Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system
Abstract The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high‐precision time synchronisation with the construction and development of smart power grid. However, multi‐reference source time‐frequency synchronisation of power sy...
Ausführliche Beschreibung
Autor*in: |
Ling Teng [verfasserIn] Fangyun Dong [verfasserIn] Hui Zhang [verfasserIn] Huixia Ding [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IET Cyber-Physical Systems - Wiley, 2018, 8(2023), 4, Seite 247-256 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2023 ; number:4 ; pages:247-256 |
Links: |
---|
DOI / URN: |
10.1049/cps2.12051 |
---|
Katalog-ID: |
DOAJ099328860 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ099328860 | ||
003 | DE-627 | ||
005 | 20240414024149.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1049/cps2.12051 |2 doi | |
035 | |a (DE-627)DOAJ099328860 | ||
035 | |a (DE-599)DOAJ88378d50bef04d538542f24db917e7c7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7885-7895 | |
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Ling Teng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high‐precision time synchronisation with the construction and development of smart power grid. However, multi‐reference source time‐frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high‐precision time synchronisation of future power system. The existing multi‐reference source synthesis algorithms cannot take into account both long‐term stability and high‐precision synchronous output. This article presents a multi‐reference source weighted improved noise model and the high‐precision output method. The multi‐reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long‐term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source. | ||
650 | 4 | |a genetic algorithms | |
650 | 4 | |a global positioning system | |
650 | 4 | |a power electronics | |
650 | 4 | |a synchronisation | |
653 | 0 | |a Computer engineering. Computer hardware | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a Fangyun Dong |e verfasserin |4 aut | |
700 | 0 | |a Hui Zhang |e verfasserin |4 aut | |
700 | 0 | |a Huixia Ding |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IET Cyber-Physical Systems |d Wiley, 2018 |g 8(2023), 4, Seite 247-256 |w (DE-627)873280709 |w (DE-600)2875914-X |x 23983396 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2023 |g number:4 |g pages:247-256 |
856 | 4 | 0 | |u https://doi.org/10.1049/cps2.12051 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/88378d50bef04d538542f24db917e7c7 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1049/cps2.12051 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2398-3396 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2023 |e 4 |h 247-256 |
author_variant |
l t lt f d fd h z hz h d hd |
---|---|
matchkey_str |
article:23983396:2023----::eerhnihrcsosnhoosuptehooyfutrfrneoree |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.1049/cps2.12051 doi (DE-627)DOAJ099328860 (DE-599)DOAJ88378d50bef04d538542f24db917e7c7 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Ling Teng verfasserin aut Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high‐precision time synchronisation with the construction and development of smart power grid. However, multi‐reference source time‐frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high‐precision time synchronisation of future power system. The existing multi‐reference source synthesis algorithms cannot take into account both long‐term stability and high‐precision synchronous output. This article presents a multi‐reference source weighted improved noise model and the high‐precision output method. The multi‐reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long‐term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source. genetic algorithms global positioning system power electronics synchronisation Computer engineering. Computer hardware Electronic computers. Computer science Fangyun Dong verfasserin aut Hui Zhang verfasserin aut Huixia Ding verfasserin aut In IET Cyber-Physical Systems Wiley, 2018 8(2023), 4, Seite 247-256 (DE-627)873280709 (DE-600)2875914-X 23983396 nnns volume:8 year:2023 number:4 pages:247-256 https://doi.org/10.1049/cps2.12051 kostenfrei https://doaj.org/article/88378d50bef04d538542f24db917e7c7 kostenfrei https://doi.org/10.1049/cps2.12051 kostenfrei https://doaj.org/toc/2398-3396 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 4 247-256 |
spelling |
10.1049/cps2.12051 doi (DE-627)DOAJ099328860 (DE-599)DOAJ88378d50bef04d538542f24db917e7c7 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Ling Teng verfasserin aut Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high‐precision time synchronisation with the construction and development of smart power grid. However, multi‐reference source time‐frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high‐precision time synchronisation of future power system. The existing multi‐reference source synthesis algorithms cannot take into account both long‐term stability and high‐precision synchronous output. This article presents a multi‐reference source weighted improved noise model and the high‐precision output method. The multi‐reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long‐term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source. genetic algorithms global positioning system power electronics synchronisation Computer engineering. Computer hardware Electronic computers. Computer science Fangyun Dong verfasserin aut Hui Zhang verfasserin aut Huixia Ding verfasserin aut In IET Cyber-Physical Systems Wiley, 2018 8(2023), 4, Seite 247-256 (DE-627)873280709 (DE-600)2875914-X 23983396 nnns volume:8 year:2023 number:4 pages:247-256 https://doi.org/10.1049/cps2.12051 kostenfrei https://doaj.org/article/88378d50bef04d538542f24db917e7c7 kostenfrei https://doi.org/10.1049/cps2.12051 kostenfrei https://doaj.org/toc/2398-3396 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 4 247-256 |
allfields_unstemmed |
10.1049/cps2.12051 doi (DE-627)DOAJ099328860 (DE-599)DOAJ88378d50bef04d538542f24db917e7c7 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Ling Teng verfasserin aut Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high‐precision time synchronisation with the construction and development of smart power grid. However, multi‐reference source time‐frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high‐precision time synchronisation of future power system. The existing multi‐reference source synthesis algorithms cannot take into account both long‐term stability and high‐precision synchronous output. This article presents a multi‐reference source weighted improved noise model and the high‐precision output method. The multi‐reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long‐term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source. genetic algorithms global positioning system power electronics synchronisation Computer engineering. Computer hardware Electronic computers. Computer science Fangyun Dong verfasserin aut Hui Zhang verfasserin aut Huixia Ding verfasserin aut In IET Cyber-Physical Systems Wiley, 2018 8(2023), 4, Seite 247-256 (DE-627)873280709 (DE-600)2875914-X 23983396 nnns volume:8 year:2023 number:4 pages:247-256 https://doi.org/10.1049/cps2.12051 kostenfrei https://doaj.org/article/88378d50bef04d538542f24db917e7c7 kostenfrei https://doi.org/10.1049/cps2.12051 kostenfrei https://doaj.org/toc/2398-3396 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 4 247-256 |
allfieldsGer |
10.1049/cps2.12051 doi (DE-627)DOAJ099328860 (DE-599)DOAJ88378d50bef04d538542f24db917e7c7 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Ling Teng verfasserin aut Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high‐precision time synchronisation with the construction and development of smart power grid. However, multi‐reference source time‐frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high‐precision time synchronisation of future power system. The existing multi‐reference source synthesis algorithms cannot take into account both long‐term stability and high‐precision synchronous output. This article presents a multi‐reference source weighted improved noise model and the high‐precision output method. The multi‐reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long‐term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source. genetic algorithms global positioning system power electronics synchronisation Computer engineering. Computer hardware Electronic computers. Computer science Fangyun Dong verfasserin aut Hui Zhang verfasserin aut Huixia Ding verfasserin aut In IET Cyber-Physical Systems Wiley, 2018 8(2023), 4, Seite 247-256 (DE-627)873280709 (DE-600)2875914-X 23983396 nnns volume:8 year:2023 number:4 pages:247-256 https://doi.org/10.1049/cps2.12051 kostenfrei https://doaj.org/article/88378d50bef04d538542f24db917e7c7 kostenfrei https://doi.org/10.1049/cps2.12051 kostenfrei https://doaj.org/toc/2398-3396 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 4 247-256 |
allfieldsSound |
10.1049/cps2.12051 doi (DE-627)DOAJ099328860 (DE-599)DOAJ88378d50bef04d538542f24db917e7c7 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Ling Teng verfasserin aut Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high‐precision time synchronisation with the construction and development of smart power grid. However, multi‐reference source time‐frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high‐precision time synchronisation of future power system. The existing multi‐reference source synthesis algorithms cannot take into account both long‐term stability and high‐precision synchronous output. This article presents a multi‐reference source weighted improved noise model and the high‐precision output method. The multi‐reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long‐term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source. genetic algorithms global positioning system power electronics synchronisation Computer engineering. Computer hardware Electronic computers. Computer science Fangyun Dong verfasserin aut Hui Zhang verfasserin aut Huixia Ding verfasserin aut In IET Cyber-Physical Systems Wiley, 2018 8(2023), 4, Seite 247-256 (DE-627)873280709 (DE-600)2875914-X 23983396 nnns volume:8 year:2023 number:4 pages:247-256 https://doi.org/10.1049/cps2.12051 kostenfrei https://doaj.org/article/88378d50bef04d538542f24db917e7c7 kostenfrei https://doi.org/10.1049/cps2.12051 kostenfrei https://doaj.org/toc/2398-3396 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 4 247-256 |
language |
English |
source |
In IET Cyber-Physical Systems 8(2023), 4, Seite 247-256 volume:8 year:2023 number:4 pages:247-256 |
sourceStr |
In IET Cyber-Physical Systems 8(2023), 4, Seite 247-256 volume:8 year:2023 number:4 pages:247-256 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
genetic algorithms global positioning system power electronics synchronisation Computer engineering. Computer hardware Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
IET Cyber-Physical Systems |
authorswithroles_txt_mv |
Ling Teng @@aut@@ Fangyun Dong @@aut@@ Hui Zhang @@aut@@ Huixia Ding @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
873280709 |
id |
DOAJ099328860 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099328860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414024149.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/cps2.12051</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099328860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ88378d50bef04d538542f24db917e7c7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7885-7895</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ling Teng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high‐precision time synchronisation with the construction and development of smart power grid. However, multi‐reference source time‐frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high‐precision time synchronisation of future power system. The existing multi‐reference source synthesis algorithms cannot take into account both long‐term stability and high‐precision synchronous output. This article presents a multi‐reference source weighted improved noise model and the high‐precision output method. The multi‐reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long‐term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">global positioning system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchronisation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer engineering. Computer hardware</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fangyun Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hui Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huixia Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IET Cyber-Physical Systems</subfield><subfield code="d">Wiley, 2018</subfield><subfield code="g">8(2023), 4, Seite 247-256</subfield><subfield code="w">(DE-627)873280709</subfield><subfield code="w">(DE-600)2875914-X</subfield><subfield code="x">23983396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:247-256</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/cps2.12051</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/88378d50bef04d538542f24db917e7c7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/cps2.12051</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2398-3396</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">4</subfield><subfield code="h">247-256</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Ling Teng |
spellingShingle |
Ling Teng misc TK7885-7895 misc QA75.5-76.95 misc genetic algorithms misc global positioning system misc power electronics misc synchronisation misc Computer engineering. Computer hardware misc Electronic computers. Computer science Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system |
authorStr |
Ling Teng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)873280709 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7885-7895 |
illustrated |
Not Illustrated |
issn |
23983396 |
topic_title |
TK7885-7895 QA75.5-76.95 Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system genetic algorithms global positioning system power electronics synchronisation |
topic |
misc TK7885-7895 misc QA75.5-76.95 misc genetic algorithms misc global positioning system misc power electronics misc synchronisation misc Computer engineering. Computer hardware misc Electronic computers. Computer science |
topic_unstemmed |
misc TK7885-7895 misc QA75.5-76.95 misc genetic algorithms misc global positioning system misc power electronics misc synchronisation misc Computer engineering. Computer hardware misc Electronic computers. Computer science |
topic_browse |
misc TK7885-7895 misc QA75.5-76.95 misc genetic algorithms misc global positioning system misc power electronics misc synchronisation misc Computer engineering. Computer hardware misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IET Cyber-Physical Systems |
hierarchy_parent_id |
873280709 |
hierarchy_top_title |
IET Cyber-Physical Systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)873280709 (DE-600)2875914-X |
title |
Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system |
ctrlnum |
(DE-627)DOAJ099328860 (DE-599)DOAJ88378d50bef04d538542f24db917e7c7 |
title_full |
Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system |
author_sort |
Ling Teng |
journal |
IET Cyber-Physical Systems |
journalStr |
IET Cyber-Physical Systems |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
247 |
author_browse |
Ling Teng Fangyun Dong Hui Zhang Huixia Ding |
container_volume |
8 |
class |
TK7885-7895 QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Ling Teng |
doi_str_mv |
10.1049/cps2.12051 |
author2-role |
verfasserin |
title_sort |
research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system |
callnumber |
TK7885-7895 |
title_auth |
Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system |
abstract |
Abstract The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high‐precision time synchronisation with the construction and development of smart power grid. However, multi‐reference source time‐frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high‐precision time synchronisation of future power system. The existing multi‐reference source synthesis algorithms cannot take into account both long‐term stability and high‐precision synchronous output. This article presents a multi‐reference source weighted improved noise model and the high‐precision output method. The multi‐reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long‐term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source. |
abstractGer |
Abstract The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high‐precision time synchronisation with the construction and development of smart power grid. However, multi‐reference source time‐frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high‐precision time synchronisation of future power system. The existing multi‐reference source synthesis algorithms cannot take into account both long‐term stability and high‐precision synchronous output. This article presents a multi‐reference source weighted improved noise model and the high‐precision output method. The multi‐reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long‐term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source. |
abstract_unstemmed |
Abstract The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high‐precision time synchronisation with the construction and development of smart power grid. However, multi‐reference source time‐frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high‐precision time synchronisation of future power system. The existing multi‐reference source synthesis algorithms cannot take into account both long‐term stability and high‐precision synchronous output. This article presents a multi‐reference source weighted improved noise model and the high‐precision output method. The multi‐reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long‐term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system |
url |
https://doi.org/10.1049/cps2.12051 https://doaj.org/article/88378d50bef04d538542f24db917e7c7 https://doaj.org/toc/2398-3396 |
remote_bool |
true |
author2 |
Fangyun Dong Hui Zhang Huixia Ding |
author2Str |
Fangyun Dong Hui Zhang Huixia Ding |
ppnlink |
873280709 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1049/cps2.12051 |
callnumber-a |
TK7885-7895 |
up_date |
2024-07-03T22:14:40.358Z |
_version_ |
1803597780467318784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099328860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414024149.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/cps2.12051</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099328860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ88378d50bef04d538542f24db917e7c7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7885-7895</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ling Teng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on high‐precision synchronous output technology of multi‐reference source weighted synthesis in power system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high‐precision time synchronisation with the construction and development of smart power grid. However, multi‐reference source time‐frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high‐precision time synchronisation of future power system. The existing multi‐reference source synthesis algorithms cannot take into account both long‐term stability and high‐precision synchronous output. This article presents a multi‐reference source weighted improved noise model and the high‐precision output method. The multi‐reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long‐term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">global positioning system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchronisation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer engineering. Computer hardware</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fangyun Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hui Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huixia Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IET Cyber-Physical Systems</subfield><subfield code="d">Wiley, 2018</subfield><subfield code="g">8(2023), 4, Seite 247-256</subfield><subfield code="w">(DE-627)873280709</subfield><subfield code="w">(DE-600)2875914-X</subfield><subfield code="x">23983396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:247-256</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/cps2.12051</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/88378d50bef04d538542f24db917e7c7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/cps2.12051</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2398-3396</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">4</subfield><subfield code="h">247-256</subfield></datafield></record></collection>
|
score |
7.4000654 |