Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin
An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (<b<HA</b<) grafted with ferulic...
Ausführliche Beschreibung
Autor*in: |
Francesca Terracina [verfasserIn] Mario Saletti [verfasserIn] Marco Paolino [verfasserIn] Jacopo Venditti [verfasserIn] Germano Giuliani [verfasserIn] Claudia Bonechi [verfasserIn] Mariano Licciardi [verfasserIn] Andrea Cappelli [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Gels - MDPI AG, 2015, 10(2024), 2, p 91 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2024 ; number:2, p 91 |
Links: |
---|
DOI / URN: |
10.3390/gels10020091 |
---|
Katalog-ID: |
DOAJ099641488 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ099641488 | ||
003 | DE-627 | ||
005 | 20240414043924.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/gels10020091 |2 doi | |
035 | |a (DE-627)DOAJ099641488 | ||
035 | |a (DE-599)DOAJ29919c65a72d4ad5852531ac048db9a8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
050 | 0 | |a QD146-197 | |
050 | 0 | |a QD1-65 | |
100 | 0 | |a Francesca Terracina |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (<b<HA</b<) grafted with ferulic acid (<b<FA</b<) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely <b<HA(270)-FA-TEGEC-CL-20/PC</b< and <b<HA(270)-FA-HEGEC-CL-20/PC</b<) were obtained with a drug-to-material ratio of 1:2 (<i<w</i</<i<w</i<). Zeta potential measurements of the new complexes (−1.23 mV for <b<HA(270)-FA-TEGEC-CL-20/PC</b< and −1.73 mV for <b<HA(270)-FA-HEGEC-CL-20/PC</b<) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drug–material interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC. | ||
650 | 4 | |a hyaluronic acid | |
650 | 4 | |a ferulic acid | |
650 | 4 | |a click-chemistry | |
650 | 4 | |a crosslinking | |
650 | 4 | |a hydrogel | |
650 | 4 | |a drug delivery | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Chemistry | |
653 | 0 | |a Inorganic chemistry | |
653 | 0 | |a General. Including alchemy | |
700 | 0 | |a Mario Saletti |e verfasserin |4 aut | |
700 | 0 | |a Marco Paolino |e verfasserin |4 aut | |
700 | 0 | |a Jacopo Venditti |e verfasserin |4 aut | |
700 | 0 | |a Germano Giuliani |e verfasserin |4 aut | |
700 | 0 | |a Claudia Bonechi |e verfasserin |4 aut | |
700 | 0 | |a Mariano Licciardi |e verfasserin |4 aut | |
700 | 0 | |a Andrea Cappelli |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Gels |d MDPI AG, 2015 |g 10(2024), 2, p 91 |w (DE-627)820684147 |w (DE-600)2813982-3 |x 23102861 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2024 |g number:2, p 91 |
856 | 4 | 0 | |u https://doi.org/10.3390/gels10020091 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/29919c65a72d4ad5852531ac048db9a8 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2310-2861/10/2/91 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2310-2861 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2024 |e 2, p 91 |
author_variant |
f t ft m s ms m p mp j v jv g g gg c b cb m l ml a c ac |
---|---|
matchkey_str |
article:23102861:2024----::rslnehauoadrvtvsnhdlv |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QD |
publishDate |
2024 |
allfields |
10.3390/gels10020091 doi (DE-627)DOAJ099641488 (DE-599)DOAJ29919c65a72d4ad5852531ac048db9a8 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Francesca Terracina verfasserin aut Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (<b<HA</b<) grafted with ferulic acid (<b<FA</b<) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely <b<HA(270)-FA-TEGEC-CL-20/PC</b< and <b<HA(270)-FA-HEGEC-CL-20/PC</b<) were obtained with a drug-to-material ratio of 1:2 (<i<w</i</<i<w</i<). Zeta potential measurements of the new complexes (−1.23 mV for <b<HA(270)-FA-TEGEC-CL-20/PC</b< and −1.73 mV for <b<HA(270)-FA-HEGEC-CL-20/PC</b<) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drug–material interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC. hyaluronic acid ferulic acid click-chemistry crosslinking hydrogel drug delivery Science Q Chemistry Inorganic chemistry General. Including alchemy Mario Saletti verfasserin aut Marco Paolino verfasserin aut Jacopo Venditti verfasserin aut Germano Giuliani verfasserin aut Claudia Bonechi verfasserin aut Mariano Licciardi verfasserin aut Andrea Cappelli verfasserin aut In Gels MDPI AG, 2015 10(2024), 2, p 91 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:10 year:2024 number:2, p 91 https://doi.org/10.3390/gels10020091 kostenfrei https://doaj.org/article/29919c65a72d4ad5852531ac048db9a8 kostenfrei https://www.mdpi.com/2310-2861/10/2/91 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 2, p 91 |
spelling |
10.3390/gels10020091 doi (DE-627)DOAJ099641488 (DE-599)DOAJ29919c65a72d4ad5852531ac048db9a8 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Francesca Terracina verfasserin aut Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (<b<HA</b<) grafted with ferulic acid (<b<FA</b<) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely <b<HA(270)-FA-TEGEC-CL-20/PC</b< and <b<HA(270)-FA-HEGEC-CL-20/PC</b<) were obtained with a drug-to-material ratio of 1:2 (<i<w</i</<i<w</i<). Zeta potential measurements of the new complexes (−1.23 mV for <b<HA(270)-FA-TEGEC-CL-20/PC</b< and −1.73 mV for <b<HA(270)-FA-HEGEC-CL-20/PC</b<) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drug–material interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC. hyaluronic acid ferulic acid click-chemistry crosslinking hydrogel drug delivery Science Q Chemistry Inorganic chemistry General. Including alchemy Mario Saletti verfasserin aut Marco Paolino verfasserin aut Jacopo Venditti verfasserin aut Germano Giuliani verfasserin aut Claudia Bonechi verfasserin aut Mariano Licciardi verfasserin aut Andrea Cappelli verfasserin aut In Gels MDPI AG, 2015 10(2024), 2, p 91 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:10 year:2024 number:2, p 91 https://doi.org/10.3390/gels10020091 kostenfrei https://doaj.org/article/29919c65a72d4ad5852531ac048db9a8 kostenfrei https://www.mdpi.com/2310-2861/10/2/91 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 2, p 91 |
allfields_unstemmed |
10.3390/gels10020091 doi (DE-627)DOAJ099641488 (DE-599)DOAJ29919c65a72d4ad5852531ac048db9a8 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Francesca Terracina verfasserin aut Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (<b<HA</b<) grafted with ferulic acid (<b<FA</b<) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely <b<HA(270)-FA-TEGEC-CL-20/PC</b< and <b<HA(270)-FA-HEGEC-CL-20/PC</b<) were obtained with a drug-to-material ratio of 1:2 (<i<w</i</<i<w</i<). Zeta potential measurements of the new complexes (−1.23 mV for <b<HA(270)-FA-TEGEC-CL-20/PC</b< and −1.73 mV for <b<HA(270)-FA-HEGEC-CL-20/PC</b<) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drug–material interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC. hyaluronic acid ferulic acid click-chemistry crosslinking hydrogel drug delivery Science Q Chemistry Inorganic chemistry General. Including alchemy Mario Saletti verfasserin aut Marco Paolino verfasserin aut Jacopo Venditti verfasserin aut Germano Giuliani verfasserin aut Claudia Bonechi verfasserin aut Mariano Licciardi verfasserin aut Andrea Cappelli verfasserin aut In Gels MDPI AG, 2015 10(2024), 2, p 91 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:10 year:2024 number:2, p 91 https://doi.org/10.3390/gels10020091 kostenfrei https://doaj.org/article/29919c65a72d4ad5852531ac048db9a8 kostenfrei https://www.mdpi.com/2310-2861/10/2/91 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 2, p 91 |
allfieldsGer |
10.3390/gels10020091 doi (DE-627)DOAJ099641488 (DE-599)DOAJ29919c65a72d4ad5852531ac048db9a8 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Francesca Terracina verfasserin aut Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (<b<HA</b<) grafted with ferulic acid (<b<FA</b<) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely <b<HA(270)-FA-TEGEC-CL-20/PC</b< and <b<HA(270)-FA-HEGEC-CL-20/PC</b<) were obtained with a drug-to-material ratio of 1:2 (<i<w</i</<i<w</i<). Zeta potential measurements of the new complexes (−1.23 mV for <b<HA(270)-FA-TEGEC-CL-20/PC</b< and −1.73 mV for <b<HA(270)-FA-HEGEC-CL-20/PC</b<) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drug–material interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC. hyaluronic acid ferulic acid click-chemistry crosslinking hydrogel drug delivery Science Q Chemistry Inorganic chemistry General. Including alchemy Mario Saletti verfasserin aut Marco Paolino verfasserin aut Jacopo Venditti verfasserin aut Germano Giuliani verfasserin aut Claudia Bonechi verfasserin aut Mariano Licciardi verfasserin aut Andrea Cappelli verfasserin aut In Gels MDPI AG, 2015 10(2024), 2, p 91 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:10 year:2024 number:2, p 91 https://doi.org/10.3390/gels10020091 kostenfrei https://doaj.org/article/29919c65a72d4ad5852531ac048db9a8 kostenfrei https://www.mdpi.com/2310-2861/10/2/91 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 2, p 91 |
allfieldsSound |
10.3390/gels10020091 doi (DE-627)DOAJ099641488 (DE-599)DOAJ29919c65a72d4ad5852531ac048db9a8 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Francesca Terracina verfasserin aut Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (<b<HA</b<) grafted with ferulic acid (<b<FA</b<) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely <b<HA(270)-FA-TEGEC-CL-20/PC</b< and <b<HA(270)-FA-HEGEC-CL-20/PC</b<) were obtained with a drug-to-material ratio of 1:2 (<i<w</i</<i<w</i<). Zeta potential measurements of the new complexes (−1.23 mV for <b<HA(270)-FA-TEGEC-CL-20/PC</b< and −1.73 mV for <b<HA(270)-FA-HEGEC-CL-20/PC</b<) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drug–material interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC. hyaluronic acid ferulic acid click-chemistry crosslinking hydrogel drug delivery Science Q Chemistry Inorganic chemistry General. Including alchemy Mario Saletti verfasserin aut Marco Paolino verfasserin aut Jacopo Venditti verfasserin aut Germano Giuliani verfasserin aut Claudia Bonechi verfasserin aut Mariano Licciardi verfasserin aut Andrea Cappelli verfasserin aut In Gels MDPI AG, 2015 10(2024), 2, p 91 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:10 year:2024 number:2, p 91 https://doi.org/10.3390/gels10020091 kostenfrei https://doaj.org/article/29919c65a72d4ad5852531ac048db9a8 kostenfrei https://www.mdpi.com/2310-2861/10/2/91 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 2, p 91 |
language |
English |
source |
In Gels 10(2024), 2, p 91 volume:10 year:2024 number:2, p 91 |
sourceStr |
In Gels 10(2024), 2, p 91 volume:10 year:2024 number:2, p 91 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hyaluronic acid ferulic acid click-chemistry crosslinking hydrogel drug delivery Science Q Chemistry Inorganic chemistry General. Including alchemy |
isfreeaccess_bool |
true |
container_title |
Gels |
authorswithroles_txt_mv |
Francesca Terracina @@aut@@ Mario Saletti @@aut@@ Marco Paolino @@aut@@ Jacopo Venditti @@aut@@ Germano Giuliani @@aut@@ Claudia Bonechi @@aut@@ Mariano Licciardi @@aut@@ Andrea Cappelli @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
820684147 |
id |
DOAJ099641488 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099641488</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414043924.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/gels10020091</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099641488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ29919c65a72d4ad5852531ac048db9a8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD146-197</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Francesca Terracina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (<b<HA</b<) grafted with ferulic acid (<b<FA</b<) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely <b<HA(270)-FA-TEGEC-CL-20/PC</b< and <b<HA(270)-FA-HEGEC-CL-20/PC</b<) were obtained with a drug-to-material ratio of 1:2 (<i<w</i</<i<w</i<). Zeta potential measurements of the new complexes (−1.23 mV for <b<HA(270)-FA-TEGEC-CL-20/PC</b< and −1.73 mV for <b<HA(270)-FA-HEGEC-CL-20/PC</b<) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drug–material interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyaluronic acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ferulic acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">click-chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crosslinking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drug delivery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Inorganic chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General. Including alchemy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mario Saletti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Paolino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jacopo Venditti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Germano Giuliani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Bonechi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mariano Licciardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Cappelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Gels</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">10(2024), 2, p 91</subfield><subfield code="w">(DE-627)820684147</subfield><subfield code="w">(DE-600)2813982-3</subfield><subfield code="x">23102861</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2, p 91</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/gels10020091</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/29919c65a72d4ad5852531ac048db9a8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2310-2861/10/2/91</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2310-2861</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2024</subfield><subfield code="e">2, p 91</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Francesca Terracina |
spellingShingle |
Francesca Terracina misc QD1-999 misc QD146-197 misc QD1-65 misc hyaluronic acid misc ferulic acid misc click-chemistry misc crosslinking misc hydrogel misc drug delivery misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin |
authorStr |
Francesca Terracina |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820684147 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
23102861 |
topic_title |
QD1-999 QD146-197 QD1-65 Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin hyaluronic acid ferulic acid click-chemistry crosslinking hydrogel drug delivery |
topic |
misc QD1-999 misc QD146-197 misc QD1-65 misc hyaluronic acid misc ferulic acid misc click-chemistry misc crosslinking misc hydrogel misc drug delivery misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy |
topic_unstemmed |
misc QD1-999 misc QD146-197 misc QD1-65 misc hyaluronic acid misc ferulic acid misc click-chemistry misc crosslinking misc hydrogel misc drug delivery misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy |
topic_browse |
misc QD1-999 misc QD146-197 misc QD1-65 misc hyaluronic acid misc ferulic acid misc click-chemistry misc crosslinking misc hydrogel misc drug delivery misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Gels |
hierarchy_parent_id |
820684147 |
hierarchy_top_title |
Gels |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820684147 (DE-600)2813982-3 |
title |
Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin |
ctrlnum |
(DE-627)DOAJ099641488 (DE-599)DOAJ29919c65a72d4ad5852531ac048db9a8 |
title_full |
Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin |
author_sort |
Francesca Terracina |
journal |
Gels |
journalStr |
Gels |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Francesca Terracina Mario Saletti Marco Paolino Jacopo Venditti Germano Giuliani Claudia Bonechi Mariano Licciardi Andrea Cappelli |
container_volume |
10 |
class |
QD1-999 QD146-197 QD1-65 |
format_se |
Elektronische Aufsätze |
author-letter |
Francesca Terracina |
doi_str_mv |
10.3390/gels10020091 |
author2-role |
verfasserin |
title_sort |
cross-linked hyaluronan derivatives in the delivery of phycocyanin |
callnumber |
QD1-999 |
title_auth |
Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin |
abstract |
An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (<b<HA</b<) grafted with ferulic acid (<b<FA</b<) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely <b<HA(270)-FA-TEGEC-CL-20/PC</b< and <b<HA(270)-FA-HEGEC-CL-20/PC</b<) were obtained with a drug-to-material ratio of 1:2 (<i<w</i</<i<w</i<). Zeta potential measurements of the new complexes (−1.23 mV for <b<HA(270)-FA-TEGEC-CL-20/PC</b< and −1.73 mV for <b<HA(270)-FA-HEGEC-CL-20/PC</b<) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drug–material interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC. |
abstractGer |
An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (<b<HA</b<) grafted with ferulic acid (<b<FA</b<) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely <b<HA(270)-FA-TEGEC-CL-20/PC</b< and <b<HA(270)-FA-HEGEC-CL-20/PC</b<) were obtained with a drug-to-material ratio of 1:2 (<i<w</i</<i<w</i<). Zeta potential measurements of the new complexes (−1.23 mV for <b<HA(270)-FA-TEGEC-CL-20/PC</b< and −1.73 mV for <b<HA(270)-FA-HEGEC-CL-20/PC</b<) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drug–material interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC. |
abstract_unstemmed |
An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (<b<HA</b<) grafted with ferulic acid (<b<FA</b<) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely <b<HA(270)-FA-TEGEC-CL-20/PC</b< and <b<HA(270)-FA-HEGEC-CL-20/PC</b<) were obtained with a drug-to-material ratio of 1:2 (<i<w</i</<i<w</i<). Zeta potential measurements of the new complexes (−1.23 mV for <b<HA(270)-FA-TEGEC-CL-20/PC</b< and −1.73 mV for <b<HA(270)-FA-HEGEC-CL-20/PC</b<) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drug–material interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 91 |
title_short |
Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin |
url |
https://doi.org/10.3390/gels10020091 https://doaj.org/article/29919c65a72d4ad5852531ac048db9a8 https://www.mdpi.com/2310-2861/10/2/91 https://doaj.org/toc/2310-2861 |
remote_bool |
true |
author2 |
Mario Saletti Marco Paolino Jacopo Venditti Germano Giuliani Claudia Bonechi Mariano Licciardi Andrea Cappelli |
author2Str |
Mario Saletti Marco Paolino Jacopo Venditti Germano Giuliani Claudia Bonechi Mariano Licciardi Andrea Cappelli |
ppnlink |
820684147 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/gels10020091 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T23:44:12.166Z |
_version_ |
1803603413218361344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099641488</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414043924.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/gels10020091</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099641488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ29919c65a72d4ad5852531ac048db9a8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD146-197</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Francesca Terracina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (<b<HA</b<) grafted with ferulic acid (<b<FA</b<) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely <b<HA(270)-FA-TEGEC-CL-20/PC</b< and <b<HA(270)-FA-HEGEC-CL-20/PC</b<) were obtained with a drug-to-material ratio of 1:2 (<i<w</i</<i<w</i<). Zeta potential measurements of the new complexes (−1.23 mV for <b<HA(270)-FA-TEGEC-CL-20/PC</b< and −1.73 mV for <b<HA(270)-FA-HEGEC-CL-20/PC</b<) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drug–material interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyaluronic acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ferulic acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">click-chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crosslinking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drug delivery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Inorganic chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General. Including alchemy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mario Saletti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Paolino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jacopo Venditti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Germano Giuliani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Bonechi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mariano Licciardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Cappelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Gels</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">10(2024), 2, p 91</subfield><subfield code="w">(DE-627)820684147</subfield><subfield code="w">(DE-600)2813982-3</subfield><subfield code="x">23102861</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2, p 91</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/gels10020091</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/29919c65a72d4ad5852531ac048db9a8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2310-2861/10/2/91</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2310-2861</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2024</subfield><subfield code="e">2, p 91</subfield></datafield></record></collection>
|
score |
7.4016886 |