VPD and RGR, and this is not surprising as fruit growth in size at this stage slows down significantly. A consistent and marked negative relationship between VPD and RGR was observed at cell expansion stage, when fruit growth is directly depending on water intake driving cell turgor. Another behavior common to all observed species was the gradual loss of relationship between VPD and RGR at the onset of fruit maturation, when fruit growth in size is generally programmed to stop. Finally, regardless of fruit type, VPD may have a significant effect on fruit growth and could be a useful parameter to be monitored for tree water management mainly when the cell expansion process prevails during fruit growth. cell division cell expansion fruit diameter fruit gauge fruit maturation fruit water relations Plant culture Roberto Massenti verfasserin aut Riccardo Lo Bianco verfasserin aut In Frontiers in Plant Science Frontiers Media S.A., 2011 14(2023) (DE-627)662359240 (DE-600)2613694-6 1664462X nnns volume:14 year:2023 https://doi.org/10.3389/fpls.2023.1294195 kostenfrei https://doaj.org/article/d21a80a428864e44a3e6f9feb95b3d16 kostenfrei https://www.frontiersin.org/articles/10.3389/fpls.2023.1294195/full kostenfrei https://doaj.org/toc/1664-462X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 |
language |
English |
source |
In Frontiers in Plant Science 14(2023) volume:14 year:2023 |
sourceStr |
In Frontiers in Plant Science 14(2023) volume:14 year:2023 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cell division cell expansion fruit diameter fruit gauge fruit maturation fruit water relations Plant culture |
isfreeaccess_bool |
true |
container_title |
Frontiers in Plant Science |
authorswithroles_txt_mv |
Alessandro Carella @@aut@@ Roberto Massenti @@aut@@ Riccardo Lo Bianco @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
662359240 |
id |
DOAJ099021897 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099021897</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414011010.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fpls.2023.1294195</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099021897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd21a80a428864e44a3e6f9feb95b3d16</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alessandro Carella</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit growth responses to VPD may also be useful to optimize horticultural management practices under specific atmospheric conditions. Climate data to calculate VPD and fruit relative growth rates (RGR) by fruit gauges were monitored in peach at cell division, pit hardening and cell expansion stages; in two mango cultivars at cell division, cell expansion and maturation stages; in two olive cultivars, either full irrigated or rainfed, at early and late cell expansion stages; in ‘Valencia’ orange at early and late cell division stage, before and after mature fruit harvest; in loquat at cell expansion and maturation stages. At the fruit cell division stage, sensitivity of fruit growth to VPD seems to vary with species, time, and probably soil and atmospheric water deficit. ‘Keitt’ mango and ‘Valencia’ orange fruit growth responded to VPD in opposite ways, and this could be due to very different time of the year and VPD levels in the monitoring periods of the two species. At pit hardening stage of peach fruit growth, a relatively weak relationship was observed between VPD and RGR, and this is not surprising as fruit growth in size at this stage slows down significantly. A consistent and marked negative relationship between VPD and RGR was observed at cell expansion stage, when fruit growth is directly depending on water intake driving cell turgor. Another behavior common to all observed species was the gradual loss of relationship between VPD and RGR at the onset of fruit maturation, when fruit growth in size is generally programmed to stop. Finally, regardless of fruit type, VPD may have a significant effect on fruit growth and could be a useful parameter to be monitored for tree water management mainly when the cell expansion process prevails during fruit growth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cell division</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cell expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit diameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit gauge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit maturation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit water relations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Massenti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Riccardo Lo Bianco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Plant Science</subfield><subfield code="d">Frontiers Media S.A., 2011</subfield><subfield code="g">14(2023)</subfield><subfield code="w">(DE-627)662359240</subfield><subfield code="w">(DE-600)2613694-6</subfield><subfield code="x">1664462X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fpls.2023.1294195</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d21a80a428864e44a3e6f9feb95b3d16</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fpls.2023.1294195/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-462X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Alessandro Carella |
spellingShingle |
Alessandro Carella misc SB1-1110 misc cell division misc cell expansion misc fruit diameter misc fruit gauge misc fruit maturation misc fruit water relations misc Plant culture Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat |
authorStr |
Alessandro Carella |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)662359240 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SB1-1110 |
illustrated |
Not Illustrated |
issn |
1664462X |
topic_title |
SB1-1110 Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat cell division cell expansion fruit diameter fruit gauge fruit maturation fruit water relations |
topic |
misc SB1-1110 misc cell division misc cell expansion misc fruit diameter misc fruit gauge misc fruit maturation misc fruit water relations misc Plant culture |
topic_unstemmed |
misc SB1-1110 misc cell division misc cell expansion misc fruit diameter misc fruit gauge misc fruit maturation misc fruit water relations misc Plant culture |
topic_browse |
misc SB1-1110 misc cell division misc cell expansion misc fruit diameter misc fruit gauge misc fruit maturation misc fruit water relations misc Plant culture |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Plant Science |
hierarchy_parent_id |
662359240 |
hierarchy_top_title |
Frontiers in Plant Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)662359240 (DE-600)2613694-6 |
title |
Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat |
ctrlnum |
(DE-627)DOAJ099021897 (DE-599)DOAJd21a80a428864e44a3e6f9feb95b3d16 |
title_full |
Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat |
author_sort |
Alessandro Carella |
journal |
Frontiers in Plant Science |
journalStr |
Frontiers in Plant Science |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Alessandro Carella Roberto Massenti Riccardo Lo Bianco |
container_volume |
14 |
class |
SB1-1110 |
format_se |
Elektronische Aufsätze |
author-letter |
Alessandro Carella |
doi_str_mv |
10.3389/fpls.2023.1294195 |
author2-role |
verfasserin |
title_sort |
testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat |
callnumber |
SB1-1110 |
title_auth |
Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat |
abstract |
Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit growth responses to VPD may also be useful to optimize horticultural management practices under specific atmospheric conditions. Climate data to calculate VPD and fruit relative growth rates (RGR) by fruit gauges were monitored in peach at cell division, pit hardening and cell expansion stages; in two mango cultivars at cell division, cell expansion and maturation stages; in two olive cultivars, either full irrigated or rainfed, at early and late cell expansion stages; in ‘Valencia’ orange at early and late cell division stage, before and after mature fruit harvest; in loquat at cell expansion and maturation stages. At the fruit cell division stage, sensitivity of fruit growth to VPD seems to vary with species, time, and probably soil and atmospheric water deficit. ‘Keitt’ mango and ‘Valencia’ orange fruit growth responded to VPD in opposite ways, and this could be due to very different time of the year and VPD levels in the monitoring periods of the two species. At pit hardening stage of peach fruit growth, a relatively weak relationship was observed between VPD and RGR, and this is not surprising as fruit growth in size at this stage slows down significantly. A consistent and marked negative relationship between VPD and RGR was observed at cell expansion stage, when fruit growth is directly depending on water intake driving cell turgor. Another behavior common to all observed species was the gradual loss of relationship between VPD and RGR at the onset of fruit maturation, when fruit growth in size is generally programmed to stop. Finally, regardless of fruit type, VPD may have a significant effect on fruit growth and could be a useful parameter to be monitored for tree water management mainly when the cell expansion process prevails during fruit growth. |
abstractGer |
Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit growth responses to VPD may also be useful to optimize horticultural management practices under specific atmospheric conditions. Climate data to calculate VPD and fruit relative growth rates (RGR) by fruit gauges were monitored in peach at cell division, pit hardening and cell expansion stages; in two mango cultivars at cell division, cell expansion and maturation stages; in two olive cultivars, either full irrigated or rainfed, at early and late cell expansion stages; in ‘Valencia’ orange at early and late cell division stage, before and after mature fruit harvest; in loquat at cell expansion and maturation stages. At the fruit cell division stage, sensitivity of fruit growth to VPD seems to vary with species, time, and probably soil and atmospheric water deficit. ‘Keitt’ mango and ‘Valencia’ orange fruit growth responded to VPD in opposite ways, and this could be due to very different time of the year and VPD levels in the monitoring periods of the two species. At pit hardening stage of peach fruit growth, a relatively weak relationship was observed between VPD and RGR, and this is not surprising as fruit growth in size at this stage slows down significantly. A consistent and marked negative relationship between VPD and RGR was observed at cell expansion stage, when fruit growth is directly depending on water intake driving cell turgor. Another behavior common to all observed species was the gradual loss of relationship between VPD and RGR at the onset of fruit maturation, when fruit growth in size is generally programmed to stop. Finally, regardless of fruit type, VPD may have a significant effect on fruit growth and could be a useful parameter to be monitored for tree water management mainly when the cell expansion process prevails during fruit growth. |
abstract_unstemmed |
Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit growth responses to VPD may also be useful to optimize horticultural management practices under specific atmospheric conditions. Climate data to calculate VPD and fruit relative growth rates (RGR) by fruit gauges were monitored in peach at cell division, pit hardening and cell expansion stages; in two mango cultivars at cell division, cell expansion and maturation stages; in two olive cultivars, either full irrigated or rainfed, at early and late cell expansion stages; in ‘Valencia’ orange at early and late cell division stage, before and after mature fruit harvest; in loquat at cell expansion and maturation stages. At the fruit cell division stage, sensitivity of fruit growth to VPD seems to vary with species, time, and probably soil and atmospheric water deficit. ‘Keitt’ mango and ‘Valencia’ orange fruit growth responded to VPD in opposite ways, and this could be due to very different time of the year and VPD levels in the monitoring periods of the two species. At pit hardening stage of peach fruit growth, a relatively weak relationship was observed between VPD and RGR, and this is not surprising as fruit growth in size at this stage slows down significantly. A consistent and marked negative relationship between VPD and RGR was observed at cell expansion stage, when fruit growth is directly depending on water intake driving cell turgor. Another behavior common to all observed species was the gradual loss of relationship between VPD and RGR at the onset of fruit maturation, when fruit growth in size is generally programmed to stop. Finally, regardless of fruit type, VPD may have a significant effect on fruit growth and could be a useful parameter to be monitored for tree water management mainly when the cell expansion process prevails during fruit growth. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat |
url |
https://doi.org/10.3389/fpls.2023.1294195 https://doaj.org/article/d21a80a428864e44a3e6f9feb95b3d16 https://www.frontiersin.org/articles/10.3389/fpls.2023.1294195/full https://doaj.org/toc/1664-462X |
remote_bool |
true |
author2 |
Roberto Massenti Riccardo Lo Bianco |
author2Str |
Roberto Massenti Riccardo Lo Bianco |
ppnlink |
662359240 |
callnumber-subject |
SB - Plant Culture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fpls.2023.1294195 |
callnumber-a |
SB1-1110 |
up_date |
2024-07-03T20:34:07.115Z |
_version_ |
1803591454157701120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099021897</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414011010.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fpls.2023.1294195</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099021897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd21a80a428864e44a3e6f9feb95b3d16</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alessandro Carella</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Testing effects of vapor pressure deficit on fruit growth: a comparative approach using peach, mango, olive, orange, and loquat</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit growth responses to VPD may also be useful to optimize horticultural management practices under specific atmospheric conditions. Climate data to calculate VPD and fruit relative growth rates (RGR) by fruit gauges were monitored in peach at cell division, pit hardening and cell expansion stages; in two mango cultivars at cell division, cell expansion and maturation stages; in two olive cultivars, either full irrigated or rainfed, at early and late cell expansion stages; in ‘Valencia’ orange at early and late cell division stage, before and after mature fruit harvest; in loquat at cell expansion and maturation stages. At the fruit cell division stage, sensitivity of fruit growth to VPD seems to vary with species, time, and probably soil and atmospheric water deficit. ‘Keitt’ mango and ‘Valencia’ orange fruit growth responded to VPD in opposite ways, and this could be due to very different time of the year and VPD levels in the monitoring periods of the two species. At pit hardening stage of peach fruit growth, a relatively weak relationship was observed between VPD and RGR, and this is not surprising as fruit growth in size at this stage slows down significantly. A consistent and marked negative relationship between VPD and RGR was observed at cell expansion stage, when fruit growth is directly depending on water intake driving cell turgor. Another behavior common to all observed species was the gradual loss of relationship between VPD and RGR at the onset of fruit maturation, when fruit growth in size is generally programmed to stop. Finally, regardless of fruit type, VPD may have a significant effect on fruit growth and could be a useful parameter to be monitored for tree water management mainly when the cell expansion process prevails during fruit growth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cell division</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cell expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit diameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit gauge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit maturation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit water relations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Massenti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Riccardo Lo Bianco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Plant Science</subfield><subfield code="d">Frontiers Media S.A., 2011</subfield><subfield code="g">14(2023)</subfield><subfield code="w">(DE-627)662359240</subfield><subfield code="w">(DE-600)2613694-6</subfield><subfield code="x">1664462X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fpls.2023.1294195</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d21a80a428864e44a3e6f9feb95b3d16</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fpls.2023.1294195/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-462X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
score |
7.4027443 |