Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey
Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive activity, poses significant challenges in various domains, from road safety to workplace productivity. Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance and minimizi...
Ausführliche Beschreibung
Autor*in: |
Enamul Karim [verfasserIn] Hamza Reza Pavel [verfasserIn] Sama Nikanfar [verfasserIn] Aref Hebri [verfasserIn] Ayon Roy [verfasserIn] Harish Ram Nambiappan [verfasserIn] Ashish Jaiswal [verfasserIn] Glenn R. Wylie [verfasserIn] Fillia Makedon [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Technologies - MDPI AG, 2014, 12(2024), 3, p 38 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2024 ; number:3, p 38 |
Links: |
---|
DOI / URN: |
10.3390/technologies12030038 |
---|
Katalog-ID: |
DOAJ099809486 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ099809486 | ||
003 | DE-627 | ||
005 | 20240414054521.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/technologies12030038 |2 doi | |
035 | |a (DE-627)DOAJ099809486 | ||
035 | |a (DE-599)DOAJac2ea9c16132411b95f9bb9307073a93 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Enamul Karim |e verfasserin |4 aut | |
245 | 1 | 0 | |a Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive activity, poses significant challenges in various domains, from road safety to workplace productivity. Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance and minimizing potential risks. This paper presents a comprehensive survey of the current landscape in cognitive fatigue detection. We systematically review various approaches, encompassing physiological, behavioral, and performance-based measures, for robust and objective fatigue detection. The paper further analyzes different challenges, including the lack of standardized ground truth and the need for context-aware fatigue assessment. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and address the multifaceted challenge of cognitive fatigue detection. | ||
650 | 4 | |a cognitive fatigue | |
650 | 4 | |a fatigue detection | |
650 | 4 | |a mental fatigue assessment | |
650 | 4 | |a cognitive performance | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Hamza Reza Pavel |e verfasserin |4 aut | |
700 | 0 | |a Sama Nikanfar |e verfasserin |4 aut | |
700 | 0 | |a Aref Hebri |e verfasserin |4 aut | |
700 | 0 | |a Ayon Roy |e verfasserin |4 aut | |
700 | 0 | |a Harish Ram Nambiappan |e verfasserin |4 aut | |
700 | 0 | |a Ashish Jaiswal |e verfasserin |4 aut | |
700 | 0 | |a Glenn R. Wylie |e verfasserin |4 aut | |
700 | 0 | |a Fillia Makedon |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Technologies |d MDPI AG, 2014 |g 12(2024), 3, p 38 |w (DE-627)736557288 |w (DE-600)2703026-X |x 22277080 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2024 |g number:3, p 38 |
856 | 4 | 0 | |u https://doi.org/10.3390/technologies12030038 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ac2ea9c16132411b95f9bb9307073a93 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-7080/12/3/38 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-7080 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2024 |e 3, p 38 |
author_variant |
e k ek h r p hrp s n sn a h ah a r ar h r n hrn a j aj g r w grw f m fm |
---|---|
matchkey_str |
article:22277080:2024----::xmnnteadcpocgiieaiudtcinc |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.3390/technologies12030038 doi (DE-627)DOAJ099809486 (DE-599)DOAJac2ea9c16132411b95f9bb9307073a93 DE-627 ger DE-627 rakwb eng Enamul Karim verfasserin aut Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive activity, poses significant challenges in various domains, from road safety to workplace productivity. Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance and minimizing potential risks. This paper presents a comprehensive survey of the current landscape in cognitive fatigue detection. We systematically review various approaches, encompassing physiological, behavioral, and performance-based measures, for robust and objective fatigue detection. The paper further analyzes different challenges, including the lack of standardized ground truth and the need for context-aware fatigue assessment. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and address the multifaceted challenge of cognitive fatigue detection. cognitive fatigue fatigue detection mental fatigue assessment cognitive performance Technology T Hamza Reza Pavel verfasserin aut Sama Nikanfar verfasserin aut Aref Hebri verfasserin aut Ayon Roy verfasserin aut Harish Ram Nambiappan verfasserin aut Ashish Jaiswal verfasserin aut Glenn R. Wylie verfasserin aut Fillia Makedon verfasserin aut In Technologies MDPI AG, 2014 12(2024), 3, p 38 (DE-627)736557288 (DE-600)2703026-X 22277080 nnns volume:12 year:2024 number:3, p 38 https://doi.org/10.3390/technologies12030038 kostenfrei https://doaj.org/article/ac2ea9c16132411b95f9bb9307073a93 kostenfrei https://www.mdpi.com/2227-7080/12/3/38 kostenfrei https://doaj.org/toc/2227-7080 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 3, p 38 |
spelling |
10.3390/technologies12030038 doi (DE-627)DOAJ099809486 (DE-599)DOAJac2ea9c16132411b95f9bb9307073a93 DE-627 ger DE-627 rakwb eng Enamul Karim verfasserin aut Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive activity, poses significant challenges in various domains, from road safety to workplace productivity. Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance and minimizing potential risks. This paper presents a comprehensive survey of the current landscape in cognitive fatigue detection. We systematically review various approaches, encompassing physiological, behavioral, and performance-based measures, for robust and objective fatigue detection. The paper further analyzes different challenges, including the lack of standardized ground truth and the need for context-aware fatigue assessment. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and address the multifaceted challenge of cognitive fatigue detection. cognitive fatigue fatigue detection mental fatigue assessment cognitive performance Technology T Hamza Reza Pavel verfasserin aut Sama Nikanfar verfasserin aut Aref Hebri verfasserin aut Ayon Roy verfasserin aut Harish Ram Nambiappan verfasserin aut Ashish Jaiswal verfasserin aut Glenn R. Wylie verfasserin aut Fillia Makedon verfasserin aut In Technologies MDPI AG, 2014 12(2024), 3, p 38 (DE-627)736557288 (DE-600)2703026-X 22277080 nnns volume:12 year:2024 number:3, p 38 https://doi.org/10.3390/technologies12030038 kostenfrei https://doaj.org/article/ac2ea9c16132411b95f9bb9307073a93 kostenfrei https://www.mdpi.com/2227-7080/12/3/38 kostenfrei https://doaj.org/toc/2227-7080 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 3, p 38 |
allfields_unstemmed |
10.3390/technologies12030038 doi (DE-627)DOAJ099809486 (DE-599)DOAJac2ea9c16132411b95f9bb9307073a93 DE-627 ger DE-627 rakwb eng Enamul Karim verfasserin aut Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive activity, poses significant challenges in various domains, from road safety to workplace productivity. Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance and minimizing potential risks. This paper presents a comprehensive survey of the current landscape in cognitive fatigue detection. We systematically review various approaches, encompassing physiological, behavioral, and performance-based measures, for robust and objective fatigue detection. The paper further analyzes different challenges, including the lack of standardized ground truth and the need for context-aware fatigue assessment. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and address the multifaceted challenge of cognitive fatigue detection. cognitive fatigue fatigue detection mental fatigue assessment cognitive performance Technology T Hamza Reza Pavel verfasserin aut Sama Nikanfar verfasserin aut Aref Hebri verfasserin aut Ayon Roy verfasserin aut Harish Ram Nambiappan verfasserin aut Ashish Jaiswal verfasserin aut Glenn R. Wylie verfasserin aut Fillia Makedon verfasserin aut In Technologies MDPI AG, 2014 12(2024), 3, p 38 (DE-627)736557288 (DE-600)2703026-X 22277080 nnns volume:12 year:2024 number:3, p 38 https://doi.org/10.3390/technologies12030038 kostenfrei https://doaj.org/article/ac2ea9c16132411b95f9bb9307073a93 kostenfrei https://www.mdpi.com/2227-7080/12/3/38 kostenfrei https://doaj.org/toc/2227-7080 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 3, p 38 |
allfieldsGer |
10.3390/technologies12030038 doi (DE-627)DOAJ099809486 (DE-599)DOAJac2ea9c16132411b95f9bb9307073a93 DE-627 ger DE-627 rakwb eng Enamul Karim verfasserin aut Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive activity, poses significant challenges in various domains, from road safety to workplace productivity. Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance and minimizing potential risks. This paper presents a comprehensive survey of the current landscape in cognitive fatigue detection. We systematically review various approaches, encompassing physiological, behavioral, and performance-based measures, for robust and objective fatigue detection. The paper further analyzes different challenges, including the lack of standardized ground truth and the need for context-aware fatigue assessment. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and address the multifaceted challenge of cognitive fatigue detection. cognitive fatigue fatigue detection mental fatigue assessment cognitive performance Technology T Hamza Reza Pavel verfasserin aut Sama Nikanfar verfasserin aut Aref Hebri verfasserin aut Ayon Roy verfasserin aut Harish Ram Nambiappan verfasserin aut Ashish Jaiswal verfasserin aut Glenn R. Wylie verfasserin aut Fillia Makedon verfasserin aut In Technologies MDPI AG, 2014 12(2024), 3, p 38 (DE-627)736557288 (DE-600)2703026-X 22277080 nnns volume:12 year:2024 number:3, p 38 https://doi.org/10.3390/technologies12030038 kostenfrei https://doaj.org/article/ac2ea9c16132411b95f9bb9307073a93 kostenfrei https://www.mdpi.com/2227-7080/12/3/38 kostenfrei https://doaj.org/toc/2227-7080 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 3, p 38 |
allfieldsSound |
10.3390/technologies12030038 doi (DE-627)DOAJ099809486 (DE-599)DOAJac2ea9c16132411b95f9bb9307073a93 DE-627 ger DE-627 rakwb eng Enamul Karim verfasserin aut Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive activity, poses significant challenges in various domains, from road safety to workplace productivity. Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance and minimizing potential risks. This paper presents a comprehensive survey of the current landscape in cognitive fatigue detection. We systematically review various approaches, encompassing physiological, behavioral, and performance-based measures, for robust and objective fatigue detection. The paper further analyzes different challenges, including the lack of standardized ground truth and the need for context-aware fatigue assessment. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and address the multifaceted challenge of cognitive fatigue detection. cognitive fatigue fatigue detection mental fatigue assessment cognitive performance Technology T Hamza Reza Pavel verfasserin aut Sama Nikanfar verfasserin aut Aref Hebri verfasserin aut Ayon Roy verfasserin aut Harish Ram Nambiappan verfasserin aut Ashish Jaiswal verfasserin aut Glenn R. Wylie verfasserin aut Fillia Makedon verfasserin aut In Technologies MDPI AG, 2014 12(2024), 3, p 38 (DE-627)736557288 (DE-600)2703026-X 22277080 nnns volume:12 year:2024 number:3, p 38 https://doi.org/10.3390/technologies12030038 kostenfrei https://doaj.org/article/ac2ea9c16132411b95f9bb9307073a93 kostenfrei https://www.mdpi.com/2227-7080/12/3/38 kostenfrei https://doaj.org/toc/2227-7080 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 3, p 38 |
language |
English |
source |
In Technologies 12(2024), 3, p 38 volume:12 year:2024 number:3, p 38 |
sourceStr |
In Technologies 12(2024), 3, p 38 volume:12 year:2024 number:3, p 38 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cognitive fatigue fatigue detection mental fatigue assessment cognitive performance Technology T |
isfreeaccess_bool |
true |
container_title |
Technologies |
authorswithroles_txt_mv |
Enamul Karim @@aut@@ Hamza Reza Pavel @@aut@@ Sama Nikanfar @@aut@@ Aref Hebri @@aut@@ Ayon Roy @@aut@@ Harish Ram Nambiappan @@aut@@ Ashish Jaiswal @@aut@@ Glenn R. Wylie @@aut@@ Fillia Makedon @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
736557288 |
id |
DOAJ099809486 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099809486</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414054521.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/technologies12030038</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099809486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJac2ea9c16132411b95f9bb9307073a93</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Enamul Karim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive activity, poses significant challenges in various domains, from road safety to workplace productivity. Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance and minimizing potential risks. This paper presents a comprehensive survey of the current landscape in cognitive fatigue detection. We systematically review various approaches, encompassing physiological, behavioral, and performance-based measures, for robust and objective fatigue detection. The paper further analyzes different challenges, including the lack of standardized ground truth and the need for context-aware fatigue assessment. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and address the multifaceted challenge of cognitive fatigue detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive fatigue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fatigue detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mental fatigue assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive performance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hamza Reza Pavel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sama Nikanfar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aref Hebri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ayon Roy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Harish Ram Nambiappan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ashish Jaiswal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Glenn R. Wylie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fillia Makedon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Technologies</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">12(2024), 3, p 38</subfield><subfield code="w">(DE-627)736557288</subfield><subfield code="w">(DE-600)2703026-X</subfield><subfield code="x">22277080</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 38</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/technologies12030038</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ac2ea9c16132411b95f9bb9307073a93</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7080/12/3/38</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7080</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 38</subfield></datafield></record></collection>
|
author |
Enamul Karim |
spellingShingle |
Enamul Karim misc cognitive fatigue misc fatigue detection misc mental fatigue assessment misc cognitive performance misc Technology misc T Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey |
authorStr |
Enamul Karim |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)736557288 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
22277080 |
topic_title |
Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey cognitive fatigue fatigue detection mental fatigue assessment cognitive performance |
topic |
misc cognitive fatigue misc fatigue detection misc mental fatigue assessment misc cognitive performance misc Technology misc T |
topic_unstemmed |
misc cognitive fatigue misc fatigue detection misc mental fatigue assessment misc cognitive performance misc Technology misc T |
topic_browse |
misc cognitive fatigue misc fatigue detection misc mental fatigue assessment misc cognitive performance misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Technologies |
hierarchy_parent_id |
736557288 |
hierarchy_top_title |
Technologies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)736557288 (DE-600)2703026-X |
title |
Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey |
ctrlnum |
(DE-627)DOAJ099809486 (DE-599)DOAJac2ea9c16132411b95f9bb9307073a93 |
title_full |
Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey |
author_sort |
Enamul Karim |
journal |
Technologies |
journalStr |
Technologies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Enamul Karim Hamza Reza Pavel Sama Nikanfar Aref Hebri Ayon Roy Harish Ram Nambiappan Ashish Jaiswal Glenn R. Wylie Fillia Makedon |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Enamul Karim |
doi_str_mv |
10.3390/technologies12030038 |
author2-role |
verfasserin |
title_sort |
examining the landscape of cognitive fatigue detection: a comprehensive survey |
title_auth |
Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey |
abstract |
Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive activity, poses significant challenges in various domains, from road safety to workplace productivity. Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance and minimizing potential risks. This paper presents a comprehensive survey of the current landscape in cognitive fatigue detection. We systematically review various approaches, encompassing physiological, behavioral, and performance-based measures, for robust and objective fatigue detection. The paper further analyzes different challenges, including the lack of standardized ground truth and the need for context-aware fatigue assessment. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and address the multifaceted challenge of cognitive fatigue detection. |
abstractGer |
Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive activity, poses significant challenges in various domains, from road safety to workplace productivity. Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance and minimizing potential risks. This paper presents a comprehensive survey of the current landscape in cognitive fatigue detection. We systematically review various approaches, encompassing physiological, behavioral, and performance-based measures, for robust and objective fatigue detection. The paper further analyzes different challenges, including the lack of standardized ground truth and the need for context-aware fatigue assessment. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and address the multifaceted challenge of cognitive fatigue detection. |
abstract_unstemmed |
Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive activity, poses significant challenges in various domains, from road safety to workplace productivity. Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance and minimizing potential risks. This paper presents a comprehensive survey of the current landscape in cognitive fatigue detection. We systematically review various approaches, encompassing physiological, behavioral, and performance-based measures, for robust and objective fatigue detection. The paper further analyzes different challenges, including the lack of standardized ground truth and the need for context-aware fatigue assessment. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and address the multifaceted challenge of cognitive fatigue detection. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 38 |
title_short |
Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey |
url |
https://doi.org/10.3390/technologies12030038 https://doaj.org/article/ac2ea9c16132411b95f9bb9307073a93 https://www.mdpi.com/2227-7080/12/3/38 https://doaj.org/toc/2227-7080 |
remote_bool |
true |
author2 |
Hamza Reza Pavel Sama Nikanfar Aref Hebri Ayon Roy Harish Ram Nambiappan Ashish Jaiswal Glenn R. Wylie Fillia Makedon |
author2Str |
Hamza Reza Pavel Sama Nikanfar Aref Hebri Ayon Roy Harish Ram Nambiappan Ashish Jaiswal Glenn R. Wylie Fillia Makedon |
ppnlink |
736557288 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/technologies12030038 |
up_date |
2024-07-04T00:25:54.475Z |
_version_ |
1803606037078474752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099809486</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414054521.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/technologies12030038</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099809486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJac2ea9c16132411b95f9bb9307073a93</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Enamul Karim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive activity, poses significant challenges in various domains, from road safety to workplace productivity. Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance and minimizing potential risks. This paper presents a comprehensive survey of the current landscape in cognitive fatigue detection. We systematically review various approaches, encompassing physiological, behavioral, and performance-based measures, for robust and objective fatigue detection. The paper further analyzes different challenges, including the lack of standardized ground truth and the need for context-aware fatigue assessment. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and address the multifaceted challenge of cognitive fatigue detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive fatigue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fatigue detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mental fatigue assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive performance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hamza Reza Pavel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sama Nikanfar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aref Hebri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ayon Roy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Harish Ram Nambiappan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ashish Jaiswal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Glenn R. Wylie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fillia Makedon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Technologies</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">12(2024), 3, p 38</subfield><subfield code="w">(DE-627)736557288</subfield><subfield code="w">(DE-600)2703026-X</subfield><subfield code="x">22277080</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 38</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/technologies12030038</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ac2ea9c16132411b95f9bb9307073a93</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7080/12/3/38</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7080</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 38</subfield></datafield></record></collection>
|
score |
7.3993654 |