Adaptive OCR coordination in distribution system with distributed energy resources contribution
More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power sy...
Ausführliche Beschreibung
Autor*in: |
Tung-Sheng Zhan [verfasserIn] Chun-Lien Su [verfasserIn] Yih-Der Lee [verfasserIn] Jheng-Lun Jiang [verfasserIn] Jin-Ting Yu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: AIMS Energy - AIMS Press, 2014, 11(2023), 6, Seite 1278-1305 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; number:6 ; pages:1278-1305 |
Links: |
---|
DOI / URN: |
10.3934/energy.2023058 |
---|
Katalog-ID: |
DOAJ099126141 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ099126141 | ||
003 | DE-627 | ||
005 | 20240414013927.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3934/energy.2023058 |2 doi | |
035 | |a (DE-627)DOAJ099126141 | ||
035 | |a (DE-599)DOAJb646447642b04ee8b9f202616c5c6154 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1001-1841 | |
050 | 0 | |a TJ807-830 | |
100 | 0 | |a Tung-Sheng Zhan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adaptive OCR coordination in distribution system with distributed energy resources contribution |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance. | ||
650 | 4 | |a relay protection coordination | |
650 | 4 | |a time multiplier setting (tms) | |
650 | 4 | |a coordination time interval (cti) | |
650 | 4 | |a modified particle swarm optimization (mpso) | |
653 | 0 | |a Production of electric energy or power. Powerplants. Central stations | |
653 | 0 | |a Renewable energy sources | |
700 | 0 | |a Chun-Lien Su |e verfasserin |4 aut | |
700 | 0 | |a Yih-Der Lee |e verfasserin |4 aut | |
700 | 0 | |a Jheng-Lun Jiang |e verfasserin |4 aut | |
700 | 0 | |a Jin-Ting Yu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t AIMS Energy |d AIMS Press, 2014 |g 11(2023), 6, Seite 1278-1305 |w (DE-627)790616165 |w (DE-600)2777109-X |x 23338334 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g number:6 |g pages:1278-1305 |
856 | 4 | 0 | |u https://doi.org/10.3934/energy.2023058 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b646447642b04ee8b9f202616c5c6154 |z kostenfrei |
856 | 4 | 0 | |u https://www.aimspress.com/article/doi/10.3934/energy.2023058?viewType=HTML |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2333-8334 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |e 6 |h 1278-1305 |
author_variant |
t s z tsz c l s cls y d l ydl j l j jlj j t y jty |
---|---|
matchkey_str |
article:23338334:2023----::dpieccodntoidsrbtossewtdsrbtdnr |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.3934/energy.2023058 doi (DE-627)DOAJ099126141 (DE-599)DOAJb646447642b04ee8b9f202616c5c6154 DE-627 ger DE-627 rakwb eng TK1001-1841 TJ807-830 Tung-Sheng Zhan verfasserin aut Adaptive OCR coordination in distribution system with distributed energy resources contribution 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance. relay protection coordination time multiplier setting (tms) coordination time interval (cti) modified particle swarm optimization (mpso) Production of electric energy or power. Powerplants. Central stations Renewable energy sources Chun-Lien Su verfasserin aut Yih-Der Lee verfasserin aut Jheng-Lun Jiang verfasserin aut Jin-Ting Yu verfasserin aut In AIMS Energy AIMS Press, 2014 11(2023), 6, Seite 1278-1305 (DE-627)790616165 (DE-600)2777109-X 23338334 nnns volume:11 year:2023 number:6 pages:1278-1305 https://doi.org/10.3934/energy.2023058 kostenfrei https://doaj.org/article/b646447642b04ee8b9f202616c5c6154 kostenfrei https://www.aimspress.com/article/doi/10.3934/energy.2023058?viewType=HTML kostenfrei https://doaj.org/toc/2333-8334 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 6 1278-1305 |
spelling |
10.3934/energy.2023058 doi (DE-627)DOAJ099126141 (DE-599)DOAJb646447642b04ee8b9f202616c5c6154 DE-627 ger DE-627 rakwb eng TK1001-1841 TJ807-830 Tung-Sheng Zhan verfasserin aut Adaptive OCR coordination in distribution system with distributed energy resources contribution 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance. relay protection coordination time multiplier setting (tms) coordination time interval (cti) modified particle swarm optimization (mpso) Production of electric energy or power. Powerplants. Central stations Renewable energy sources Chun-Lien Su verfasserin aut Yih-Der Lee verfasserin aut Jheng-Lun Jiang verfasserin aut Jin-Ting Yu verfasserin aut In AIMS Energy AIMS Press, 2014 11(2023), 6, Seite 1278-1305 (DE-627)790616165 (DE-600)2777109-X 23338334 nnns volume:11 year:2023 number:6 pages:1278-1305 https://doi.org/10.3934/energy.2023058 kostenfrei https://doaj.org/article/b646447642b04ee8b9f202616c5c6154 kostenfrei https://www.aimspress.com/article/doi/10.3934/energy.2023058?viewType=HTML kostenfrei https://doaj.org/toc/2333-8334 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 6 1278-1305 |
allfields_unstemmed |
10.3934/energy.2023058 doi (DE-627)DOAJ099126141 (DE-599)DOAJb646447642b04ee8b9f202616c5c6154 DE-627 ger DE-627 rakwb eng TK1001-1841 TJ807-830 Tung-Sheng Zhan verfasserin aut Adaptive OCR coordination in distribution system with distributed energy resources contribution 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance. relay protection coordination time multiplier setting (tms) coordination time interval (cti) modified particle swarm optimization (mpso) Production of electric energy or power. Powerplants. Central stations Renewable energy sources Chun-Lien Su verfasserin aut Yih-Der Lee verfasserin aut Jheng-Lun Jiang verfasserin aut Jin-Ting Yu verfasserin aut In AIMS Energy AIMS Press, 2014 11(2023), 6, Seite 1278-1305 (DE-627)790616165 (DE-600)2777109-X 23338334 nnns volume:11 year:2023 number:6 pages:1278-1305 https://doi.org/10.3934/energy.2023058 kostenfrei https://doaj.org/article/b646447642b04ee8b9f202616c5c6154 kostenfrei https://www.aimspress.com/article/doi/10.3934/energy.2023058?viewType=HTML kostenfrei https://doaj.org/toc/2333-8334 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 6 1278-1305 |
allfieldsGer |
10.3934/energy.2023058 doi (DE-627)DOAJ099126141 (DE-599)DOAJb646447642b04ee8b9f202616c5c6154 DE-627 ger DE-627 rakwb eng TK1001-1841 TJ807-830 Tung-Sheng Zhan verfasserin aut Adaptive OCR coordination in distribution system with distributed energy resources contribution 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance. relay protection coordination time multiplier setting (tms) coordination time interval (cti) modified particle swarm optimization (mpso) Production of electric energy or power. Powerplants. Central stations Renewable energy sources Chun-Lien Su verfasserin aut Yih-Der Lee verfasserin aut Jheng-Lun Jiang verfasserin aut Jin-Ting Yu verfasserin aut In AIMS Energy AIMS Press, 2014 11(2023), 6, Seite 1278-1305 (DE-627)790616165 (DE-600)2777109-X 23338334 nnns volume:11 year:2023 number:6 pages:1278-1305 https://doi.org/10.3934/energy.2023058 kostenfrei https://doaj.org/article/b646447642b04ee8b9f202616c5c6154 kostenfrei https://www.aimspress.com/article/doi/10.3934/energy.2023058?viewType=HTML kostenfrei https://doaj.org/toc/2333-8334 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 6 1278-1305 |
allfieldsSound |
10.3934/energy.2023058 doi (DE-627)DOAJ099126141 (DE-599)DOAJb646447642b04ee8b9f202616c5c6154 DE-627 ger DE-627 rakwb eng TK1001-1841 TJ807-830 Tung-Sheng Zhan verfasserin aut Adaptive OCR coordination in distribution system with distributed energy resources contribution 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance. relay protection coordination time multiplier setting (tms) coordination time interval (cti) modified particle swarm optimization (mpso) Production of electric energy or power. Powerplants. Central stations Renewable energy sources Chun-Lien Su verfasserin aut Yih-Der Lee verfasserin aut Jheng-Lun Jiang verfasserin aut Jin-Ting Yu verfasserin aut In AIMS Energy AIMS Press, 2014 11(2023), 6, Seite 1278-1305 (DE-627)790616165 (DE-600)2777109-X 23338334 nnns volume:11 year:2023 number:6 pages:1278-1305 https://doi.org/10.3934/energy.2023058 kostenfrei https://doaj.org/article/b646447642b04ee8b9f202616c5c6154 kostenfrei https://www.aimspress.com/article/doi/10.3934/energy.2023058?viewType=HTML kostenfrei https://doaj.org/toc/2333-8334 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 6 1278-1305 |
language |
English |
source |
In AIMS Energy 11(2023), 6, Seite 1278-1305 volume:11 year:2023 number:6 pages:1278-1305 |
sourceStr |
In AIMS Energy 11(2023), 6, Seite 1278-1305 volume:11 year:2023 number:6 pages:1278-1305 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
relay protection coordination time multiplier setting (tms) coordination time interval (cti) modified particle swarm optimization (mpso) Production of electric energy or power. Powerplants. Central stations Renewable energy sources |
isfreeaccess_bool |
true |
container_title |
AIMS Energy |
authorswithroles_txt_mv |
Tung-Sheng Zhan @@aut@@ Chun-Lien Su @@aut@@ Yih-Der Lee @@aut@@ Jheng-Lun Jiang @@aut@@ Jin-Ting Yu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
790616165 |
id |
DOAJ099126141 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099126141</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414013927.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3934/energy.2023058</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099126141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb646447642b04ee8b9f202616c5c6154</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tung-Sheng Zhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive OCR coordination in distribution system with distributed energy resources contribution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">relay protection coordination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time multiplier setting (tms)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coordination time interval (cti)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">modified particle swarm optimization (mpso)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chun-Lien Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yih-Der Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jheng-Lun Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jin-Ting Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AIMS Energy</subfield><subfield code="d">AIMS Press, 2014</subfield><subfield code="g">11(2023), 6, Seite 1278-1305</subfield><subfield code="w">(DE-627)790616165</subfield><subfield code="w">(DE-600)2777109-X</subfield><subfield code="x">23338334</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:1278-1305</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3934/energy.2023058</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b646447642b04ee8b9f202616c5c6154</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.aimspress.com/article/doi/10.3934/energy.2023058?viewType=HTML</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2333-8334</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">6</subfield><subfield code="h">1278-1305</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Tung-Sheng Zhan |
spellingShingle |
Tung-Sheng Zhan misc TK1001-1841 misc TJ807-830 misc relay protection coordination misc time multiplier setting (tms) misc coordination time interval (cti) misc modified particle swarm optimization (mpso) misc Production of electric energy or power. Powerplants. Central stations misc Renewable energy sources Adaptive OCR coordination in distribution system with distributed energy resources contribution |
authorStr |
Tung-Sheng Zhan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)790616165 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1001-1841 |
illustrated |
Not Illustrated |
issn |
23338334 |
topic_title |
TK1001-1841 TJ807-830 Adaptive OCR coordination in distribution system with distributed energy resources contribution relay protection coordination time multiplier setting (tms) coordination time interval (cti) modified particle swarm optimization (mpso) |
topic |
misc TK1001-1841 misc TJ807-830 misc relay protection coordination misc time multiplier setting (tms) misc coordination time interval (cti) misc modified particle swarm optimization (mpso) misc Production of electric energy or power. Powerplants. Central stations misc Renewable energy sources |
topic_unstemmed |
misc TK1001-1841 misc TJ807-830 misc relay protection coordination misc time multiplier setting (tms) misc coordination time interval (cti) misc modified particle swarm optimization (mpso) misc Production of electric energy or power. Powerplants. Central stations misc Renewable energy sources |
topic_browse |
misc TK1001-1841 misc TJ807-830 misc relay protection coordination misc time multiplier setting (tms) misc coordination time interval (cti) misc modified particle swarm optimization (mpso) misc Production of electric energy or power. Powerplants. Central stations misc Renewable energy sources |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
AIMS Energy |
hierarchy_parent_id |
790616165 |
hierarchy_top_title |
AIMS Energy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)790616165 (DE-600)2777109-X |
title |
Adaptive OCR coordination in distribution system with distributed energy resources contribution |
ctrlnum |
(DE-627)DOAJ099126141 (DE-599)DOAJb646447642b04ee8b9f202616c5c6154 |
title_full |
Adaptive OCR coordination in distribution system with distributed energy resources contribution |
author_sort |
Tung-Sheng Zhan |
journal |
AIMS Energy |
journalStr |
AIMS Energy |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
1278 |
author_browse |
Tung-Sheng Zhan Chun-Lien Su Yih-Der Lee Jheng-Lun Jiang Jin-Ting Yu |
container_volume |
11 |
class |
TK1001-1841 TJ807-830 |
format_se |
Elektronische Aufsätze |
author-letter |
Tung-Sheng Zhan |
doi_str_mv |
10.3934/energy.2023058 |
author2-role |
verfasserin |
title_sort |
adaptive ocr coordination in distribution system with distributed energy resources contribution |
callnumber |
TK1001-1841 |
title_auth |
Adaptive OCR coordination in distribution system with distributed energy resources contribution |
abstract |
More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance. |
abstractGer |
More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance. |
abstract_unstemmed |
More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Adaptive OCR coordination in distribution system with distributed energy resources contribution |
url |
https://doi.org/10.3934/energy.2023058 https://doaj.org/article/b646447642b04ee8b9f202616c5c6154 https://www.aimspress.com/article/doi/10.3934/energy.2023058?viewType=HTML https://doaj.org/toc/2333-8334 |
remote_bool |
true |
author2 |
Chun-Lien Su Yih-Der Lee Jheng-Lun Jiang Jin-Ting Yu |
author2Str |
Chun-Lien Su Yih-Der Lee Jheng-Lun Jiang Jin-Ting Yu |
ppnlink |
790616165 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3934/energy.2023058 |
callnumber-a |
TK1001-1841 |
up_date |
2024-07-03T21:08:19.302Z |
_version_ |
1803593606029639680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099126141</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414013927.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3934/energy.2023058</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099126141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb646447642b04ee8b9f202616c5c6154</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tung-Sheng Zhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive OCR coordination in distribution system with distributed energy resources contribution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">relay protection coordination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time multiplier setting (tms)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coordination time interval (cti)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">modified particle swarm optimization (mpso)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chun-Lien Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yih-Der Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jheng-Lun Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jin-Ting Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AIMS Energy</subfield><subfield code="d">AIMS Press, 2014</subfield><subfield code="g">11(2023), 6, Seite 1278-1305</subfield><subfield code="w">(DE-627)790616165</subfield><subfield code="w">(DE-600)2777109-X</subfield><subfield code="x">23338334</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:1278-1305</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3934/energy.2023058</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b646447642b04ee8b9f202616c5c6154</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.aimspress.com/article/doi/10.3934/energy.2023058?viewType=HTML</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2333-8334</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">6</subfield><subfield code="h">1278-1305</subfield></datafield></record></collection>
|
score |
7.40096 |