Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea
Abstract Among countries that are a part of the Organization for Economic Co-operation and Development, South Korea is the most exposed to PM2.5. Despite the country having implemented various strategies to limit PM2.5 emissions, its concentrations are still high enough to pose serious environmental...
Ausführliche Beschreibung
Autor*in: |
Kyucheol Hwang [verfasserIn] Jeongho Kim [verfasserIn] Jae Young Lee [verfasserIn] Jong-Sung Park [verfasserIn] Sechan Park [verfasserIn] Gahye Lee [verfasserIn] Chang Hyeok Kim [verfasserIn] Pilho Kim [verfasserIn] Su Hyun Shin [verfasserIn] Kwang Yul Lee [verfasserIn] Joon-Young An [verfasserIn] Jungmin Park [verfasserIn] Jong Bum Kim [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Potential source contribution function |
---|
Übergeordnetes Werk: |
In: Asian Journal of Atmospheric Environment - Springer, 2020, 17(2023), 1, Seite 14 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2023 ; number:1 ; pages:14 |
Links: |
---|
DOI / URN: |
10.1007/s44273-023-00018-5 |
---|
Katalog-ID: |
DOAJ099890674 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ099890674 | ||
003 | DE-627 | ||
005 | 20240414061029.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s44273-023-00018-5 |2 doi | |
035 | |a (DE-627)DOAJ099890674 | ||
035 | |a (DE-599)DOAJ735f38971eac4af4942436350497c26f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD1-1066 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Kyucheol Hwang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Among countries that are a part of the Organization for Economic Co-operation and Development, South Korea is the most exposed to PM2.5. Despite the country having implemented various strategies to limit PM2.5 emissions, its concentrations are still high enough to pose serious environmental and health concerns. Herein, we monitored various physiochemical properties of PM2.5 across different regions in South Korea from January 1 to December 31, 2021. Specifically, the study area consisted of the city center, industrial complexes, and suburban areas. Before analyzing dynamics of emissions specific to each site, the Clean Air Policy Support System data for the three areas were compared to elucidate their respective primary emission sources. The particle concentrations for the three areas were 21.8–26.44 µg/m3, with the highest concentrations being observed in March. All the three areas exhibited high ratios of NO3 − across all seasons. The particle number concentrations in the three sites were 1.3–1.5 × 107, and the peak points of the concentrations were different in every site: city center (40 nm), industrial complexes (60 nm), and suburban areas (80 nm). We also conducted potential source contribution function and conditional bivariate probability function analyses. These analyses were conducted to determine the inflow direction of the pollution sources for high PM2.5 episodes. For the episodes that occurred in spring and winter, there were no differences in the PM2.5 concentrations between the three sites. Overall, the insights gained from this study offer a framework for developing air-quality management policies in South Korea, specifically in the context of PM2.5 emissions. | ||
650 | 4 | |a PM2.5 concentration | |
650 | 4 | |a South Korea | |
650 | 4 | |a Spatial variation | |
650 | 4 | |a Potential source contribution function | |
650 | 4 | |a Conditional bivariate probability function | |
650 | 4 | |a Clean Air Policy Support System | |
653 | 0 | |a Environmental technology. Sanitary engineering | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Jeongho Kim |e verfasserin |4 aut | |
700 | 0 | |a Jae Young Lee |e verfasserin |4 aut | |
700 | 0 | |a Jong-Sung Park |e verfasserin |4 aut | |
700 | 0 | |a Sechan Park |e verfasserin |4 aut | |
700 | 0 | |a Gahye Lee |e verfasserin |4 aut | |
700 | 0 | |a Chang Hyeok Kim |e verfasserin |4 aut | |
700 | 0 | |a Pilho Kim |e verfasserin |4 aut | |
700 | 0 | |a Su Hyun Shin |e verfasserin |4 aut | |
700 | 0 | |a Kwang Yul Lee |e verfasserin |4 aut | |
700 | 0 | |a Joon-Young An |e verfasserin |4 aut | |
700 | 0 | |a Jungmin Park |e verfasserin |4 aut | |
700 | 0 | |a Jong Bum Kim |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Asian Journal of Atmospheric Environment |d Springer, 2020 |g 17(2023), 1, Seite 14 |w (DE-627)726122106 |w (DE-600)2681577-1 |x 22871160 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2023 |g number:1 |g pages:14 |
856 | 4 | 0 | |u https://doi.org/10.1007/s44273-023-00018-5 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/735f38971eac4af4942436350497c26f |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1007/s44273-023-00018-5 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2287-1160 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2023 |e 1 |h 14 |
author_variant |
k h kh j k jk j y l jyl j s p jsp s p sp g l gl c h k chk p k pk s h s shs k y l kyl j y a jya j p jp j b k jbk |
---|---|
matchkey_str |
article:22871160:2023----::hscceiacaatrsisnsaoavrainop2iubnnutil |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TD |
publishDate |
2023 |
allfields |
10.1007/s44273-023-00018-5 doi (DE-627)DOAJ099890674 (DE-599)DOAJ735f38971eac4af4942436350497c26f DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Kyucheol Hwang verfasserin aut Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Among countries that are a part of the Organization for Economic Co-operation and Development, South Korea is the most exposed to PM2.5. Despite the country having implemented various strategies to limit PM2.5 emissions, its concentrations are still high enough to pose serious environmental and health concerns. Herein, we monitored various physiochemical properties of PM2.5 across different regions in South Korea from January 1 to December 31, 2021. Specifically, the study area consisted of the city center, industrial complexes, and suburban areas. Before analyzing dynamics of emissions specific to each site, the Clean Air Policy Support System data for the three areas were compared to elucidate their respective primary emission sources. The particle concentrations for the three areas were 21.8–26.44 µg/m3, with the highest concentrations being observed in March. All the three areas exhibited high ratios of NO3 − across all seasons. The particle number concentrations in the three sites were 1.3–1.5 × 107, and the peak points of the concentrations were different in every site: city center (40 nm), industrial complexes (60 nm), and suburban areas (80 nm). We also conducted potential source contribution function and conditional bivariate probability function analyses. These analyses were conducted to determine the inflow direction of the pollution sources for high PM2.5 episodes. For the episodes that occurred in spring and winter, there were no differences in the PM2.5 concentrations between the three sites. Overall, the insights gained from this study offer a framework for developing air-quality management policies in South Korea, specifically in the context of PM2.5 emissions. PM2.5 concentration South Korea Spatial variation Potential source contribution function Conditional bivariate probability function Clean Air Policy Support System Environmental technology. Sanitary engineering Environmental sciences Jeongho Kim verfasserin aut Jae Young Lee verfasserin aut Jong-Sung Park verfasserin aut Sechan Park verfasserin aut Gahye Lee verfasserin aut Chang Hyeok Kim verfasserin aut Pilho Kim verfasserin aut Su Hyun Shin verfasserin aut Kwang Yul Lee verfasserin aut Joon-Young An verfasserin aut Jungmin Park verfasserin aut Jong Bum Kim verfasserin aut In Asian Journal of Atmospheric Environment Springer, 2020 17(2023), 1, Seite 14 (DE-627)726122106 (DE-600)2681577-1 22871160 nnns volume:17 year:2023 number:1 pages:14 https://doi.org/10.1007/s44273-023-00018-5 kostenfrei https://doaj.org/article/735f38971eac4af4942436350497c26f kostenfrei https://doi.org/10.1007/s44273-023-00018-5 kostenfrei https://doaj.org/toc/2287-1160 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2023 1 14 |
spelling |
10.1007/s44273-023-00018-5 doi (DE-627)DOAJ099890674 (DE-599)DOAJ735f38971eac4af4942436350497c26f DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Kyucheol Hwang verfasserin aut Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Among countries that are a part of the Organization for Economic Co-operation and Development, South Korea is the most exposed to PM2.5. Despite the country having implemented various strategies to limit PM2.5 emissions, its concentrations are still high enough to pose serious environmental and health concerns. Herein, we monitored various physiochemical properties of PM2.5 across different regions in South Korea from January 1 to December 31, 2021. Specifically, the study area consisted of the city center, industrial complexes, and suburban areas. Before analyzing dynamics of emissions specific to each site, the Clean Air Policy Support System data for the three areas were compared to elucidate their respective primary emission sources. The particle concentrations for the three areas were 21.8–26.44 µg/m3, with the highest concentrations being observed in March. All the three areas exhibited high ratios of NO3 − across all seasons. The particle number concentrations in the three sites were 1.3–1.5 × 107, and the peak points of the concentrations were different in every site: city center (40 nm), industrial complexes (60 nm), and suburban areas (80 nm). We also conducted potential source contribution function and conditional bivariate probability function analyses. These analyses were conducted to determine the inflow direction of the pollution sources for high PM2.5 episodes. For the episodes that occurred in spring and winter, there were no differences in the PM2.5 concentrations between the three sites. Overall, the insights gained from this study offer a framework for developing air-quality management policies in South Korea, specifically in the context of PM2.5 emissions. PM2.5 concentration South Korea Spatial variation Potential source contribution function Conditional bivariate probability function Clean Air Policy Support System Environmental technology. Sanitary engineering Environmental sciences Jeongho Kim verfasserin aut Jae Young Lee verfasserin aut Jong-Sung Park verfasserin aut Sechan Park verfasserin aut Gahye Lee verfasserin aut Chang Hyeok Kim verfasserin aut Pilho Kim verfasserin aut Su Hyun Shin verfasserin aut Kwang Yul Lee verfasserin aut Joon-Young An verfasserin aut Jungmin Park verfasserin aut Jong Bum Kim verfasserin aut In Asian Journal of Atmospheric Environment Springer, 2020 17(2023), 1, Seite 14 (DE-627)726122106 (DE-600)2681577-1 22871160 nnns volume:17 year:2023 number:1 pages:14 https://doi.org/10.1007/s44273-023-00018-5 kostenfrei https://doaj.org/article/735f38971eac4af4942436350497c26f kostenfrei https://doi.org/10.1007/s44273-023-00018-5 kostenfrei https://doaj.org/toc/2287-1160 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2023 1 14 |
allfields_unstemmed |
10.1007/s44273-023-00018-5 doi (DE-627)DOAJ099890674 (DE-599)DOAJ735f38971eac4af4942436350497c26f DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Kyucheol Hwang verfasserin aut Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Among countries that are a part of the Organization for Economic Co-operation and Development, South Korea is the most exposed to PM2.5. Despite the country having implemented various strategies to limit PM2.5 emissions, its concentrations are still high enough to pose serious environmental and health concerns. Herein, we monitored various physiochemical properties of PM2.5 across different regions in South Korea from January 1 to December 31, 2021. Specifically, the study area consisted of the city center, industrial complexes, and suburban areas. Before analyzing dynamics of emissions specific to each site, the Clean Air Policy Support System data for the three areas were compared to elucidate their respective primary emission sources. The particle concentrations for the three areas were 21.8–26.44 µg/m3, with the highest concentrations being observed in March. All the three areas exhibited high ratios of NO3 − across all seasons. The particle number concentrations in the three sites were 1.3–1.5 × 107, and the peak points of the concentrations were different in every site: city center (40 nm), industrial complexes (60 nm), and suburban areas (80 nm). We also conducted potential source contribution function and conditional bivariate probability function analyses. These analyses were conducted to determine the inflow direction of the pollution sources for high PM2.5 episodes. For the episodes that occurred in spring and winter, there were no differences in the PM2.5 concentrations between the three sites. Overall, the insights gained from this study offer a framework for developing air-quality management policies in South Korea, specifically in the context of PM2.5 emissions. PM2.5 concentration South Korea Spatial variation Potential source contribution function Conditional bivariate probability function Clean Air Policy Support System Environmental technology. Sanitary engineering Environmental sciences Jeongho Kim verfasserin aut Jae Young Lee verfasserin aut Jong-Sung Park verfasserin aut Sechan Park verfasserin aut Gahye Lee verfasserin aut Chang Hyeok Kim verfasserin aut Pilho Kim verfasserin aut Su Hyun Shin verfasserin aut Kwang Yul Lee verfasserin aut Joon-Young An verfasserin aut Jungmin Park verfasserin aut Jong Bum Kim verfasserin aut In Asian Journal of Atmospheric Environment Springer, 2020 17(2023), 1, Seite 14 (DE-627)726122106 (DE-600)2681577-1 22871160 nnns volume:17 year:2023 number:1 pages:14 https://doi.org/10.1007/s44273-023-00018-5 kostenfrei https://doaj.org/article/735f38971eac4af4942436350497c26f kostenfrei https://doi.org/10.1007/s44273-023-00018-5 kostenfrei https://doaj.org/toc/2287-1160 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2023 1 14 |
allfieldsGer |
10.1007/s44273-023-00018-5 doi (DE-627)DOAJ099890674 (DE-599)DOAJ735f38971eac4af4942436350497c26f DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Kyucheol Hwang verfasserin aut Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Among countries that are a part of the Organization for Economic Co-operation and Development, South Korea is the most exposed to PM2.5. Despite the country having implemented various strategies to limit PM2.5 emissions, its concentrations are still high enough to pose serious environmental and health concerns. Herein, we monitored various physiochemical properties of PM2.5 across different regions in South Korea from January 1 to December 31, 2021. Specifically, the study area consisted of the city center, industrial complexes, and suburban areas. Before analyzing dynamics of emissions specific to each site, the Clean Air Policy Support System data for the three areas were compared to elucidate their respective primary emission sources. The particle concentrations for the three areas were 21.8–26.44 µg/m3, with the highest concentrations being observed in March. All the three areas exhibited high ratios of NO3 − across all seasons. The particle number concentrations in the three sites were 1.3–1.5 × 107, and the peak points of the concentrations were different in every site: city center (40 nm), industrial complexes (60 nm), and suburban areas (80 nm). We also conducted potential source contribution function and conditional bivariate probability function analyses. These analyses were conducted to determine the inflow direction of the pollution sources for high PM2.5 episodes. For the episodes that occurred in spring and winter, there were no differences in the PM2.5 concentrations between the three sites. Overall, the insights gained from this study offer a framework for developing air-quality management policies in South Korea, specifically in the context of PM2.5 emissions. PM2.5 concentration South Korea Spatial variation Potential source contribution function Conditional bivariate probability function Clean Air Policy Support System Environmental technology. Sanitary engineering Environmental sciences Jeongho Kim verfasserin aut Jae Young Lee verfasserin aut Jong-Sung Park verfasserin aut Sechan Park verfasserin aut Gahye Lee verfasserin aut Chang Hyeok Kim verfasserin aut Pilho Kim verfasserin aut Su Hyun Shin verfasserin aut Kwang Yul Lee verfasserin aut Joon-Young An verfasserin aut Jungmin Park verfasserin aut Jong Bum Kim verfasserin aut In Asian Journal of Atmospheric Environment Springer, 2020 17(2023), 1, Seite 14 (DE-627)726122106 (DE-600)2681577-1 22871160 nnns volume:17 year:2023 number:1 pages:14 https://doi.org/10.1007/s44273-023-00018-5 kostenfrei https://doaj.org/article/735f38971eac4af4942436350497c26f kostenfrei https://doi.org/10.1007/s44273-023-00018-5 kostenfrei https://doaj.org/toc/2287-1160 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2023 1 14 |
allfieldsSound |
10.1007/s44273-023-00018-5 doi (DE-627)DOAJ099890674 (DE-599)DOAJ735f38971eac4af4942436350497c26f DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Kyucheol Hwang verfasserin aut Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Among countries that are a part of the Organization for Economic Co-operation and Development, South Korea is the most exposed to PM2.5. Despite the country having implemented various strategies to limit PM2.5 emissions, its concentrations are still high enough to pose serious environmental and health concerns. Herein, we monitored various physiochemical properties of PM2.5 across different regions in South Korea from January 1 to December 31, 2021. Specifically, the study area consisted of the city center, industrial complexes, and suburban areas. Before analyzing dynamics of emissions specific to each site, the Clean Air Policy Support System data for the three areas were compared to elucidate their respective primary emission sources. The particle concentrations for the three areas were 21.8–26.44 µg/m3, with the highest concentrations being observed in March. All the three areas exhibited high ratios of NO3 − across all seasons. The particle number concentrations in the three sites were 1.3–1.5 × 107, and the peak points of the concentrations were different in every site: city center (40 nm), industrial complexes (60 nm), and suburban areas (80 nm). We also conducted potential source contribution function and conditional bivariate probability function analyses. These analyses were conducted to determine the inflow direction of the pollution sources for high PM2.5 episodes. For the episodes that occurred in spring and winter, there were no differences in the PM2.5 concentrations between the three sites. Overall, the insights gained from this study offer a framework for developing air-quality management policies in South Korea, specifically in the context of PM2.5 emissions. PM2.5 concentration South Korea Spatial variation Potential source contribution function Conditional bivariate probability function Clean Air Policy Support System Environmental technology. Sanitary engineering Environmental sciences Jeongho Kim verfasserin aut Jae Young Lee verfasserin aut Jong-Sung Park verfasserin aut Sechan Park verfasserin aut Gahye Lee verfasserin aut Chang Hyeok Kim verfasserin aut Pilho Kim verfasserin aut Su Hyun Shin verfasserin aut Kwang Yul Lee verfasserin aut Joon-Young An verfasserin aut Jungmin Park verfasserin aut Jong Bum Kim verfasserin aut In Asian Journal of Atmospheric Environment Springer, 2020 17(2023), 1, Seite 14 (DE-627)726122106 (DE-600)2681577-1 22871160 nnns volume:17 year:2023 number:1 pages:14 https://doi.org/10.1007/s44273-023-00018-5 kostenfrei https://doaj.org/article/735f38971eac4af4942436350497c26f kostenfrei https://doi.org/10.1007/s44273-023-00018-5 kostenfrei https://doaj.org/toc/2287-1160 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2023 1 14 |
language |
English |
source |
In Asian Journal of Atmospheric Environment 17(2023), 1, Seite 14 volume:17 year:2023 number:1 pages:14 |
sourceStr |
In Asian Journal of Atmospheric Environment 17(2023), 1, Seite 14 volume:17 year:2023 number:1 pages:14 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
PM2.5 concentration South Korea Spatial variation Potential source contribution function Conditional bivariate probability function Clean Air Policy Support System Environmental technology. Sanitary engineering Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Asian Journal of Atmospheric Environment |
authorswithroles_txt_mv |
Kyucheol Hwang @@aut@@ Jeongho Kim @@aut@@ Jae Young Lee @@aut@@ Jong-Sung Park @@aut@@ Sechan Park @@aut@@ Gahye Lee @@aut@@ Chang Hyeok Kim @@aut@@ Pilho Kim @@aut@@ Su Hyun Shin @@aut@@ Kwang Yul Lee @@aut@@ Joon-Young An @@aut@@ Jungmin Park @@aut@@ Jong Bum Kim @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
726122106 |
id |
DOAJ099890674 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099890674</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414061029.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44273-023-00018-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099890674</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ735f38971eac4af4942436350497c26f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kyucheol Hwang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Among countries that are a part of the Organization for Economic Co-operation and Development, South Korea is the most exposed to PM2.5. Despite the country having implemented various strategies to limit PM2.5 emissions, its concentrations are still high enough to pose serious environmental and health concerns. Herein, we monitored various physiochemical properties of PM2.5 across different regions in South Korea from January 1 to December 31, 2021. Specifically, the study area consisted of the city center, industrial complexes, and suburban areas. Before analyzing dynamics of emissions specific to each site, the Clean Air Policy Support System data for the three areas were compared to elucidate their respective primary emission sources. The particle concentrations for the three areas were 21.8–26.44 µg/m3, with the highest concentrations being observed in March. All the three areas exhibited high ratios of NO3 − across all seasons. The particle number concentrations in the three sites were 1.3–1.5 × 107, and the peak points of the concentrations were different in every site: city center (40 nm), industrial complexes (60 nm), and suburban areas (80 nm). We also conducted potential source contribution function and conditional bivariate probability function analyses. These analyses were conducted to determine the inflow direction of the pollution sources for high PM2.5 episodes. For the episodes that occurred in spring and winter, there were no differences in the PM2.5 concentrations between the three sites. Overall, the insights gained from this study offer a framework for developing air-quality management policies in South Korea, specifically in the context of PM2.5 emissions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PM2.5 concentration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">South Korea</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential source contribution function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conditional bivariate probability function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clean Air Policy Support System</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jeongho Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jae Young Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jong-Sung Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sechan Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gahye Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chang Hyeok Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pilho Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Su Hyun Shin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kwang Yul Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joon-Young An</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jungmin Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jong Bum Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Asian Journal of Atmospheric Environment</subfield><subfield code="d">Springer, 2020</subfield><subfield code="g">17(2023), 1, Seite 14</subfield><subfield code="w">(DE-627)726122106</subfield><subfield code="w">(DE-600)2681577-1</subfield><subfield code="x">22871160</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s44273-023-00018-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/735f38971eac4af4942436350497c26f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s44273-023-00018-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2287-1160</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">14</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Kyucheol Hwang |
spellingShingle |
Kyucheol Hwang misc TD1-1066 misc GE1-350 misc PM2.5 concentration misc South Korea misc Spatial variation misc Potential source contribution function misc Conditional bivariate probability function misc Clean Air Policy Support System misc Environmental technology. Sanitary engineering misc Environmental sciences Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea |
authorStr |
Kyucheol Hwang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)726122106 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD1-1066 |
illustrated |
Not Illustrated |
issn |
22871160 |
topic_title |
TD1-1066 GE1-350 Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea PM2.5 concentration South Korea Spatial variation Potential source contribution function Conditional bivariate probability function Clean Air Policy Support System |
topic |
misc TD1-1066 misc GE1-350 misc PM2.5 concentration misc South Korea misc Spatial variation misc Potential source contribution function misc Conditional bivariate probability function misc Clean Air Policy Support System misc Environmental technology. Sanitary engineering misc Environmental sciences |
topic_unstemmed |
misc TD1-1066 misc GE1-350 misc PM2.5 concentration misc South Korea misc Spatial variation misc Potential source contribution function misc Conditional bivariate probability function misc Clean Air Policy Support System misc Environmental technology. Sanitary engineering misc Environmental sciences |
topic_browse |
misc TD1-1066 misc GE1-350 misc PM2.5 concentration misc South Korea misc Spatial variation misc Potential source contribution function misc Conditional bivariate probability function misc Clean Air Policy Support System misc Environmental technology. Sanitary engineering misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Asian Journal of Atmospheric Environment |
hierarchy_parent_id |
726122106 |
hierarchy_top_title |
Asian Journal of Atmospheric Environment |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)726122106 (DE-600)2681577-1 |
title |
Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea |
ctrlnum |
(DE-627)DOAJ099890674 (DE-599)DOAJ735f38971eac4af4942436350497c26f |
title_full |
Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea |
author_sort |
Kyucheol Hwang |
journal |
Asian Journal of Atmospheric Environment |
journalStr |
Asian Journal of Atmospheric Environment |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
14 |
author_browse |
Kyucheol Hwang Jeongho Kim Jae Young Lee Jong-Sung Park Sechan Park Gahye Lee Chang Hyeok Kim Pilho Kim Su Hyun Shin Kwang Yul Lee Joon-Young An Jungmin Park Jong Bum Kim |
container_volume |
17 |
class |
TD1-1066 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Kyucheol Hwang |
doi_str_mv |
10.1007/s44273-023-00018-5 |
author2-role |
verfasserin |
title_sort |
physicochemical characteristics and seasonal variations of pm2.5 in urban, industrial, and suburban areas in south korea |
callnumber |
TD1-1066 |
title_auth |
Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea |
abstract |
Abstract Among countries that are a part of the Organization for Economic Co-operation and Development, South Korea is the most exposed to PM2.5. Despite the country having implemented various strategies to limit PM2.5 emissions, its concentrations are still high enough to pose serious environmental and health concerns. Herein, we monitored various physiochemical properties of PM2.5 across different regions in South Korea from January 1 to December 31, 2021. Specifically, the study area consisted of the city center, industrial complexes, and suburban areas. Before analyzing dynamics of emissions specific to each site, the Clean Air Policy Support System data for the three areas were compared to elucidate their respective primary emission sources. The particle concentrations for the three areas were 21.8–26.44 µg/m3, with the highest concentrations being observed in March. All the three areas exhibited high ratios of NO3 − across all seasons. The particle number concentrations in the three sites were 1.3–1.5 × 107, and the peak points of the concentrations were different in every site: city center (40 nm), industrial complexes (60 nm), and suburban areas (80 nm). We also conducted potential source contribution function and conditional bivariate probability function analyses. These analyses were conducted to determine the inflow direction of the pollution sources for high PM2.5 episodes. For the episodes that occurred in spring and winter, there were no differences in the PM2.5 concentrations between the three sites. Overall, the insights gained from this study offer a framework for developing air-quality management policies in South Korea, specifically in the context of PM2.5 emissions. |
abstractGer |
Abstract Among countries that are a part of the Organization for Economic Co-operation and Development, South Korea is the most exposed to PM2.5. Despite the country having implemented various strategies to limit PM2.5 emissions, its concentrations are still high enough to pose serious environmental and health concerns. Herein, we monitored various physiochemical properties of PM2.5 across different regions in South Korea from January 1 to December 31, 2021. Specifically, the study area consisted of the city center, industrial complexes, and suburban areas. Before analyzing dynamics of emissions specific to each site, the Clean Air Policy Support System data for the three areas were compared to elucidate their respective primary emission sources. The particle concentrations for the three areas were 21.8–26.44 µg/m3, with the highest concentrations being observed in March. All the three areas exhibited high ratios of NO3 − across all seasons. The particle number concentrations in the three sites were 1.3–1.5 × 107, and the peak points of the concentrations were different in every site: city center (40 nm), industrial complexes (60 nm), and suburban areas (80 nm). We also conducted potential source contribution function and conditional bivariate probability function analyses. These analyses were conducted to determine the inflow direction of the pollution sources for high PM2.5 episodes. For the episodes that occurred in spring and winter, there were no differences in the PM2.5 concentrations between the three sites. Overall, the insights gained from this study offer a framework for developing air-quality management policies in South Korea, specifically in the context of PM2.5 emissions. |
abstract_unstemmed |
Abstract Among countries that are a part of the Organization for Economic Co-operation and Development, South Korea is the most exposed to PM2.5. Despite the country having implemented various strategies to limit PM2.5 emissions, its concentrations are still high enough to pose serious environmental and health concerns. Herein, we monitored various physiochemical properties of PM2.5 across different regions in South Korea from January 1 to December 31, 2021. Specifically, the study area consisted of the city center, industrial complexes, and suburban areas. Before analyzing dynamics of emissions specific to each site, the Clean Air Policy Support System data for the three areas were compared to elucidate their respective primary emission sources. The particle concentrations for the three areas were 21.8–26.44 µg/m3, with the highest concentrations being observed in March. All the three areas exhibited high ratios of NO3 − across all seasons. The particle number concentrations in the three sites were 1.3–1.5 × 107, and the peak points of the concentrations were different in every site: city center (40 nm), industrial complexes (60 nm), and suburban areas (80 nm). We also conducted potential source contribution function and conditional bivariate probability function analyses. These analyses were conducted to determine the inflow direction of the pollution sources for high PM2.5 episodes. For the episodes that occurred in spring and winter, there were no differences in the PM2.5 concentrations between the three sites. Overall, the insights gained from this study offer a framework for developing air-quality management policies in South Korea, specifically in the context of PM2.5 emissions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea |
url |
https://doi.org/10.1007/s44273-023-00018-5 https://doaj.org/article/735f38971eac4af4942436350497c26f https://doaj.org/toc/2287-1160 |
remote_bool |
true |
author2 |
Jeongho Kim Jae Young Lee Jong-Sung Park Sechan Park Gahye Lee Chang Hyeok Kim Pilho Kim Su Hyun Shin Kwang Yul Lee Joon-Young An Jungmin Park Jong Bum Kim |
author2Str |
Jeongho Kim Jae Young Lee Jong-Sung Park Sechan Park Gahye Lee Chang Hyeok Kim Pilho Kim Su Hyun Shin Kwang Yul Lee Joon-Young An Jungmin Park Jong Bum Kim |
ppnlink |
726122106 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s44273-023-00018-5 |
callnumber-a |
TD1-1066 |
up_date |
2024-07-04T00:46:35.862Z |
_version_ |
1803607338767089665 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099890674</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414061029.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44273-023-00018-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099890674</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ735f38971eac4af4942436350497c26f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kyucheol Hwang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Among countries that are a part of the Organization for Economic Co-operation and Development, South Korea is the most exposed to PM2.5. Despite the country having implemented various strategies to limit PM2.5 emissions, its concentrations are still high enough to pose serious environmental and health concerns. Herein, we monitored various physiochemical properties of PM2.5 across different regions in South Korea from January 1 to December 31, 2021. Specifically, the study area consisted of the city center, industrial complexes, and suburban areas. Before analyzing dynamics of emissions specific to each site, the Clean Air Policy Support System data for the three areas were compared to elucidate their respective primary emission sources. The particle concentrations for the three areas were 21.8–26.44 µg/m3, with the highest concentrations being observed in March. All the three areas exhibited high ratios of NO3 − across all seasons. The particle number concentrations in the three sites were 1.3–1.5 × 107, and the peak points of the concentrations were different in every site: city center (40 nm), industrial complexes (60 nm), and suburban areas (80 nm). We also conducted potential source contribution function and conditional bivariate probability function analyses. These analyses were conducted to determine the inflow direction of the pollution sources for high PM2.5 episodes. For the episodes that occurred in spring and winter, there were no differences in the PM2.5 concentrations between the three sites. Overall, the insights gained from this study offer a framework for developing air-quality management policies in South Korea, specifically in the context of PM2.5 emissions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PM2.5 concentration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">South Korea</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential source contribution function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conditional bivariate probability function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clean Air Policy Support System</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jeongho Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jae Young Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jong-Sung Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sechan Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gahye Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chang Hyeok Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pilho Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Su Hyun Shin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kwang Yul Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joon-Young An</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jungmin Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jong Bum Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Asian Journal of Atmospheric Environment</subfield><subfield code="d">Springer, 2020</subfield><subfield code="g">17(2023), 1, Seite 14</subfield><subfield code="w">(DE-627)726122106</subfield><subfield code="w">(DE-600)2681577-1</subfield><subfield code="x">22871160</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s44273-023-00018-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/735f38971eac4af4942436350497c26f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s44273-023-00018-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2287-1160</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">14</subfield></datafield></record></collection>
|
score |
7.400613 |