RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution
Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved im...
Ausführliche Beschreibung
Autor*in: |
Qiangpu Chen [verfasserIn] Jinghui Qin [verfasserIn] Wushao Wen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 23(2023), 23, p 9575 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:23, p 9575 |
Links: |
---|
DOI / URN: |
10.3390/s23239575 |
---|
Katalog-ID: |
DOAJ099946521 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ099946521 | ||
003 | DE-627 | ||
005 | 20240414062132.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s23239575 |2 doi | |
035 | |a (DE-627)DOAJ099946521 | ||
035 | |a (DE-599)DOAJ972bd1ee7e06445c99f4113af46358a8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Qiangpu Chen |e verfasserin |4 aut | |
245 | 1 | 0 | |a RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved impressive performance recently, but these methods often suffer from high computation costs and model storage overhead, making them hard to meet the requirements in practical application scenarios. In practical scenarios, an SR model should reconstruct an image with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off between performance and efficiency. A stage-to-block hierarchical architecture design paradigm inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a shallow feature extraction module, a deep feature extraction, and an image reconstruction module. The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing 6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning long-range dependence. In the image reconstruction module, an upsampling module consisting of nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain reconstruction performance, while bicubic interpolation on another branch allows the backbone network to focus on learning high-frequency information. The extensive experimental results on multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating that our RepECN can reconstruct high-quality images with fast inference. | ||
650 | 4 | |a image super-resolution | |
650 | 4 | |a ConvNet | |
650 | 4 | |a structural re-parameterization | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Jinghui Qin |e verfasserin |4 aut | |
700 | 0 | |a Wushao Wen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 23(2023), 23, p 9575 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:23, p 9575 |
856 | 4 | 0 | |u https://doi.org/10.3390/s23239575 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/972bd1ee7e06445c99f4113af46358a8 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/23/23/9575 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 23, p 9575 |
author_variant |
q c qc j q jq w w ww |
---|---|
matchkey_str |
article:14248220:2023----::eenaigovesetrgifrfiini |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TP |
publishDate |
2023 |
allfields |
10.3390/s23239575 doi (DE-627)DOAJ099946521 (DE-599)DOAJ972bd1ee7e06445c99f4113af46358a8 DE-627 ger DE-627 rakwb eng TP1-1185 Qiangpu Chen verfasserin aut RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved impressive performance recently, but these methods often suffer from high computation costs and model storage overhead, making them hard to meet the requirements in practical application scenarios. In practical scenarios, an SR model should reconstruct an image with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off between performance and efficiency. A stage-to-block hierarchical architecture design paradigm inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a shallow feature extraction module, a deep feature extraction, and an image reconstruction module. The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing 6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning long-range dependence. In the image reconstruction module, an upsampling module consisting of nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain reconstruction performance, while bicubic interpolation on another branch allows the backbone network to focus on learning high-frequency information. The extensive experimental results on multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating that our RepECN can reconstruct high-quality images with fast inference. image super-resolution ConvNet structural re-parameterization Chemical technology Jinghui Qin verfasserin aut Wushao Wen verfasserin aut In Sensors MDPI AG, 2003 23(2023), 23, p 9575 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:23, p 9575 https://doi.org/10.3390/s23239575 kostenfrei https://doaj.org/article/972bd1ee7e06445c99f4113af46358a8 kostenfrei https://www.mdpi.com/1424-8220/23/23/9575 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 23, p 9575 |
spelling |
10.3390/s23239575 doi (DE-627)DOAJ099946521 (DE-599)DOAJ972bd1ee7e06445c99f4113af46358a8 DE-627 ger DE-627 rakwb eng TP1-1185 Qiangpu Chen verfasserin aut RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved impressive performance recently, but these methods often suffer from high computation costs and model storage overhead, making them hard to meet the requirements in practical application scenarios. In practical scenarios, an SR model should reconstruct an image with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off between performance and efficiency. A stage-to-block hierarchical architecture design paradigm inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a shallow feature extraction module, a deep feature extraction, and an image reconstruction module. The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing 6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning long-range dependence. In the image reconstruction module, an upsampling module consisting of nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain reconstruction performance, while bicubic interpolation on another branch allows the backbone network to focus on learning high-frequency information. The extensive experimental results on multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating that our RepECN can reconstruct high-quality images with fast inference. image super-resolution ConvNet structural re-parameterization Chemical technology Jinghui Qin verfasserin aut Wushao Wen verfasserin aut In Sensors MDPI AG, 2003 23(2023), 23, p 9575 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:23, p 9575 https://doi.org/10.3390/s23239575 kostenfrei https://doaj.org/article/972bd1ee7e06445c99f4113af46358a8 kostenfrei https://www.mdpi.com/1424-8220/23/23/9575 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 23, p 9575 |
allfields_unstemmed |
10.3390/s23239575 doi (DE-627)DOAJ099946521 (DE-599)DOAJ972bd1ee7e06445c99f4113af46358a8 DE-627 ger DE-627 rakwb eng TP1-1185 Qiangpu Chen verfasserin aut RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved impressive performance recently, but these methods often suffer from high computation costs and model storage overhead, making them hard to meet the requirements in practical application scenarios. In practical scenarios, an SR model should reconstruct an image with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off between performance and efficiency. A stage-to-block hierarchical architecture design paradigm inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a shallow feature extraction module, a deep feature extraction, and an image reconstruction module. The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing 6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning long-range dependence. In the image reconstruction module, an upsampling module consisting of nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain reconstruction performance, while bicubic interpolation on another branch allows the backbone network to focus on learning high-frequency information. The extensive experimental results on multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating that our RepECN can reconstruct high-quality images with fast inference. image super-resolution ConvNet structural re-parameterization Chemical technology Jinghui Qin verfasserin aut Wushao Wen verfasserin aut In Sensors MDPI AG, 2003 23(2023), 23, p 9575 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:23, p 9575 https://doi.org/10.3390/s23239575 kostenfrei https://doaj.org/article/972bd1ee7e06445c99f4113af46358a8 kostenfrei https://www.mdpi.com/1424-8220/23/23/9575 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 23, p 9575 |
allfieldsGer |
10.3390/s23239575 doi (DE-627)DOAJ099946521 (DE-599)DOAJ972bd1ee7e06445c99f4113af46358a8 DE-627 ger DE-627 rakwb eng TP1-1185 Qiangpu Chen verfasserin aut RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved impressive performance recently, but these methods often suffer from high computation costs and model storage overhead, making them hard to meet the requirements in practical application scenarios. In practical scenarios, an SR model should reconstruct an image with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off between performance and efficiency. A stage-to-block hierarchical architecture design paradigm inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a shallow feature extraction module, a deep feature extraction, and an image reconstruction module. The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing 6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning long-range dependence. In the image reconstruction module, an upsampling module consisting of nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain reconstruction performance, while bicubic interpolation on another branch allows the backbone network to focus on learning high-frequency information. The extensive experimental results on multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating that our RepECN can reconstruct high-quality images with fast inference. image super-resolution ConvNet structural re-parameterization Chemical technology Jinghui Qin verfasserin aut Wushao Wen verfasserin aut In Sensors MDPI AG, 2003 23(2023), 23, p 9575 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:23, p 9575 https://doi.org/10.3390/s23239575 kostenfrei https://doaj.org/article/972bd1ee7e06445c99f4113af46358a8 kostenfrei https://www.mdpi.com/1424-8220/23/23/9575 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 23, p 9575 |
allfieldsSound |
10.3390/s23239575 doi (DE-627)DOAJ099946521 (DE-599)DOAJ972bd1ee7e06445c99f4113af46358a8 DE-627 ger DE-627 rakwb eng TP1-1185 Qiangpu Chen verfasserin aut RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved impressive performance recently, but these methods often suffer from high computation costs and model storage overhead, making them hard to meet the requirements in practical application scenarios. In practical scenarios, an SR model should reconstruct an image with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off between performance and efficiency. A stage-to-block hierarchical architecture design paradigm inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a shallow feature extraction module, a deep feature extraction, and an image reconstruction module. The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing 6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning long-range dependence. In the image reconstruction module, an upsampling module consisting of nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain reconstruction performance, while bicubic interpolation on another branch allows the backbone network to focus on learning high-frequency information. The extensive experimental results on multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating that our RepECN can reconstruct high-quality images with fast inference. image super-resolution ConvNet structural re-parameterization Chemical technology Jinghui Qin verfasserin aut Wushao Wen verfasserin aut In Sensors MDPI AG, 2003 23(2023), 23, p 9575 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:23, p 9575 https://doi.org/10.3390/s23239575 kostenfrei https://doaj.org/article/972bd1ee7e06445c99f4113af46358a8 kostenfrei https://www.mdpi.com/1424-8220/23/23/9575 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 23, p 9575 |
language |
English |
source |
In Sensors 23(2023), 23, p 9575 volume:23 year:2023 number:23, p 9575 |
sourceStr |
In Sensors 23(2023), 23, p 9575 volume:23 year:2023 number:23, p 9575 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
image super-resolution ConvNet structural re-parameterization Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Qiangpu Chen @@aut@@ Jinghui Qin @@aut@@ Wushao Wen @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ099946521 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099946521</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414062132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s23239575</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099946521</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ972bd1ee7e06445c99f4113af46358a8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qiangpu Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved impressive performance recently, but these methods often suffer from high computation costs and model storage overhead, making them hard to meet the requirements in practical application scenarios. In practical scenarios, an SR model should reconstruct an image with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off between performance and efficiency. A stage-to-block hierarchical architecture design paradigm inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a shallow feature extraction module, a deep feature extraction, and an image reconstruction module. The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing 6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning long-range dependence. In the image reconstruction module, an upsampling module consisting of nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain reconstruction performance, while bicubic interpolation on another branch allows the backbone network to focus on learning high-frequency information. The extensive experimental results on multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating that our RepECN can reconstruct high-quality images with fast inference.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image super-resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ConvNet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">structural re-parameterization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinghui Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wushao Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2023), 23, p 9575</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:23, p 9575</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s23239575</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/972bd1ee7e06445c99f4113af46358a8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/23/23/9575</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">23, p 9575</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Qiangpu Chen |
spellingShingle |
Qiangpu Chen misc TP1-1185 misc image super-resolution misc ConvNet misc structural re-parameterization misc Chemical technology RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution |
authorStr |
Qiangpu Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution image super-resolution ConvNet structural re-parameterization |
topic |
misc TP1-1185 misc image super-resolution misc ConvNet misc structural re-parameterization misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc image super-resolution misc ConvNet misc structural re-parameterization misc Chemical technology |
topic_browse |
misc TP1-1185 misc image super-resolution misc ConvNet misc structural re-parameterization misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution |
ctrlnum |
(DE-627)DOAJ099946521 (DE-599)DOAJ972bd1ee7e06445c99f4113af46358a8 |
title_full |
RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution |
author_sort |
Qiangpu Chen |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Qiangpu Chen Jinghui Qin Wushao Wen |
container_volume |
23 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Qiangpu Chen |
doi_str_mv |
10.3390/s23239575 |
author2-role |
verfasserin |
title_sort |
repecn: making convnets better again for efficient image super-resolution |
callnumber |
TP1-1185 |
title_auth |
RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution |
abstract |
Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved impressive performance recently, but these methods often suffer from high computation costs and model storage overhead, making them hard to meet the requirements in practical application scenarios. In practical scenarios, an SR model should reconstruct an image with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off between performance and efficiency. A stage-to-block hierarchical architecture design paradigm inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a shallow feature extraction module, a deep feature extraction, and an image reconstruction module. The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing 6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning long-range dependence. In the image reconstruction module, an upsampling module consisting of nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain reconstruction performance, while bicubic interpolation on another branch allows the backbone network to focus on learning high-frequency information. The extensive experimental results on multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating that our RepECN can reconstruct high-quality images with fast inference. |
abstractGer |
Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved impressive performance recently, but these methods often suffer from high computation costs and model storage overhead, making them hard to meet the requirements in practical application scenarios. In practical scenarios, an SR model should reconstruct an image with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off between performance and efficiency. A stage-to-block hierarchical architecture design paradigm inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a shallow feature extraction module, a deep feature extraction, and an image reconstruction module. The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing 6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning long-range dependence. In the image reconstruction module, an upsampling module consisting of nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain reconstruction performance, while bicubic interpolation on another branch allows the backbone network to focus on learning high-frequency information. The extensive experimental results on multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating that our RepECN can reconstruct high-quality images with fast inference. |
abstract_unstemmed |
Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved impressive performance recently, but these methods often suffer from high computation costs and model storage overhead, making them hard to meet the requirements in practical application scenarios. In practical scenarios, an SR model should reconstruct an image with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off between performance and efficiency. A stage-to-block hierarchical architecture design paradigm inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a shallow feature extraction module, a deep feature extraction, and an image reconstruction module. The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing 6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning long-range dependence. In the image reconstruction module, an upsampling module consisting of nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain reconstruction performance, while bicubic interpolation on another branch allows the backbone network to focus on learning high-frequency information. The extensive experimental results on multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating that our RepECN can reconstruct high-quality images with fast inference. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
23, p 9575 |
title_short |
RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution |
url |
https://doi.org/10.3390/s23239575 https://doaj.org/article/972bd1ee7e06445c99f4113af46358a8 https://www.mdpi.com/1424-8220/23/23/9575 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Jinghui Qin Wushao Wen |
author2Str |
Jinghui Qin Wushao Wen |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s23239575 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-04T01:00:03.702Z |
_version_ |
1803608185847676928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ099946521</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414062132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s23239575</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ099946521</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ972bd1ee7e06445c99f4113af46358a8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qiangpu Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved impressive performance recently, but these methods often suffer from high computation costs and model storage overhead, making them hard to meet the requirements in practical application scenarios. In practical scenarios, an SR model should reconstruct an image with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off between performance and efficiency. A stage-to-block hierarchical architecture design paradigm inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a shallow feature extraction module, a deep feature extraction, and an image reconstruction module. The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing 6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning long-range dependence. In the image reconstruction module, an upsampling module consisting of nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain reconstruction performance, while bicubic interpolation on another branch allows the backbone network to focus on learning high-frequency information. The extensive experimental results on multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating that our RepECN can reconstruct high-quality images with fast inference.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image super-resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ConvNet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">structural re-parameterization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinghui Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wushao Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2023), 23, p 9575</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:23, p 9575</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s23239575</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/972bd1ee7e06445c99f4113af46358a8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/23/23/9575</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">23, p 9575</subfield></datafield></record></collection>
|
score |
7.4018393 |