Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria
Non-biodegradable effluents form dying industries cause harm to environment. Usage of nanomaterials is an effective method for purification of such effluents. Agglomeration of photoactive nanomaterials can be reduced by doping with suitable coupling agents. The present study explores usage of Polyet...
Ausführliche Beschreibung
Autor*in: |
L. Cathelene Antonette [verfasserIn] J. Shanthi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Results in Chemistry - Elsevier, 2020, 6(2023), Seite 100998- |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2023 ; pages:100998- |
Links: |
---|
DOI / URN: |
10.1016/j.rechem.2023.100998 |
---|
Katalog-ID: |
DOAJ099908050 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ099908050 | ||
003 | DE-627 | ||
005 | 20240414061428.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.rechem.2023.100998 |2 doi | |
035 | |a (DE-627)DOAJ099908050 | ||
035 | |a (DE-599)DOAJ63f8a8dba8294f2994eec468a4c150a0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a L. Cathelene Antonette |e verfasserin |4 aut | |
245 | 1 | 0 | |a Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Non-biodegradable effluents form dying industries cause harm to environment. Usage of nanomaterials is an effective method for purification of such effluents. Agglomeration of photoactive nanomaterials can be reduced by doping with suitable coupling agents. The present study explores usage of Polyethylene glycol 4000 and Methyltrimethoxysilane as surface modifiers to Zinc oxide by sol–gel method. Structural analysis revealed hexagonal wurtzite phase of synthesized ZnO nanomaterial. Diffraction peaks had no major shift in position denoting crystallinity and purity. Presence of nano-sized particles was confirmed by FESEM analysis. Investigation of optical band bap energy of ZnO, ZnO/PEG-4000 and ZnO/PEG-4000/MTMS was made. Antibacterial efficacy analysis showed, all combinations of ZnO were sensitive against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Photocatalytic degradation analysis revealed ZnO functionalized by both polymer and silane exhibited highest degradation efficiency under visible light source for MB dye, the efficiency was maintained even after five cyclic degradations. | ||
650 | 4 | |a Sol-gel method | |
650 | 4 | |a Polyethylene glycol 4000 | |
650 | 4 | |a Zinc oxide | |
650 | 4 | |a Methylene blue | |
650 | 4 | |a Photocatalysis | |
650 | 4 | |a Zone of inhibition | |
653 | 0 | |a Chemistry | |
700 | 0 | |a J. Shanthi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Results in Chemistry |d Elsevier, 2020 |g 6(2023), Seite 100998- |w (DE-627)1691213802 |x 22117156 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2023 |g pages:100998- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.rechem.2023.100998 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/63f8a8dba8294f2994eec468a4c150a0 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2211715623002370 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2211-7156 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2023 |h 100998- |
author_variant |
l c a lca j s js |
---|---|
matchkey_str |
article:22117156:2023----::erdtoomtyeelesnmtytiehxslndpdnnnprilsnia |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QD |
publishDate |
2023 |
allfields |
10.1016/j.rechem.2023.100998 doi (DE-627)DOAJ099908050 (DE-599)DOAJ63f8a8dba8294f2994eec468a4c150a0 DE-627 ger DE-627 rakwb eng QD1-999 L. Cathelene Antonette verfasserin aut Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Non-biodegradable effluents form dying industries cause harm to environment. Usage of nanomaterials is an effective method for purification of such effluents. Agglomeration of photoactive nanomaterials can be reduced by doping with suitable coupling agents. The present study explores usage of Polyethylene glycol 4000 and Methyltrimethoxysilane as surface modifiers to Zinc oxide by sol–gel method. Structural analysis revealed hexagonal wurtzite phase of synthesized ZnO nanomaterial. Diffraction peaks had no major shift in position denoting crystallinity and purity. Presence of nano-sized particles was confirmed by FESEM analysis. Investigation of optical band bap energy of ZnO, ZnO/PEG-4000 and ZnO/PEG-4000/MTMS was made. Antibacterial efficacy analysis showed, all combinations of ZnO were sensitive against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Photocatalytic degradation analysis revealed ZnO functionalized by both polymer and silane exhibited highest degradation efficiency under visible light source for MB dye, the efficiency was maintained even after five cyclic degradations. Sol-gel method Polyethylene glycol 4000 Zinc oxide Methylene blue Photocatalysis Zone of inhibition Chemistry J. Shanthi verfasserin aut In Results in Chemistry Elsevier, 2020 6(2023), Seite 100998- (DE-627)1691213802 22117156 nnns volume:6 year:2023 pages:100998- https://doi.org/10.1016/j.rechem.2023.100998 kostenfrei https://doaj.org/article/63f8a8dba8294f2994eec468a4c150a0 kostenfrei http://www.sciencedirect.com/science/article/pii/S2211715623002370 kostenfrei https://doaj.org/toc/2211-7156 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 6 2023 100998- |
spelling |
10.1016/j.rechem.2023.100998 doi (DE-627)DOAJ099908050 (DE-599)DOAJ63f8a8dba8294f2994eec468a4c150a0 DE-627 ger DE-627 rakwb eng QD1-999 L. Cathelene Antonette verfasserin aut Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Non-biodegradable effluents form dying industries cause harm to environment. Usage of nanomaterials is an effective method for purification of such effluents. Agglomeration of photoactive nanomaterials can be reduced by doping with suitable coupling agents. The present study explores usage of Polyethylene glycol 4000 and Methyltrimethoxysilane as surface modifiers to Zinc oxide by sol–gel method. Structural analysis revealed hexagonal wurtzite phase of synthesized ZnO nanomaterial. Diffraction peaks had no major shift in position denoting crystallinity and purity. Presence of nano-sized particles was confirmed by FESEM analysis. Investigation of optical band bap energy of ZnO, ZnO/PEG-4000 and ZnO/PEG-4000/MTMS was made. Antibacterial efficacy analysis showed, all combinations of ZnO were sensitive against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Photocatalytic degradation analysis revealed ZnO functionalized by both polymer and silane exhibited highest degradation efficiency under visible light source for MB dye, the efficiency was maintained even after five cyclic degradations. Sol-gel method Polyethylene glycol 4000 Zinc oxide Methylene blue Photocatalysis Zone of inhibition Chemistry J. Shanthi verfasserin aut In Results in Chemistry Elsevier, 2020 6(2023), Seite 100998- (DE-627)1691213802 22117156 nnns volume:6 year:2023 pages:100998- https://doi.org/10.1016/j.rechem.2023.100998 kostenfrei https://doaj.org/article/63f8a8dba8294f2994eec468a4c150a0 kostenfrei http://www.sciencedirect.com/science/article/pii/S2211715623002370 kostenfrei https://doaj.org/toc/2211-7156 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 6 2023 100998- |
allfields_unstemmed |
10.1016/j.rechem.2023.100998 doi (DE-627)DOAJ099908050 (DE-599)DOAJ63f8a8dba8294f2994eec468a4c150a0 DE-627 ger DE-627 rakwb eng QD1-999 L. Cathelene Antonette verfasserin aut Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Non-biodegradable effluents form dying industries cause harm to environment. Usage of nanomaterials is an effective method for purification of such effluents. Agglomeration of photoactive nanomaterials can be reduced by doping with suitable coupling agents. The present study explores usage of Polyethylene glycol 4000 and Methyltrimethoxysilane as surface modifiers to Zinc oxide by sol–gel method. Structural analysis revealed hexagonal wurtzite phase of synthesized ZnO nanomaterial. Diffraction peaks had no major shift in position denoting crystallinity and purity. Presence of nano-sized particles was confirmed by FESEM analysis. Investigation of optical band bap energy of ZnO, ZnO/PEG-4000 and ZnO/PEG-4000/MTMS was made. Antibacterial efficacy analysis showed, all combinations of ZnO were sensitive against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Photocatalytic degradation analysis revealed ZnO functionalized by both polymer and silane exhibited highest degradation efficiency under visible light source for MB dye, the efficiency was maintained even after five cyclic degradations. Sol-gel method Polyethylene glycol 4000 Zinc oxide Methylene blue Photocatalysis Zone of inhibition Chemistry J. Shanthi verfasserin aut In Results in Chemistry Elsevier, 2020 6(2023), Seite 100998- (DE-627)1691213802 22117156 nnns volume:6 year:2023 pages:100998- https://doi.org/10.1016/j.rechem.2023.100998 kostenfrei https://doaj.org/article/63f8a8dba8294f2994eec468a4c150a0 kostenfrei http://www.sciencedirect.com/science/article/pii/S2211715623002370 kostenfrei https://doaj.org/toc/2211-7156 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 6 2023 100998- |
allfieldsGer |
10.1016/j.rechem.2023.100998 doi (DE-627)DOAJ099908050 (DE-599)DOAJ63f8a8dba8294f2994eec468a4c150a0 DE-627 ger DE-627 rakwb eng QD1-999 L. Cathelene Antonette verfasserin aut Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Non-biodegradable effluents form dying industries cause harm to environment. Usage of nanomaterials is an effective method for purification of such effluents. Agglomeration of photoactive nanomaterials can be reduced by doping with suitable coupling agents. The present study explores usage of Polyethylene glycol 4000 and Methyltrimethoxysilane as surface modifiers to Zinc oxide by sol–gel method. Structural analysis revealed hexagonal wurtzite phase of synthesized ZnO nanomaterial. Diffraction peaks had no major shift in position denoting crystallinity and purity. Presence of nano-sized particles was confirmed by FESEM analysis. Investigation of optical band bap energy of ZnO, ZnO/PEG-4000 and ZnO/PEG-4000/MTMS was made. Antibacterial efficacy analysis showed, all combinations of ZnO were sensitive against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Photocatalytic degradation analysis revealed ZnO functionalized by both polymer and silane exhibited highest degradation efficiency under visible light source for MB dye, the efficiency was maintained even after five cyclic degradations. Sol-gel method Polyethylene glycol 4000 Zinc oxide Methylene blue Photocatalysis Zone of inhibition Chemistry J. Shanthi verfasserin aut In Results in Chemistry Elsevier, 2020 6(2023), Seite 100998- (DE-627)1691213802 22117156 nnns volume:6 year:2023 pages:100998- https://doi.org/10.1016/j.rechem.2023.100998 kostenfrei https://doaj.org/article/63f8a8dba8294f2994eec468a4c150a0 kostenfrei http://www.sciencedirect.com/science/article/pii/S2211715623002370 kostenfrei https://doaj.org/toc/2211-7156 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 6 2023 100998- |
allfieldsSound |
10.1016/j.rechem.2023.100998 doi (DE-627)DOAJ099908050 (DE-599)DOAJ63f8a8dba8294f2994eec468a4c150a0 DE-627 ger DE-627 rakwb eng QD1-999 L. Cathelene Antonette verfasserin aut Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Non-biodegradable effluents form dying industries cause harm to environment. Usage of nanomaterials is an effective method for purification of such effluents. Agglomeration of photoactive nanomaterials can be reduced by doping with suitable coupling agents. The present study explores usage of Polyethylene glycol 4000 and Methyltrimethoxysilane as surface modifiers to Zinc oxide by sol–gel method. Structural analysis revealed hexagonal wurtzite phase of synthesized ZnO nanomaterial. Diffraction peaks had no major shift in position denoting crystallinity and purity. Presence of nano-sized particles was confirmed by FESEM analysis. Investigation of optical band bap energy of ZnO, ZnO/PEG-4000 and ZnO/PEG-4000/MTMS was made. Antibacterial efficacy analysis showed, all combinations of ZnO were sensitive against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Photocatalytic degradation analysis revealed ZnO functionalized by both polymer and silane exhibited highest degradation efficiency under visible light source for MB dye, the efficiency was maintained even after five cyclic degradations. Sol-gel method Polyethylene glycol 4000 Zinc oxide Methylene blue Photocatalysis Zone of inhibition Chemistry J. Shanthi verfasserin aut In Results in Chemistry Elsevier, 2020 6(2023), Seite 100998- (DE-627)1691213802 22117156 nnns volume:6 year:2023 pages:100998- https://doi.org/10.1016/j.rechem.2023.100998 kostenfrei https://doaj.org/article/63f8a8dba8294f2994eec468a4c150a0 kostenfrei http://www.sciencedirect.com/science/article/pii/S2211715623002370 kostenfrei https://doaj.org/toc/2211-7156 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 6 2023 100998- |
language |
English |
source |
In Results in Chemistry 6(2023), Seite 100998- volume:6 year:2023 pages:100998- |
sourceStr |
In Results in Chemistry 6(2023), Seite 100998- volume:6 year:2023 pages:100998- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sol-gel method Polyethylene glycol 4000 Zinc oxide Methylene blue Photocatalysis Zone of inhibition Chemistry |
isfreeaccess_bool |
true |
container_title |
Results in Chemistry |
authorswithroles_txt_mv |
L. Cathelene Antonette @@aut@@ J. Shanthi @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1691213802 |
id |
DOAJ099908050 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099908050</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414061428.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.rechem.2023.100998</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099908050</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ63f8a8dba8294f2994eec468a4c150a0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">L. Cathelene Antonette</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Non-biodegradable effluents form dying industries cause harm to environment. Usage of nanomaterials is an effective method for purification of such effluents. Agglomeration of photoactive nanomaterials can be reduced by doping with suitable coupling agents. The present study explores usage of Polyethylene glycol 4000 and Methyltrimethoxysilane as surface modifiers to Zinc oxide by sol–gel method. Structural analysis revealed hexagonal wurtzite phase of synthesized ZnO nanomaterial. Diffraction peaks had no major shift in position denoting crystallinity and purity. Presence of nano-sized particles was confirmed by FESEM analysis. Investigation of optical band bap energy of ZnO, ZnO/PEG-4000 and ZnO/PEG-4000/MTMS was made. Antibacterial efficacy analysis showed, all combinations of ZnO were sensitive against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Photocatalytic degradation analysis revealed ZnO functionalized by both polymer and silane exhibited highest degradation efficiency under visible light source for MB dye, the efficiency was maintained even after five cyclic degradations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sol-gel method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyethylene glycol 4000</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zinc oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methylene blue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zone of inhibition</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. Shanthi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Results in Chemistry</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">6(2023), Seite 100998-</subfield><subfield code="w">(DE-627)1691213802</subfield><subfield code="x">22117156</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:100998-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.rechem.2023.100998</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/63f8a8dba8294f2994eec468a4c150a0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2211715623002370</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2211-7156</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2023</subfield><subfield code="h">100998-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
L. Cathelene Antonette |
spellingShingle |
L. Cathelene Antonette misc QD1-999 misc Sol-gel method misc Polyethylene glycol 4000 misc Zinc oxide misc Methylene blue misc Photocatalysis misc Zone of inhibition misc Chemistry Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria |
authorStr |
L. Cathelene Antonette |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1691213802 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
22117156 |
topic_title |
QD1-999 Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria Sol-gel method Polyethylene glycol 4000 Zinc oxide Methylene blue Photocatalysis Zone of inhibition |
topic |
misc QD1-999 misc Sol-gel method misc Polyethylene glycol 4000 misc Zinc oxide misc Methylene blue misc Photocatalysis misc Zone of inhibition misc Chemistry |
topic_unstemmed |
misc QD1-999 misc Sol-gel method misc Polyethylene glycol 4000 misc Zinc oxide misc Methylene blue misc Photocatalysis misc Zone of inhibition misc Chemistry |
topic_browse |
misc QD1-999 misc Sol-gel method misc Polyethylene glycol 4000 misc Zinc oxide misc Methylene blue misc Photocatalysis misc Zone of inhibition misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Results in Chemistry |
hierarchy_parent_id |
1691213802 |
hierarchy_top_title |
Results in Chemistry |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1691213802 |
title |
Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria |
ctrlnum |
(DE-627)DOAJ099908050 (DE-599)DOAJ63f8a8dba8294f2994eec468a4c150a0 |
title_full |
Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria |
author_sort |
L. Cathelene Antonette |
journal |
Results in Chemistry |
journalStr |
Results in Chemistry |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
100998 |
author_browse |
L. Cathelene Antonette J. Shanthi |
container_volume |
6 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
L. Cathelene Antonette |
doi_str_mv |
10.1016/j.rechem.2023.100998 |
author2-role |
verfasserin |
title_sort |
degradation of methylene blue using methyltrimethoxysilane doped zno nanoparticles and inactivation of gram (+ve) and (-ve) bacteria |
callnumber |
QD1-999 |
title_auth |
Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria |
abstract |
Non-biodegradable effluents form dying industries cause harm to environment. Usage of nanomaterials is an effective method for purification of such effluents. Agglomeration of photoactive nanomaterials can be reduced by doping with suitable coupling agents. The present study explores usage of Polyethylene glycol 4000 and Methyltrimethoxysilane as surface modifiers to Zinc oxide by sol–gel method. Structural analysis revealed hexagonal wurtzite phase of synthesized ZnO nanomaterial. Diffraction peaks had no major shift in position denoting crystallinity and purity. Presence of nano-sized particles was confirmed by FESEM analysis. Investigation of optical band bap energy of ZnO, ZnO/PEG-4000 and ZnO/PEG-4000/MTMS was made. Antibacterial efficacy analysis showed, all combinations of ZnO were sensitive against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Photocatalytic degradation analysis revealed ZnO functionalized by both polymer and silane exhibited highest degradation efficiency under visible light source for MB dye, the efficiency was maintained even after five cyclic degradations. |
abstractGer |
Non-biodegradable effluents form dying industries cause harm to environment. Usage of nanomaterials is an effective method for purification of such effluents. Agglomeration of photoactive nanomaterials can be reduced by doping with suitable coupling agents. The present study explores usage of Polyethylene glycol 4000 and Methyltrimethoxysilane as surface modifiers to Zinc oxide by sol–gel method. Structural analysis revealed hexagonal wurtzite phase of synthesized ZnO nanomaterial. Diffraction peaks had no major shift in position denoting crystallinity and purity. Presence of nano-sized particles was confirmed by FESEM analysis. Investigation of optical band bap energy of ZnO, ZnO/PEG-4000 and ZnO/PEG-4000/MTMS was made. Antibacterial efficacy analysis showed, all combinations of ZnO were sensitive against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Photocatalytic degradation analysis revealed ZnO functionalized by both polymer and silane exhibited highest degradation efficiency under visible light source for MB dye, the efficiency was maintained even after five cyclic degradations. |
abstract_unstemmed |
Non-biodegradable effluents form dying industries cause harm to environment. Usage of nanomaterials is an effective method for purification of such effluents. Agglomeration of photoactive nanomaterials can be reduced by doping with suitable coupling agents. The present study explores usage of Polyethylene glycol 4000 and Methyltrimethoxysilane as surface modifiers to Zinc oxide by sol–gel method. Structural analysis revealed hexagonal wurtzite phase of synthesized ZnO nanomaterial. Diffraction peaks had no major shift in position denoting crystallinity and purity. Presence of nano-sized particles was confirmed by FESEM analysis. Investigation of optical band bap energy of ZnO, ZnO/PEG-4000 and ZnO/PEG-4000/MTMS was made. Antibacterial efficacy analysis showed, all combinations of ZnO were sensitive against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Photocatalytic degradation analysis revealed ZnO functionalized by both polymer and silane exhibited highest degradation efficiency under visible light source for MB dye, the efficiency was maintained even after five cyclic degradations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria |
url |
https://doi.org/10.1016/j.rechem.2023.100998 https://doaj.org/article/63f8a8dba8294f2994eec468a4c150a0 http://www.sciencedirect.com/science/article/pii/S2211715623002370 https://doaj.org/toc/2211-7156 |
remote_bool |
true |
author2 |
J. Shanthi |
author2Str |
J. Shanthi |
ppnlink |
1691213802 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.rechem.2023.100998 |
callnumber-a |
QD1-999 |
up_date |
2024-07-04T00:51:25.022Z |
_version_ |
1803607641973325824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099908050</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414061428.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.rechem.2023.100998</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099908050</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ63f8a8dba8294f2994eec468a4c150a0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">L. Cathelene Antonette</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degradation of methylene blue using Methyltrimethoxysilane doped ZnO nanoparticles and inactivation of gram (+ve) and (-ve) bacteria</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Non-biodegradable effluents form dying industries cause harm to environment. Usage of nanomaterials is an effective method for purification of such effluents. Agglomeration of photoactive nanomaterials can be reduced by doping with suitable coupling agents. The present study explores usage of Polyethylene glycol 4000 and Methyltrimethoxysilane as surface modifiers to Zinc oxide by sol–gel method. Structural analysis revealed hexagonal wurtzite phase of synthesized ZnO nanomaterial. Diffraction peaks had no major shift in position denoting crystallinity and purity. Presence of nano-sized particles was confirmed by FESEM analysis. Investigation of optical band bap energy of ZnO, ZnO/PEG-4000 and ZnO/PEG-4000/MTMS was made. Antibacterial efficacy analysis showed, all combinations of ZnO were sensitive against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Photocatalytic degradation analysis revealed ZnO functionalized by both polymer and silane exhibited highest degradation efficiency under visible light source for MB dye, the efficiency was maintained even after five cyclic degradations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sol-gel method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyethylene glycol 4000</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zinc oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methylene blue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zone of inhibition</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. Shanthi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Results in Chemistry</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">6(2023), Seite 100998-</subfield><subfield code="w">(DE-627)1691213802</subfield><subfield code="x">22117156</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:100998-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.rechem.2023.100998</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/63f8a8dba8294f2994eec468a4c150a0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2211715623002370</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2211-7156</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2023</subfield><subfield code="h">100998-</subfield></datafield></record></collection>
|
score |
7.39933 |