Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources
Fourth generation storage ring light sources enabled by multibend achromat lattices and high-gradient magnets can reach unprecedented photon brightness. In this study, we show that, through the two-frequency crab cavity scheme, such machines also offer a unique opportunity to produce intense short x...
Ausführliche Beschreibung
Autor*in: |
Xiaobiao Huang [verfasserIn] James Safranek [verfasserIn] Alexander Zholents [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Übergeordnetes Werk: |
In: Physical Review Accelerators and Beams - American Physical Society, 2016, 26(2023), 12, p 120701 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2023 ; number:12, p 120701 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1103/PhysRevAccelBeams.26.120701 |
---|
Katalog-ID: |
DOAJ09920729X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09920729X | ||
003 | DE-627 | ||
005 | 20240414020937.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1103/PhysRevAccelBeams.26.120701 |2 doi | |
035 | |a (DE-627)DOAJ09920729X | ||
035 | |a (DE-599)DOAJ0abaebb93a564e9f8a775bd8af589143 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC770-798 | |
100 | 0 | |a Xiaobiao Huang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Fourth generation storage ring light sources enabled by multibend achromat lattices and high-gradient magnets can reach unprecedented photon brightness. In this study, we show that, through the two-frequency crab cavity scheme, such machines also offer a unique opportunity to produce intense short x-ray pulses that are ideal for time-resolved user experiments. The short pulses and the high brightness photon beams are simultaneously available at all beamlines in a fully compatible operation mode. Owing to the small momentum compaction factor characteristic in fourth generation storage rings, the vertical emittance contribution due to coupling between the longitudinal and transverse planes by the crab cavities is small, which allows choosing a lower fractional vertical tune and in turn enables reaching the desired beam bunch tilting with a weaker deflecting voltage. However, bunch lengthening by the harmonic cavity is found to drastically increase the vertical emittance, which poses a serious hurdle to the scheme. We propose to use a half-integer harmonic cavity to simultaneously produce bunch lengthening and shortening in the bunch train to facilitate the compatible operation of the normal and short-pulse beams. A concrete case study based on the Advanced Photon Source Upgrade lattice is provided to demonstrate the system configuration and beam performance. | ||
653 | 0 | |a Nuclear and particle physics. Atomic energy. Radioactivity | |
700 | 0 | |a James Safranek |e verfasserin |4 aut | |
700 | 0 | |a Alexander Zholents |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Physical Review Accelerators and Beams |d American Physical Society, 2016 |g 26(2023), 12, p 120701 |w (DE-627)845689495 |w (DE-600)2844143-6 |x 24699888 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2023 |g number:12, p 120701 |
856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevAccelBeams.26.120701 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0abaebb93a564e9f8a775bd8af589143 |z kostenfrei |
856 | 4 | 0 | |u http://doi.org/10.1103/PhysRevAccelBeams.26.120701 |z kostenfrei |
856 | 4 | 0 | |u http://doi.org/10.1103/PhysRevAccelBeams.26.120701 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2469-9888 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 26 |j 2023 |e 12, p 120701 |
author_variant |
x h xh j s js a z az |
---|---|
matchkey_str |
article:24699888:2023----::bannpcscnxaplefofutgnrtosnh |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QC |
publishDate |
2023 |
allfields |
10.1103/PhysRevAccelBeams.26.120701 doi (DE-627)DOAJ09920729X (DE-599)DOAJ0abaebb93a564e9f8a775bd8af589143 DE-627 ger DE-627 rakwb eng QC770-798 Xiaobiao Huang verfasserin aut Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fourth generation storage ring light sources enabled by multibend achromat lattices and high-gradient magnets can reach unprecedented photon brightness. In this study, we show that, through the two-frequency crab cavity scheme, such machines also offer a unique opportunity to produce intense short x-ray pulses that are ideal for time-resolved user experiments. The short pulses and the high brightness photon beams are simultaneously available at all beamlines in a fully compatible operation mode. Owing to the small momentum compaction factor characteristic in fourth generation storage rings, the vertical emittance contribution due to coupling between the longitudinal and transverse planes by the crab cavities is small, which allows choosing a lower fractional vertical tune and in turn enables reaching the desired beam bunch tilting with a weaker deflecting voltage. However, bunch lengthening by the harmonic cavity is found to drastically increase the vertical emittance, which poses a serious hurdle to the scheme. We propose to use a half-integer harmonic cavity to simultaneously produce bunch lengthening and shortening in the bunch train to facilitate the compatible operation of the normal and short-pulse beams. A concrete case study based on the Advanced Photon Source Upgrade lattice is provided to demonstrate the system configuration and beam performance. Nuclear and particle physics. Atomic energy. Radioactivity James Safranek verfasserin aut Alexander Zholents verfasserin aut In Physical Review Accelerators and Beams American Physical Society, 2016 26(2023), 12, p 120701 (DE-627)845689495 (DE-600)2844143-6 24699888 nnns volume:26 year:2023 number:12, p 120701 https://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei https://doaj.org/article/0abaebb93a564e9f8a775bd8af589143 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei https://doaj.org/toc/2469-9888 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2023 12, p 120701 |
spelling |
10.1103/PhysRevAccelBeams.26.120701 doi (DE-627)DOAJ09920729X (DE-599)DOAJ0abaebb93a564e9f8a775bd8af589143 DE-627 ger DE-627 rakwb eng QC770-798 Xiaobiao Huang verfasserin aut Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fourth generation storage ring light sources enabled by multibend achromat lattices and high-gradient magnets can reach unprecedented photon brightness. In this study, we show that, through the two-frequency crab cavity scheme, such machines also offer a unique opportunity to produce intense short x-ray pulses that are ideal for time-resolved user experiments. The short pulses and the high brightness photon beams are simultaneously available at all beamlines in a fully compatible operation mode. Owing to the small momentum compaction factor characteristic in fourth generation storage rings, the vertical emittance contribution due to coupling between the longitudinal and transverse planes by the crab cavities is small, which allows choosing a lower fractional vertical tune and in turn enables reaching the desired beam bunch tilting with a weaker deflecting voltage. However, bunch lengthening by the harmonic cavity is found to drastically increase the vertical emittance, which poses a serious hurdle to the scheme. We propose to use a half-integer harmonic cavity to simultaneously produce bunch lengthening and shortening in the bunch train to facilitate the compatible operation of the normal and short-pulse beams. A concrete case study based on the Advanced Photon Source Upgrade lattice is provided to demonstrate the system configuration and beam performance. Nuclear and particle physics. Atomic energy. Radioactivity James Safranek verfasserin aut Alexander Zholents verfasserin aut In Physical Review Accelerators and Beams American Physical Society, 2016 26(2023), 12, p 120701 (DE-627)845689495 (DE-600)2844143-6 24699888 nnns volume:26 year:2023 number:12, p 120701 https://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei https://doaj.org/article/0abaebb93a564e9f8a775bd8af589143 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei https://doaj.org/toc/2469-9888 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2023 12, p 120701 |
allfields_unstemmed |
10.1103/PhysRevAccelBeams.26.120701 doi (DE-627)DOAJ09920729X (DE-599)DOAJ0abaebb93a564e9f8a775bd8af589143 DE-627 ger DE-627 rakwb eng QC770-798 Xiaobiao Huang verfasserin aut Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fourth generation storage ring light sources enabled by multibend achromat lattices and high-gradient magnets can reach unprecedented photon brightness. In this study, we show that, through the two-frequency crab cavity scheme, such machines also offer a unique opportunity to produce intense short x-ray pulses that are ideal for time-resolved user experiments. The short pulses and the high brightness photon beams are simultaneously available at all beamlines in a fully compatible operation mode. Owing to the small momentum compaction factor characteristic in fourth generation storage rings, the vertical emittance contribution due to coupling between the longitudinal and transverse planes by the crab cavities is small, which allows choosing a lower fractional vertical tune and in turn enables reaching the desired beam bunch tilting with a weaker deflecting voltage. However, bunch lengthening by the harmonic cavity is found to drastically increase the vertical emittance, which poses a serious hurdle to the scheme. We propose to use a half-integer harmonic cavity to simultaneously produce bunch lengthening and shortening in the bunch train to facilitate the compatible operation of the normal and short-pulse beams. A concrete case study based on the Advanced Photon Source Upgrade lattice is provided to demonstrate the system configuration and beam performance. Nuclear and particle physics. Atomic energy. Radioactivity James Safranek verfasserin aut Alexander Zholents verfasserin aut In Physical Review Accelerators and Beams American Physical Society, 2016 26(2023), 12, p 120701 (DE-627)845689495 (DE-600)2844143-6 24699888 nnns volume:26 year:2023 number:12, p 120701 https://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei https://doaj.org/article/0abaebb93a564e9f8a775bd8af589143 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei https://doaj.org/toc/2469-9888 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2023 12, p 120701 |
allfieldsGer |
10.1103/PhysRevAccelBeams.26.120701 doi (DE-627)DOAJ09920729X (DE-599)DOAJ0abaebb93a564e9f8a775bd8af589143 DE-627 ger DE-627 rakwb eng QC770-798 Xiaobiao Huang verfasserin aut Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fourth generation storage ring light sources enabled by multibend achromat lattices and high-gradient magnets can reach unprecedented photon brightness. In this study, we show that, through the two-frequency crab cavity scheme, such machines also offer a unique opportunity to produce intense short x-ray pulses that are ideal for time-resolved user experiments. The short pulses and the high brightness photon beams are simultaneously available at all beamlines in a fully compatible operation mode. Owing to the small momentum compaction factor characteristic in fourth generation storage rings, the vertical emittance contribution due to coupling between the longitudinal and transverse planes by the crab cavities is small, which allows choosing a lower fractional vertical tune and in turn enables reaching the desired beam bunch tilting with a weaker deflecting voltage. However, bunch lengthening by the harmonic cavity is found to drastically increase the vertical emittance, which poses a serious hurdle to the scheme. We propose to use a half-integer harmonic cavity to simultaneously produce bunch lengthening and shortening in the bunch train to facilitate the compatible operation of the normal and short-pulse beams. A concrete case study based on the Advanced Photon Source Upgrade lattice is provided to demonstrate the system configuration and beam performance. Nuclear and particle physics. Atomic energy. Radioactivity James Safranek verfasserin aut Alexander Zholents verfasserin aut In Physical Review Accelerators and Beams American Physical Society, 2016 26(2023), 12, p 120701 (DE-627)845689495 (DE-600)2844143-6 24699888 nnns volume:26 year:2023 number:12, p 120701 https://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei https://doaj.org/article/0abaebb93a564e9f8a775bd8af589143 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei https://doaj.org/toc/2469-9888 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2023 12, p 120701 |
allfieldsSound |
10.1103/PhysRevAccelBeams.26.120701 doi (DE-627)DOAJ09920729X (DE-599)DOAJ0abaebb93a564e9f8a775bd8af589143 DE-627 ger DE-627 rakwb eng QC770-798 Xiaobiao Huang verfasserin aut Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fourth generation storage ring light sources enabled by multibend achromat lattices and high-gradient magnets can reach unprecedented photon brightness. In this study, we show that, through the two-frequency crab cavity scheme, such machines also offer a unique opportunity to produce intense short x-ray pulses that are ideal for time-resolved user experiments. The short pulses and the high brightness photon beams are simultaneously available at all beamlines in a fully compatible operation mode. Owing to the small momentum compaction factor characteristic in fourth generation storage rings, the vertical emittance contribution due to coupling between the longitudinal and transverse planes by the crab cavities is small, which allows choosing a lower fractional vertical tune and in turn enables reaching the desired beam bunch tilting with a weaker deflecting voltage. However, bunch lengthening by the harmonic cavity is found to drastically increase the vertical emittance, which poses a serious hurdle to the scheme. We propose to use a half-integer harmonic cavity to simultaneously produce bunch lengthening and shortening in the bunch train to facilitate the compatible operation of the normal and short-pulse beams. A concrete case study based on the Advanced Photon Source Upgrade lattice is provided to demonstrate the system configuration and beam performance. Nuclear and particle physics. Atomic energy. Radioactivity James Safranek verfasserin aut Alexander Zholents verfasserin aut In Physical Review Accelerators and Beams American Physical Society, 2016 26(2023), 12, p 120701 (DE-627)845689495 (DE-600)2844143-6 24699888 nnns volume:26 year:2023 number:12, p 120701 https://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei https://doaj.org/article/0abaebb93a564e9f8a775bd8af589143 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.26.120701 kostenfrei https://doaj.org/toc/2469-9888 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2023 12, p 120701 |
language |
English |
source |
In Physical Review Accelerators and Beams 26(2023), 12, p 120701 volume:26 year:2023 number:12, p 120701 |
sourceStr |
In Physical Review Accelerators and Beams 26(2023), 12, p 120701 volume:26 year:2023 number:12, p 120701 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nuclear and particle physics. Atomic energy. Radioactivity |
isfreeaccess_bool |
true |
container_title |
Physical Review Accelerators and Beams |
authorswithroles_txt_mv |
Xiaobiao Huang @@aut@@ James Safranek @@aut@@ Alexander Zholents @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
845689495 |
id |
DOAJ09920729X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09920729X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414020937.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevAccelBeams.26.120701</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09920729X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0abaebb93a564e9f8a775bd8af589143</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaobiao Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fourth generation storage ring light sources enabled by multibend achromat lattices and high-gradient magnets can reach unprecedented photon brightness. In this study, we show that, through the two-frequency crab cavity scheme, such machines also offer a unique opportunity to produce intense short x-ray pulses that are ideal for time-resolved user experiments. The short pulses and the high brightness photon beams are simultaneously available at all beamlines in a fully compatible operation mode. Owing to the small momentum compaction factor characteristic in fourth generation storage rings, the vertical emittance contribution due to coupling between the longitudinal and transverse planes by the crab cavities is small, which allows choosing a lower fractional vertical tune and in turn enables reaching the desired beam bunch tilting with a weaker deflecting voltage. However, bunch lengthening by the harmonic cavity is found to drastically increase the vertical emittance, which poses a serious hurdle to the scheme. We propose to use a half-integer harmonic cavity to simultaneously produce bunch lengthening and shortening in the bunch train to facilitate the compatible operation of the normal and short-pulse beams. A concrete case study based on the Advanced Photon Source Upgrade lattice is provided to demonstrate the system configuration and beam performance.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">James Safranek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexander Zholents</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Physical Review Accelerators and Beams</subfield><subfield code="d">American Physical Society, 2016</subfield><subfield code="g">26(2023), 12, p 120701</subfield><subfield code="w">(DE-627)845689495</subfield><subfield code="w">(DE-600)2844143-6</subfield><subfield code="x">24699888</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12, p 120701</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1103/PhysRevAccelBeams.26.120701</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0abaebb93a564e9f8a775bd8af589143</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevAccelBeams.26.120701</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevAccelBeams.26.120701</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2469-9888</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2023</subfield><subfield code="e">12, p 120701</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Xiaobiao Huang |
spellingShingle |
Xiaobiao Huang misc QC770-798 misc Nuclear and particle physics. Atomic energy. Radioactivity Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources |
authorStr |
Xiaobiao Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)845689495 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC770-798 |
illustrated |
Not Illustrated |
issn |
24699888 |
topic_title |
QC770-798 Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources |
topic |
misc QC770-798 misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_unstemmed |
misc QC770-798 misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_browse |
misc QC770-798 misc Nuclear and particle physics. Atomic energy. Radioactivity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Physical Review Accelerators and Beams |
hierarchy_parent_id |
845689495 |
hierarchy_top_title |
Physical Review Accelerators and Beams |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)845689495 (DE-600)2844143-6 |
title |
Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources |
ctrlnum |
(DE-627)DOAJ09920729X (DE-599)DOAJ0abaebb93a564e9f8a775bd8af589143 |
title_full |
Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources |
author_sort |
Xiaobiao Huang |
journal |
Physical Review Accelerators and Beams |
journalStr |
Physical Review Accelerators and Beams |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Xiaobiao Huang James Safranek Alexander Zholents |
container_volume |
26 |
class |
QC770-798 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaobiao Huang |
doi_str_mv |
10.1103/PhysRevAccelBeams.26.120701 |
author2-role |
verfasserin |
title_sort |
obtaining picosecond x-ray pulses from fourth generation synchrotron light sources |
callnumber |
QC770-798 |
title_auth |
Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources |
abstract |
Fourth generation storage ring light sources enabled by multibend achromat lattices and high-gradient magnets can reach unprecedented photon brightness. In this study, we show that, through the two-frequency crab cavity scheme, such machines also offer a unique opportunity to produce intense short x-ray pulses that are ideal for time-resolved user experiments. The short pulses and the high brightness photon beams are simultaneously available at all beamlines in a fully compatible operation mode. Owing to the small momentum compaction factor characteristic in fourth generation storage rings, the vertical emittance contribution due to coupling between the longitudinal and transverse planes by the crab cavities is small, which allows choosing a lower fractional vertical tune and in turn enables reaching the desired beam bunch tilting with a weaker deflecting voltage. However, bunch lengthening by the harmonic cavity is found to drastically increase the vertical emittance, which poses a serious hurdle to the scheme. We propose to use a half-integer harmonic cavity to simultaneously produce bunch lengthening and shortening in the bunch train to facilitate the compatible operation of the normal and short-pulse beams. A concrete case study based on the Advanced Photon Source Upgrade lattice is provided to demonstrate the system configuration and beam performance. |
abstractGer |
Fourth generation storage ring light sources enabled by multibend achromat lattices and high-gradient magnets can reach unprecedented photon brightness. In this study, we show that, through the two-frequency crab cavity scheme, such machines also offer a unique opportunity to produce intense short x-ray pulses that are ideal for time-resolved user experiments. The short pulses and the high brightness photon beams are simultaneously available at all beamlines in a fully compatible operation mode. Owing to the small momentum compaction factor characteristic in fourth generation storage rings, the vertical emittance contribution due to coupling between the longitudinal and transverse planes by the crab cavities is small, which allows choosing a lower fractional vertical tune and in turn enables reaching the desired beam bunch tilting with a weaker deflecting voltage. However, bunch lengthening by the harmonic cavity is found to drastically increase the vertical emittance, which poses a serious hurdle to the scheme. We propose to use a half-integer harmonic cavity to simultaneously produce bunch lengthening and shortening in the bunch train to facilitate the compatible operation of the normal and short-pulse beams. A concrete case study based on the Advanced Photon Source Upgrade lattice is provided to demonstrate the system configuration and beam performance. |
abstract_unstemmed |
Fourth generation storage ring light sources enabled by multibend achromat lattices and high-gradient magnets can reach unprecedented photon brightness. In this study, we show that, through the two-frequency crab cavity scheme, such machines also offer a unique opportunity to produce intense short x-ray pulses that are ideal for time-resolved user experiments. The short pulses and the high brightness photon beams are simultaneously available at all beamlines in a fully compatible operation mode. Owing to the small momentum compaction factor characteristic in fourth generation storage rings, the vertical emittance contribution due to coupling between the longitudinal and transverse planes by the crab cavities is small, which allows choosing a lower fractional vertical tune and in turn enables reaching the desired beam bunch tilting with a weaker deflecting voltage. However, bunch lengthening by the harmonic cavity is found to drastically increase the vertical emittance, which poses a serious hurdle to the scheme. We propose to use a half-integer harmonic cavity to simultaneously produce bunch lengthening and shortening in the bunch train to facilitate the compatible operation of the normal and short-pulse beams. A concrete case study based on the Advanced Photon Source Upgrade lattice is provided to demonstrate the system configuration and beam performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 120701 |
title_short |
Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources |
url |
https://doi.org/10.1103/PhysRevAccelBeams.26.120701 https://doaj.org/article/0abaebb93a564e9f8a775bd8af589143 http://doi.org/10.1103/PhysRevAccelBeams.26.120701 https://doaj.org/toc/2469-9888 |
remote_bool |
true |
author2 |
James Safranek Alexander Zholents |
author2Str |
James Safranek Alexander Zholents |
ppnlink |
845689495 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1103/PhysRevAccelBeams.26.120701 |
callnumber-a |
QC770-798 |
up_date |
2024-07-03T21:37:05.093Z |
_version_ |
1803595415650566144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09920729X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414020937.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevAccelBeams.26.120701</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09920729X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0abaebb93a564e9f8a775bd8af589143</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaobiao Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fourth generation storage ring light sources enabled by multibend achromat lattices and high-gradient magnets can reach unprecedented photon brightness. In this study, we show that, through the two-frequency crab cavity scheme, such machines also offer a unique opportunity to produce intense short x-ray pulses that are ideal for time-resolved user experiments. The short pulses and the high brightness photon beams are simultaneously available at all beamlines in a fully compatible operation mode. Owing to the small momentum compaction factor characteristic in fourth generation storage rings, the vertical emittance contribution due to coupling between the longitudinal and transverse planes by the crab cavities is small, which allows choosing a lower fractional vertical tune and in turn enables reaching the desired beam bunch tilting with a weaker deflecting voltage. However, bunch lengthening by the harmonic cavity is found to drastically increase the vertical emittance, which poses a serious hurdle to the scheme. We propose to use a half-integer harmonic cavity to simultaneously produce bunch lengthening and shortening in the bunch train to facilitate the compatible operation of the normal and short-pulse beams. A concrete case study based on the Advanced Photon Source Upgrade lattice is provided to demonstrate the system configuration and beam performance.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">James Safranek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexander Zholents</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Physical Review Accelerators and Beams</subfield><subfield code="d">American Physical Society, 2016</subfield><subfield code="g">26(2023), 12, p 120701</subfield><subfield code="w">(DE-627)845689495</subfield><subfield code="w">(DE-600)2844143-6</subfield><subfield code="x">24699888</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12, p 120701</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1103/PhysRevAccelBeams.26.120701</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0abaebb93a564e9f8a775bd8af589143</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevAccelBeams.26.120701</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevAccelBeams.26.120701</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2469-9888</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2023</subfield><subfield code="e">12, p 120701</subfield></datafield></record></collection>
|
score |
7.401642 |