Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations
In this paper, by analyzing mock images from the IllustrisTNG100-1 simulation, we examine the properties of diffuse light and compare them to those of central and satellite galaxies. Our findings suggest that the majority of the diffuse light originates from satellites. This claim is supported by th...
Ausführliche Beschreibung
Autor*in: |
Lin Tang [verfasserIn] Weipeng Lin [verfasserIn] Yang Wang [verfasserIn] Jing Li [verfasserIn] Yanyao Lan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 959(2023), 2, p 104 |
---|---|
Übergeordnetes Werk: |
volume:959 ; year:2023 ; number:2, p 104 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/ad05ca |
---|
Katalog-ID: |
DOAJ09935246X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09935246X | ||
003 | DE-627 | ||
005 | 20240414024703.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/ad05ca |2 doi | |
035 | |a (DE-627)DOAJ09935246X | ||
035 | |a (DE-599)DOAJ44e07ce0212249fa84b90370f323dec4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Lin Tang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, by analyzing mock images from the IllustrisTNG100-1 simulation, we examine the properties of diffuse light and compare them to those of central and satellite galaxies. Our findings suggest that the majority of the diffuse light originates from satellites. This claim is supported by the similarity between the age and metallicity distributions of the diffuse light and those of the satellites. Notably, the color distribution of the diffuse light gradually evolves to resemble that of the centrals at lower redshifts, suggesting a coevolution or passive process. The radial profiles of the diffuse light reveal distinct trends, with the inner regions displaying a relatively flat distribution and the outer regions showing a descending pattern. This finding suggests that the formation of the diffuse light is influenced by both major mergers and stellar tidal stripping. Moreover, strong correlations are found between the stellar mass of the diffuse light and the overall stellar mass of the satellites, as well as between the stellar mass of the diffuse light and the number of satellites within groups or clusters. These relationships can be described by power-law and logarithmic functions. Overall, the diffuse light components predominantly originate from satellites with intermediate ages and metallicities. These satellites typically fall within the stellar mass range $8\lt {{\rm{log}}}_{10}({M}_{\star }/{M}_{\odot })\lt 10$ and the color range −1 < [ g − r ] ^0.1 < 0. As the redshift decreases, the growth of the diffuse light is primarily influenced by the redder satellites, while the most massive and reddest satellites have minimal roles in its growth. | ||
650 | 4 | |a Galaxy clusters | |
650 | 4 | |a Intracluster medium | |
650 | 4 | |a Galaxy evolution | |
650 | 4 | |a Hydrodynamical simulations | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Weipeng Lin |e verfasserin |4 aut | |
700 | 0 | |a Yang Wang |e verfasserin |4 aut | |
700 | 0 | |a Jing Li |e verfasserin |4 aut | |
700 | 0 | |a Yanyao Lan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 959(2023), 2, p 104 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:959 |g year:2023 |g number:2, p 104 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad05ca |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/44e07ce0212249fa84b90370f323dec4 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad05ca |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 959 |j 2023 |e 2, p 104 |
author_variant |
l t lt w l wl y w yw j l jl y l yl |
---|---|
matchkey_str |
article:15384357:2023----::okbevtosomtoadvltoodfueihiglxgopadlsesn |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3847/1538-4357/ad05ca doi (DE-627)DOAJ09935246X (DE-599)DOAJ44e07ce0212249fa84b90370f323dec4 DE-627 ger DE-627 rakwb eng QB460-466 Lin Tang verfasserin aut Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, by analyzing mock images from the IllustrisTNG100-1 simulation, we examine the properties of diffuse light and compare them to those of central and satellite galaxies. Our findings suggest that the majority of the diffuse light originates from satellites. This claim is supported by the similarity between the age and metallicity distributions of the diffuse light and those of the satellites. Notably, the color distribution of the diffuse light gradually evolves to resemble that of the centrals at lower redshifts, suggesting a coevolution or passive process. The radial profiles of the diffuse light reveal distinct trends, with the inner regions displaying a relatively flat distribution and the outer regions showing a descending pattern. This finding suggests that the formation of the diffuse light is influenced by both major mergers and stellar tidal stripping. Moreover, strong correlations are found between the stellar mass of the diffuse light and the overall stellar mass of the satellites, as well as between the stellar mass of the diffuse light and the number of satellites within groups or clusters. These relationships can be described by power-law and logarithmic functions. Overall, the diffuse light components predominantly originate from satellites with intermediate ages and metallicities. These satellites typically fall within the stellar mass range $8\lt {{\rm{log}}}_{10}({M}_{\star }/{M}_{\odot })\lt 10$ and the color range −1 < [ g − r ] ^0.1 < 0. As the redshift decreases, the growth of the diffuse light is primarily influenced by the redder satellites, while the most massive and reddest satellites have minimal roles in its growth. Galaxy clusters Intracluster medium Galaxy evolution Hydrodynamical simulations Astrophysics Weipeng Lin verfasserin aut Yang Wang verfasserin aut Jing Li verfasserin aut Yanyao Lan verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 959(2023), 2, p 104 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:959 year:2023 number:2, p 104 https://doi.org/10.3847/1538-4357/ad05ca kostenfrei https://doaj.org/article/44e07ce0212249fa84b90370f323dec4 kostenfrei https://doi.org/10.3847/1538-4357/ad05ca kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 959 2023 2, p 104 |
spelling |
10.3847/1538-4357/ad05ca doi (DE-627)DOAJ09935246X (DE-599)DOAJ44e07ce0212249fa84b90370f323dec4 DE-627 ger DE-627 rakwb eng QB460-466 Lin Tang verfasserin aut Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, by analyzing mock images from the IllustrisTNG100-1 simulation, we examine the properties of diffuse light and compare them to those of central and satellite galaxies. Our findings suggest that the majority of the diffuse light originates from satellites. This claim is supported by the similarity between the age and metallicity distributions of the diffuse light and those of the satellites. Notably, the color distribution of the diffuse light gradually evolves to resemble that of the centrals at lower redshifts, suggesting a coevolution or passive process. The radial profiles of the diffuse light reveal distinct trends, with the inner regions displaying a relatively flat distribution and the outer regions showing a descending pattern. This finding suggests that the formation of the diffuse light is influenced by both major mergers and stellar tidal stripping. Moreover, strong correlations are found between the stellar mass of the diffuse light and the overall stellar mass of the satellites, as well as between the stellar mass of the diffuse light and the number of satellites within groups or clusters. These relationships can be described by power-law and logarithmic functions. Overall, the diffuse light components predominantly originate from satellites with intermediate ages and metallicities. These satellites typically fall within the stellar mass range $8\lt {{\rm{log}}}_{10}({M}_{\star }/{M}_{\odot })\lt 10$ and the color range −1 < [ g − r ] ^0.1 < 0. As the redshift decreases, the growth of the diffuse light is primarily influenced by the redder satellites, while the most massive and reddest satellites have minimal roles in its growth. Galaxy clusters Intracluster medium Galaxy evolution Hydrodynamical simulations Astrophysics Weipeng Lin verfasserin aut Yang Wang verfasserin aut Jing Li verfasserin aut Yanyao Lan verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 959(2023), 2, p 104 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:959 year:2023 number:2, p 104 https://doi.org/10.3847/1538-4357/ad05ca kostenfrei https://doaj.org/article/44e07ce0212249fa84b90370f323dec4 kostenfrei https://doi.org/10.3847/1538-4357/ad05ca kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 959 2023 2, p 104 |
allfields_unstemmed |
10.3847/1538-4357/ad05ca doi (DE-627)DOAJ09935246X (DE-599)DOAJ44e07ce0212249fa84b90370f323dec4 DE-627 ger DE-627 rakwb eng QB460-466 Lin Tang verfasserin aut Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, by analyzing mock images from the IllustrisTNG100-1 simulation, we examine the properties of diffuse light and compare them to those of central and satellite galaxies. Our findings suggest that the majority of the diffuse light originates from satellites. This claim is supported by the similarity between the age and metallicity distributions of the diffuse light and those of the satellites. Notably, the color distribution of the diffuse light gradually evolves to resemble that of the centrals at lower redshifts, suggesting a coevolution or passive process. The radial profiles of the diffuse light reveal distinct trends, with the inner regions displaying a relatively flat distribution and the outer regions showing a descending pattern. This finding suggests that the formation of the diffuse light is influenced by both major mergers and stellar tidal stripping. Moreover, strong correlations are found between the stellar mass of the diffuse light and the overall stellar mass of the satellites, as well as between the stellar mass of the diffuse light and the number of satellites within groups or clusters. These relationships can be described by power-law and logarithmic functions. Overall, the diffuse light components predominantly originate from satellites with intermediate ages and metallicities. These satellites typically fall within the stellar mass range $8\lt {{\rm{log}}}_{10}({M}_{\star }/{M}_{\odot })\lt 10$ and the color range −1 < [ g − r ] ^0.1 < 0. As the redshift decreases, the growth of the diffuse light is primarily influenced by the redder satellites, while the most massive and reddest satellites have minimal roles in its growth. Galaxy clusters Intracluster medium Galaxy evolution Hydrodynamical simulations Astrophysics Weipeng Lin verfasserin aut Yang Wang verfasserin aut Jing Li verfasserin aut Yanyao Lan verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 959(2023), 2, p 104 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:959 year:2023 number:2, p 104 https://doi.org/10.3847/1538-4357/ad05ca kostenfrei https://doaj.org/article/44e07ce0212249fa84b90370f323dec4 kostenfrei https://doi.org/10.3847/1538-4357/ad05ca kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 959 2023 2, p 104 |
allfieldsGer |
10.3847/1538-4357/ad05ca doi (DE-627)DOAJ09935246X (DE-599)DOAJ44e07ce0212249fa84b90370f323dec4 DE-627 ger DE-627 rakwb eng QB460-466 Lin Tang verfasserin aut Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, by analyzing mock images from the IllustrisTNG100-1 simulation, we examine the properties of diffuse light and compare them to those of central and satellite galaxies. Our findings suggest that the majority of the diffuse light originates from satellites. This claim is supported by the similarity between the age and metallicity distributions of the diffuse light and those of the satellites. Notably, the color distribution of the diffuse light gradually evolves to resemble that of the centrals at lower redshifts, suggesting a coevolution or passive process. The radial profiles of the diffuse light reveal distinct trends, with the inner regions displaying a relatively flat distribution and the outer regions showing a descending pattern. This finding suggests that the formation of the diffuse light is influenced by both major mergers and stellar tidal stripping. Moreover, strong correlations are found between the stellar mass of the diffuse light and the overall stellar mass of the satellites, as well as between the stellar mass of the diffuse light and the number of satellites within groups or clusters. These relationships can be described by power-law and logarithmic functions. Overall, the diffuse light components predominantly originate from satellites with intermediate ages and metallicities. These satellites typically fall within the stellar mass range $8\lt {{\rm{log}}}_{10}({M}_{\star }/{M}_{\odot })\lt 10$ and the color range −1 < [ g − r ] ^0.1 < 0. As the redshift decreases, the growth of the diffuse light is primarily influenced by the redder satellites, while the most massive and reddest satellites have minimal roles in its growth. Galaxy clusters Intracluster medium Galaxy evolution Hydrodynamical simulations Astrophysics Weipeng Lin verfasserin aut Yang Wang verfasserin aut Jing Li verfasserin aut Yanyao Lan verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 959(2023), 2, p 104 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:959 year:2023 number:2, p 104 https://doi.org/10.3847/1538-4357/ad05ca kostenfrei https://doaj.org/article/44e07ce0212249fa84b90370f323dec4 kostenfrei https://doi.org/10.3847/1538-4357/ad05ca kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 959 2023 2, p 104 |
allfieldsSound |
10.3847/1538-4357/ad05ca doi (DE-627)DOAJ09935246X (DE-599)DOAJ44e07ce0212249fa84b90370f323dec4 DE-627 ger DE-627 rakwb eng QB460-466 Lin Tang verfasserin aut Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, by analyzing mock images from the IllustrisTNG100-1 simulation, we examine the properties of diffuse light and compare them to those of central and satellite galaxies. Our findings suggest that the majority of the diffuse light originates from satellites. This claim is supported by the similarity between the age and metallicity distributions of the diffuse light and those of the satellites. Notably, the color distribution of the diffuse light gradually evolves to resemble that of the centrals at lower redshifts, suggesting a coevolution or passive process. The radial profiles of the diffuse light reveal distinct trends, with the inner regions displaying a relatively flat distribution and the outer regions showing a descending pattern. This finding suggests that the formation of the diffuse light is influenced by both major mergers and stellar tidal stripping. Moreover, strong correlations are found between the stellar mass of the diffuse light and the overall stellar mass of the satellites, as well as between the stellar mass of the diffuse light and the number of satellites within groups or clusters. These relationships can be described by power-law and logarithmic functions. Overall, the diffuse light components predominantly originate from satellites with intermediate ages and metallicities. These satellites typically fall within the stellar mass range $8\lt {{\rm{log}}}_{10}({M}_{\star }/{M}_{\odot })\lt 10$ and the color range −1 < [ g − r ] ^0.1 < 0. As the redshift decreases, the growth of the diffuse light is primarily influenced by the redder satellites, while the most massive and reddest satellites have minimal roles in its growth. Galaxy clusters Intracluster medium Galaxy evolution Hydrodynamical simulations Astrophysics Weipeng Lin verfasserin aut Yang Wang verfasserin aut Jing Li verfasserin aut Yanyao Lan verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 959(2023), 2, p 104 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:959 year:2023 number:2, p 104 https://doi.org/10.3847/1538-4357/ad05ca kostenfrei https://doaj.org/article/44e07ce0212249fa84b90370f323dec4 kostenfrei https://doi.org/10.3847/1538-4357/ad05ca kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 959 2023 2, p 104 |
language |
English |
source |
In The Astrophysical Journal 959(2023), 2, p 104 volume:959 year:2023 number:2, p 104 |
sourceStr |
In The Astrophysical Journal 959(2023), 2, p 104 volume:959 year:2023 number:2, p 104 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Galaxy clusters Intracluster medium Galaxy evolution Hydrodynamical simulations Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Lin Tang @@aut@@ Weipeng Lin @@aut@@ Yang Wang @@aut@@ Jing Li @@aut@@ Yanyao Lan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ09935246X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09935246X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414024703.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad05ca</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09935246X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ44e07ce0212249fa84b90370f323dec4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lin Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, by analyzing mock images from the IllustrisTNG100-1 simulation, we examine the properties of diffuse light and compare them to those of central and satellite galaxies. Our findings suggest that the majority of the diffuse light originates from satellites. This claim is supported by the similarity between the age and metallicity distributions of the diffuse light and those of the satellites. Notably, the color distribution of the diffuse light gradually evolves to resemble that of the centrals at lower redshifts, suggesting a coevolution or passive process. The radial profiles of the diffuse light reveal distinct trends, with the inner regions displaying a relatively flat distribution and the outer regions showing a descending pattern. This finding suggests that the formation of the diffuse light is influenced by both major mergers and stellar tidal stripping. Moreover, strong correlations are found between the stellar mass of the diffuse light and the overall stellar mass of the satellites, as well as between the stellar mass of the diffuse light and the number of satellites within groups or clusters. These relationships can be described by power-law and logarithmic functions. Overall, the diffuse light components predominantly originate from satellites with intermediate ages and metallicities. These satellites typically fall within the stellar mass range $8\lt {{\rm{log}}}_{10}({M}_{\star }/{M}_{\odot })\lt 10$ and the color range −1 < [ g − r ] ^0.1 < 0. As the redshift decreases, the growth of the diffuse light is primarily influenced by the redder satellites, while the most massive and reddest satellites have minimal roles in its growth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy clusters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intracluster medium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrodynamical simulations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weipeng Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanyao Lan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">959(2023), 2, p 104</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:959</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 104</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad05ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/44e07ce0212249fa84b90370f323dec4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad05ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">959</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 104</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Lin Tang |
spellingShingle |
Lin Tang misc QB460-466 misc Galaxy clusters misc Intracluster medium misc Galaxy evolution misc Hydrodynamical simulations misc Astrophysics Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations |
authorStr |
Lin Tang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations Galaxy clusters Intracluster medium Galaxy evolution Hydrodynamical simulations |
topic |
misc QB460-466 misc Galaxy clusters misc Intracluster medium misc Galaxy evolution misc Hydrodynamical simulations misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Galaxy clusters misc Intracluster medium misc Galaxy evolution misc Hydrodynamical simulations misc Astrophysics |
topic_browse |
misc QB460-466 misc Galaxy clusters misc Intracluster medium misc Galaxy evolution misc Hydrodynamical simulations misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations |
ctrlnum |
(DE-627)DOAJ09935246X (DE-599)DOAJ44e07ce0212249fa84b90370f323dec4 |
title_full |
Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations |
author_sort |
Lin Tang |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Lin Tang Weipeng Lin Yang Wang Jing Li Yanyao Lan |
container_volume |
959 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Lin Tang |
doi_str_mv |
10.3847/1538-4357/ad05ca |
author2-role |
verfasserin |
title_sort |
mock observations: formation and evolution of diffuse light in galaxy groups and clusters in the illustristng simulations |
callnumber |
QB460-466 |
title_auth |
Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations |
abstract |
In this paper, by analyzing mock images from the IllustrisTNG100-1 simulation, we examine the properties of diffuse light and compare them to those of central and satellite galaxies. Our findings suggest that the majority of the diffuse light originates from satellites. This claim is supported by the similarity between the age and metallicity distributions of the diffuse light and those of the satellites. Notably, the color distribution of the diffuse light gradually evolves to resemble that of the centrals at lower redshifts, suggesting a coevolution or passive process. The radial profiles of the diffuse light reveal distinct trends, with the inner regions displaying a relatively flat distribution and the outer regions showing a descending pattern. This finding suggests that the formation of the diffuse light is influenced by both major mergers and stellar tidal stripping. Moreover, strong correlations are found between the stellar mass of the diffuse light and the overall stellar mass of the satellites, as well as between the stellar mass of the diffuse light and the number of satellites within groups or clusters. These relationships can be described by power-law and logarithmic functions. Overall, the diffuse light components predominantly originate from satellites with intermediate ages and metallicities. These satellites typically fall within the stellar mass range $8\lt {{\rm{log}}}_{10}({M}_{\star }/{M}_{\odot })\lt 10$ and the color range −1 < [ g − r ] ^0.1 < 0. As the redshift decreases, the growth of the diffuse light is primarily influenced by the redder satellites, while the most massive and reddest satellites have minimal roles in its growth. |
abstractGer |
In this paper, by analyzing mock images from the IllustrisTNG100-1 simulation, we examine the properties of diffuse light and compare them to those of central and satellite galaxies. Our findings suggest that the majority of the diffuse light originates from satellites. This claim is supported by the similarity between the age and metallicity distributions of the diffuse light and those of the satellites. Notably, the color distribution of the diffuse light gradually evolves to resemble that of the centrals at lower redshifts, suggesting a coevolution or passive process. The radial profiles of the diffuse light reveal distinct trends, with the inner regions displaying a relatively flat distribution and the outer regions showing a descending pattern. This finding suggests that the formation of the diffuse light is influenced by both major mergers and stellar tidal stripping. Moreover, strong correlations are found between the stellar mass of the diffuse light and the overall stellar mass of the satellites, as well as between the stellar mass of the diffuse light and the number of satellites within groups or clusters. These relationships can be described by power-law and logarithmic functions. Overall, the diffuse light components predominantly originate from satellites with intermediate ages and metallicities. These satellites typically fall within the stellar mass range $8\lt {{\rm{log}}}_{10}({M}_{\star }/{M}_{\odot })\lt 10$ and the color range −1 < [ g − r ] ^0.1 < 0. As the redshift decreases, the growth of the diffuse light is primarily influenced by the redder satellites, while the most massive and reddest satellites have minimal roles in its growth. |
abstract_unstemmed |
In this paper, by analyzing mock images from the IllustrisTNG100-1 simulation, we examine the properties of diffuse light and compare them to those of central and satellite galaxies. Our findings suggest that the majority of the diffuse light originates from satellites. This claim is supported by the similarity between the age and metallicity distributions of the diffuse light and those of the satellites. Notably, the color distribution of the diffuse light gradually evolves to resemble that of the centrals at lower redshifts, suggesting a coevolution or passive process. The radial profiles of the diffuse light reveal distinct trends, with the inner regions displaying a relatively flat distribution and the outer regions showing a descending pattern. This finding suggests that the formation of the diffuse light is influenced by both major mergers and stellar tidal stripping. Moreover, strong correlations are found between the stellar mass of the diffuse light and the overall stellar mass of the satellites, as well as between the stellar mass of the diffuse light and the number of satellites within groups or clusters. These relationships can be described by power-law and logarithmic functions. Overall, the diffuse light components predominantly originate from satellites with intermediate ages and metallicities. These satellites typically fall within the stellar mass range $8\lt {{\rm{log}}}_{10}({M}_{\star }/{M}_{\odot })\lt 10$ and the color range −1 < [ g − r ] ^0.1 < 0. As the redshift decreases, the growth of the diffuse light is primarily influenced by the redder satellites, while the most massive and reddest satellites have minimal roles in its growth. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 104 |
title_short |
Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations |
url |
https://doi.org/10.3847/1538-4357/ad05ca https://doaj.org/article/44e07ce0212249fa84b90370f323dec4 https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
Weipeng Lin Yang Wang Jing Li Yanyao Lan |
author2Str |
Weipeng Lin Yang Wang Jing Li Yanyao Lan |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/ad05ca |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T22:21:24.212Z |
_version_ |
1803598203939979265 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09935246X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414024703.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad05ca</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09935246X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ44e07ce0212249fa84b90370f323dec4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lin Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mock Observations: Formation and Evolution of Diffuse Light in Galaxy Groups and Clusters in the IllustrisTNG Simulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, by analyzing mock images from the IllustrisTNG100-1 simulation, we examine the properties of diffuse light and compare them to those of central and satellite galaxies. Our findings suggest that the majority of the diffuse light originates from satellites. This claim is supported by the similarity between the age and metallicity distributions of the diffuse light and those of the satellites. Notably, the color distribution of the diffuse light gradually evolves to resemble that of the centrals at lower redshifts, suggesting a coevolution or passive process. The radial profiles of the diffuse light reveal distinct trends, with the inner regions displaying a relatively flat distribution and the outer regions showing a descending pattern. This finding suggests that the formation of the diffuse light is influenced by both major mergers and stellar tidal stripping. Moreover, strong correlations are found between the stellar mass of the diffuse light and the overall stellar mass of the satellites, as well as between the stellar mass of the diffuse light and the number of satellites within groups or clusters. These relationships can be described by power-law and logarithmic functions. Overall, the diffuse light components predominantly originate from satellites with intermediate ages and metallicities. These satellites typically fall within the stellar mass range $8\lt {{\rm{log}}}_{10}({M}_{\star }/{M}_{\odot })\lt 10$ and the color range −1 < [ g − r ] ^0.1 < 0. As the redshift decreases, the growth of the diffuse light is primarily influenced by the redder satellites, while the most massive and reddest satellites have minimal roles in its growth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy clusters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intracluster medium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrodynamical simulations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weipeng Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanyao Lan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">959(2023), 2, p 104</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:959</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 104</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad05ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/44e07ce0212249fa84b90370f323dec4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad05ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">959</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 104</subfield></datafield></record></collection>
|
score |
7.40131 |