Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease
Abstract Evidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigor...
Ausführliche Beschreibung
Autor*in: |
Mengyi Liu [verfasserIn] Xiaoqin Gan [verfasserIn] Ziliang Ye [verfasserIn] Yuanyuan Zhang [verfasserIn] Panpan He [verfasserIn] Chun Zhou [verfasserIn] Sisi Yang [verfasserIn] Yanjun Zhang [verfasserIn] Xianhui Qin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Übergeordnetes Werk: |
In: npj Digital Medicine - Nature Portfolio, 2018, 6(2023), 1, Seite 9 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2023 ; number:1 ; pages:9 |
Links: |
---|
DOI / URN: |
10.1038/s41746-023-00969-7 |
---|
Katalog-ID: |
DOAJ100198384 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ100198384 | ||
003 | DE-627 | ||
005 | 20240414082226.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41746-023-00969-7 |2 doi | |
035 | |a (DE-627)DOAJ100198384 | ||
035 | |a (DE-599)DOAJa23bee96d7714fcda1b8ada6cd5ee928 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R858-859.7 | |
100 | 0 | |a Mengyi Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Evidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), sedentary time and exercise timing with incident PD. 96,422 participants without prior PD and with usable accelerometer data were included from UK Biobank. Time spent in sedentary activity, LPA, MVPA, and exercise timing were estimated using machine learning models. The study outcome was incident PD. Over a median follow-up duration of 6.8 years, 313 participants developed PD. There was a L-shaped association for LPA and MVPA, and a reversed L-shaped association for sedentary time, with the risk of incident PD (all P for nonlinearity < 0.001). Similar trends were found across three time-windows (morning, midday-afternoon, and evening). Compared with those with both low LPA (<3.89 h/day) and low MVPA (<0.27 h/day), the adjusted HR (95% CI) of PD risk was 0.49 (0.36–0.66), 0.19 (0.36–0.66) and 0.13 (0.09–0.18), respectively, for participants with high MVPA only, high LPA only, and both high LPA and high MVPA. Moreover, participants with both low LPA and high sedentary time (≥9.41 h/day) (adjusted HR, 5.59; 95% CI: 4.10–7.61), and those with both low MVPA and high sedentary time (adjusted HR, 3.93; 95% CI: 2.82–5.49) had the highest risk of incident PD. In conclusion, regardless of exercise timing (morning, midday-afternoon, and evening), there was an inverse association for accelerometer-measured MVPA and LPA, and a positive association for sedentary time, with incident PD. | ||
653 | 0 | |a Computer applications to medicine. Medical informatics | |
700 | 0 | |a Xiaoqin Gan |e verfasserin |4 aut | |
700 | 0 | |a Ziliang Ye |e verfasserin |4 aut | |
700 | 0 | |a Yuanyuan Zhang |e verfasserin |4 aut | |
700 | 0 | |a Panpan He |e verfasserin |4 aut | |
700 | 0 | |a Chun Zhou |e verfasserin |4 aut | |
700 | 0 | |a Sisi Yang |e verfasserin |4 aut | |
700 | 0 | |a Yanjun Zhang |e verfasserin |4 aut | |
700 | 0 | |a Xianhui Qin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t npj Digital Medicine |d Nature Portfolio, 2018 |g 6(2023), 1, Seite 9 |w (DE-627)1016587104 |w (DE-600)2925182-5 |x 23986352 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2023 |g number:1 |g pages:9 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41746-023-00969-7 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a23bee96d7714fcda1b8ada6cd5ee928 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41746-023-00969-7 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2398-6352 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2023 |e 1 |h 9 |
author_variant |
m l ml x g xg z y zy y z yz p h ph c z cz s y sy y z yz x q xq |
---|---|
matchkey_str |
article:23986352:2023----::soitooaclrmtresrdhsclciiynestsdnayieneecstm |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
R |
publishDate |
2023 |
allfields |
10.1038/s41746-023-00969-7 doi (DE-627)DOAJ100198384 (DE-599)DOAJa23bee96d7714fcda1b8ada6cd5ee928 DE-627 ger DE-627 rakwb eng R858-859.7 Mengyi Liu verfasserin aut Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), sedentary time and exercise timing with incident PD. 96,422 participants without prior PD and with usable accelerometer data were included from UK Biobank. Time spent in sedentary activity, LPA, MVPA, and exercise timing were estimated using machine learning models. The study outcome was incident PD. Over a median follow-up duration of 6.8 years, 313 participants developed PD. There was a L-shaped association for LPA and MVPA, and a reversed L-shaped association for sedentary time, with the risk of incident PD (all P for nonlinearity < 0.001). Similar trends were found across three time-windows (morning, midday-afternoon, and evening). Compared with those with both low LPA (<3.89 h/day) and low MVPA (<0.27 h/day), the adjusted HR (95% CI) of PD risk was 0.49 (0.36–0.66), 0.19 (0.36–0.66) and 0.13 (0.09–0.18), respectively, for participants with high MVPA only, high LPA only, and both high LPA and high MVPA. Moreover, participants with both low LPA and high sedentary time (≥9.41 h/day) (adjusted HR, 5.59; 95% CI: 4.10–7.61), and those with both low MVPA and high sedentary time (adjusted HR, 3.93; 95% CI: 2.82–5.49) had the highest risk of incident PD. In conclusion, regardless of exercise timing (morning, midday-afternoon, and evening), there was an inverse association for accelerometer-measured MVPA and LPA, and a positive association for sedentary time, with incident PD. Computer applications to medicine. Medical informatics Xiaoqin Gan verfasserin aut Ziliang Ye verfasserin aut Yuanyuan Zhang verfasserin aut Panpan He verfasserin aut Chun Zhou verfasserin aut Sisi Yang verfasserin aut Yanjun Zhang verfasserin aut Xianhui Qin verfasserin aut In npj Digital Medicine Nature Portfolio, 2018 6(2023), 1, Seite 9 (DE-627)1016587104 (DE-600)2925182-5 23986352 nnns volume:6 year:2023 number:1 pages:9 https://doi.org/10.1038/s41746-023-00969-7 kostenfrei https://doaj.org/article/a23bee96d7714fcda1b8ada6cd5ee928 kostenfrei https://doi.org/10.1038/s41746-023-00969-7 kostenfrei https://doaj.org/toc/2398-6352 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 1 9 |
spelling |
10.1038/s41746-023-00969-7 doi (DE-627)DOAJ100198384 (DE-599)DOAJa23bee96d7714fcda1b8ada6cd5ee928 DE-627 ger DE-627 rakwb eng R858-859.7 Mengyi Liu verfasserin aut Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), sedentary time and exercise timing with incident PD. 96,422 participants without prior PD and with usable accelerometer data were included from UK Biobank. Time spent in sedentary activity, LPA, MVPA, and exercise timing were estimated using machine learning models. The study outcome was incident PD. Over a median follow-up duration of 6.8 years, 313 participants developed PD. There was a L-shaped association for LPA and MVPA, and a reversed L-shaped association for sedentary time, with the risk of incident PD (all P for nonlinearity < 0.001). Similar trends were found across three time-windows (morning, midday-afternoon, and evening). Compared with those with both low LPA (<3.89 h/day) and low MVPA (<0.27 h/day), the adjusted HR (95% CI) of PD risk was 0.49 (0.36–0.66), 0.19 (0.36–0.66) and 0.13 (0.09–0.18), respectively, for participants with high MVPA only, high LPA only, and both high LPA and high MVPA. Moreover, participants with both low LPA and high sedentary time (≥9.41 h/day) (adjusted HR, 5.59; 95% CI: 4.10–7.61), and those with both low MVPA and high sedentary time (adjusted HR, 3.93; 95% CI: 2.82–5.49) had the highest risk of incident PD. In conclusion, regardless of exercise timing (morning, midday-afternoon, and evening), there was an inverse association for accelerometer-measured MVPA and LPA, and a positive association for sedentary time, with incident PD. Computer applications to medicine. Medical informatics Xiaoqin Gan verfasserin aut Ziliang Ye verfasserin aut Yuanyuan Zhang verfasserin aut Panpan He verfasserin aut Chun Zhou verfasserin aut Sisi Yang verfasserin aut Yanjun Zhang verfasserin aut Xianhui Qin verfasserin aut In npj Digital Medicine Nature Portfolio, 2018 6(2023), 1, Seite 9 (DE-627)1016587104 (DE-600)2925182-5 23986352 nnns volume:6 year:2023 number:1 pages:9 https://doi.org/10.1038/s41746-023-00969-7 kostenfrei https://doaj.org/article/a23bee96d7714fcda1b8ada6cd5ee928 kostenfrei https://doi.org/10.1038/s41746-023-00969-7 kostenfrei https://doaj.org/toc/2398-6352 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 1 9 |
allfields_unstemmed |
10.1038/s41746-023-00969-7 doi (DE-627)DOAJ100198384 (DE-599)DOAJa23bee96d7714fcda1b8ada6cd5ee928 DE-627 ger DE-627 rakwb eng R858-859.7 Mengyi Liu verfasserin aut Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), sedentary time and exercise timing with incident PD. 96,422 participants without prior PD and with usable accelerometer data were included from UK Biobank. Time spent in sedentary activity, LPA, MVPA, and exercise timing were estimated using machine learning models. The study outcome was incident PD. Over a median follow-up duration of 6.8 years, 313 participants developed PD. There was a L-shaped association for LPA and MVPA, and a reversed L-shaped association for sedentary time, with the risk of incident PD (all P for nonlinearity < 0.001). Similar trends were found across three time-windows (morning, midday-afternoon, and evening). Compared with those with both low LPA (<3.89 h/day) and low MVPA (<0.27 h/day), the adjusted HR (95% CI) of PD risk was 0.49 (0.36–0.66), 0.19 (0.36–0.66) and 0.13 (0.09–0.18), respectively, for participants with high MVPA only, high LPA only, and both high LPA and high MVPA. Moreover, participants with both low LPA and high sedentary time (≥9.41 h/day) (adjusted HR, 5.59; 95% CI: 4.10–7.61), and those with both low MVPA and high sedentary time (adjusted HR, 3.93; 95% CI: 2.82–5.49) had the highest risk of incident PD. In conclusion, regardless of exercise timing (morning, midday-afternoon, and evening), there was an inverse association for accelerometer-measured MVPA and LPA, and a positive association for sedentary time, with incident PD. Computer applications to medicine. Medical informatics Xiaoqin Gan verfasserin aut Ziliang Ye verfasserin aut Yuanyuan Zhang verfasserin aut Panpan He verfasserin aut Chun Zhou verfasserin aut Sisi Yang verfasserin aut Yanjun Zhang verfasserin aut Xianhui Qin verfasserin aut In npj Digital Medicine Nature Portfolio, 2018 6(2023), 1, Seite 9 (DE-627)1016587104 (DE-600)2925182-5 23986352 nnns volume:6 year:2023 number:1 pages:9 https://doi.org/10.1038/s41746-023-00969-7 kostenfrei https://doaj.org/article/a23bee96d7714fcda1b8ada6cd5ee928 kostenfrei https://doi.org/10.1038/s41746-023-00969-7 kostenfrei https://doaj.org/toc/2398-6352 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 1 9 |
allfieldsGer |
10.1038/s41746-023-00969-7 doi (DE-627)DOAJ100198384 (DE-599)DOAJa23bee96d7714fcda1b8ada6cd5ee928 DE-627 ger DE-627 rakwb eng R858-859.7 Mengyi Liu verfasserin aut Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), sedentary time and exercise timing with incident PD. 96,422 participants without prior PD and with usable accelerometer data were included from UK Biobank. Time spent in sedentary activity, LPA, MVPA, and exercise timing were estimated using machine learning models. The study outcome was incident PD. Over a median follow-up duration of 6.8 years, 313 participants developed PD. There was a L-shaped association for LPA and MVPA, and a reversed L-shaped association for sedentary time, with the risk of incident PD (all P for nonlinearity < 0.001). Similar trends were found across three time-windows (morning, midday-afternoon, and evening). Compared with those with both low LPA (<3.89 h/day) and low MVPA (<0.27 h/day), the adjusted HR (95% CI) of PD risk was 0.49 (0.36–0.66), 0.19 (0.36–0.66) and 0.13 (0.09–0.18), respectively, for participants with high MVPA only, high LPA only, and both high LPA and high MVPA. Moreover, participants with both low LPA and high sedentary time (≥9.41 h/day) (adjusted HR, 5.59; 95% CI: 4.10–7.61), and those with both low MVPA and high sedentary time (adjusted HR, 3.93; 95% CI: 2.82–5.49) had the highest risk of incident PD. In conclusion, regardless of exercise timing (morning, midday-afternoon, and evening), there was an inverse association for accelerometer-measured MVPA and LPA, and a positive association for sedentary time, with incident PD. Computer applications to medicine. Medical informatics Xiaoqin Gan verfasserin aut Ziliang Ye verfasserin aut Yuanyuan Zhang verfasserin aut Panpan He verfasserin aut Chun Zhou verfasserin aut Sisi Yang verfasserin aut Yanjun Zhang verfasserin aut Xianhui Qin verfasserin aut In npj Digital Medicine Nature Portfolio, 2018 6(2023), 1, Seite 9 (DE-627)1016587104 (DE-600)2925182-5 23986352 nnns volume:6 year:2023 number:1 pages:9 https://doi.org/10.1038/s41746-023-00969-7 kostenfrei https://doaj.org/article/a23bee96d7714fcda1b8ada6cd5ee928 kostenfrei https://doi.org/10.1038/s41746-023-00969-7 kostenfrei https://doaj.org/toc/2398-6352 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 1 9 |
allfieldsSound |
10.1038/s41746-023-00969-7 doi (DE-627)DOAJ100198384 (DE-599)DOAJa23bee96d7714fcda1b8ada6cd5ee928 DE-627 ger DE-627 rakwb eng R858-859.7 Mengyi Liu verfasserin aut Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), sedentary time and exercise timing with incident PD. 96,422 participants without prior PD and with usable accelerometer data were included from UK Biobank. Time spent in sedentary activity, LPA, MVPA, and exercise timing were estimated using machine learning models. The study outcome was incident PD. Over a median follow-up duration of 6.8 years, 313 participants developed PD. There was a L-shaped association for LPA and MVPA, and a reversed L-shaped association for sedentary time, with the risk of incident PD (all P for nonlinearity < 0.001). Similar trends were found across three time-windows (morning, midday-afternoon, and evening). Compared with those with both low LPA (<3.89 h/day) and low MVPA (<0.27 h/day), the adjusted HR (95% CI) of PD risk was 0.49 (0.36–0.66), 0.19 (0.36–0.66) and 0.13 (0.09–0.18), respectively, for participants with high MVPA only, high LPA only, and both high LPA and high MVPA. Moreover, participants with both low LPA and high sedentary time (≥9.41 h/day) (adjusted HR, 5.59; 95% CI: 4.10–7.61), and those with both low MVPA and high sedentary time (adjusted HR, 3.93; 95% CI: 2.82–5.49) had the highest risk of incident PD. In conclusion, regardless of exercise timing (morning, midday-afternoon, and evening), there was an inverse association for accelerometer-measured MVPA and LPA, and a positive association for sedentary time, with incident PD. Computer applications to medicine. Medical informatics Xiaoqin Gan verfasserin aut Ziliang Ye verfasserin aut Yuanyuan Zhang verfasserin aut Panpan He verfasserin aut Chun Zhou verfasserin aut Sisi Yang verfasserin aut Yanjun Zhang verfasserin aut Xianhui Qin verfasserin aut In npj Digital Medicine Nature Portfolio, 2018 6(2023), 1, Seite 9 (DE-627)1016587104 (DE-600)2925182-5 23986352 nnns volume:6 year:2023 number:1 pages:9 https://doi.org/10.1038/s41746-023-00969-7 kostenfrei https://doaj.org/article/a23bee96d7714fcda1b8ada6cd5ee928 kostenfrei https://doi.org/10.1038/s41746-023-00969-7 kostenfrei https://doaj.org/toc/2398-6352 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 1 9 |
language |
English |
source |
In npj Digital Medicine 6(2023), 1, Seite 9 volume:6 year:2023 number:1 pages:9 |
sourceStr |
In npj Digital Medicine 6(2023), 1, Seite 9 volume:6 year:2023 number:1 pages:9 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Computer applications to medicine. Medical informatics |
isfreeaccess_bool |
true |
container_title |
npj Digital Medicine |
authorswithroles_txt_mv |
Mengyi Liu @@aut@@ Xiaoqin Gan @@aut@@ Ziliang Ye @@aut@@ Yuanyuan Zhang @@aut@@ Panpan He @@aut@@ Chun Zhou @@aut@@ Sisi Yang @@aut@@ Yanjun Zhang @@aut@@ Xianhui Qin @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1016587104 |
id |
DOAJ100198384 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100198384</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414082226.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41746-023-00969-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100198384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa23bee96d7714fcda1b8ada6cd5ee928</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mengyi Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Evidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), sedentary time and exercise timing with incident PD. 96,422 participants without prior PD and with usable accelerometer data were included from UK Biobank. Time spent in sedentary activity, LPA, MVPA, and exercise timing were estimated using machine learning models. The study outcome was incident PD. Over a median follow-up duration of 6.8 years, 313 participants developed PD. There was a L-shaped association for LPA and MVPA, and a reversed L-shaped association for sedentary time, with the risk of incident PD (all P for nonlinearity < 0.001). Similar trends were found across three time-windows (morning, midday-afternoon, and evening). Compared with those with both low LPA (<3.89 h/day) and low MVPA (<0.27 h/day), the adjusted HR (95% CI) of PD risk was 0.49 (0.36–0.66), 0.19 (0.36–0.66) and 0.13 (0.09–0.18), respectively, for participants with high MVPA only, high LPA only, and both high LPA and high MVPA. Moreover, participants with both low LPA and high sedentary time (≥9.41 h/day) (adjusted HR, 5.59; 95% CI: 4.10–7.61), and those with both low MVPA and high sedentary time (adjusted HR, 3.93; 95% CI: 2.82–5.49) had the highest risk of incident PD. In conclusion, regardless of exercise timing (morning, midday-afternoon, and evening), there was an inverse association for accelerometer-measured MVPA and LPA, and a positive association for sedentary time, with incident PD.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoqin Gan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziliang Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuanyuan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Panpan He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chun Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sisi Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanjun Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianhui Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">npj Digital Medicine</subfield><subfield code="d">Nature Portfolio, 2018</subfield><subfield code="g">6(2023), 1, Seite 9</subfield><subfield code="w">(DE-627)1016587104</subfield><subfield code="w">(DE-600)2925182-5</subfield><subfield code="x">23986352</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41746-023-00969-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a23bee96d7714fcda1b8ada6cd5ee928</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41746-023-00969-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2398-6352</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">9</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Mengyi Liu |
spellingShingle |
Mengyi Liu misc R858-859.7 misc Computer applications to medicine. Medical informatics Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease |
authorStr |
Mengyi Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1016587104 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R858-859 |
illustrated |
Not Illustrated |
issn |
23986352 |
topic_title |
R858-859.7 Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease |
topic |
misc R858-859.7 misc Computer applications to medicine. Medical informatics |
topic_unstemmed |
misc R858-859.7 misc Computer applications to medicine. Medical informatics |
topic_browse |
misc R858-859.7 misc Computer applications to medicine. Medical informatics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
npj Digital Medicine |
hierarchy_parent_id |
1016587104 |
hierarchy_top_title |
npj Digital Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1016587104 (DE-600)2925182-5 |
title |
Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease |
ctrlnum |
(DE-627)DOAJ100198384 (DE-599)DOAJa23bee96d7714fcda1b8ada6cd5ee928 |
title_full |
Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease |
author_sort |
Mengyi Liu |
journal |
npj Digital Medicine |
journalStr |
npj Digital Medicine |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
9 |
author_browse |
Mengyi Liu Xiaoqin Gan Ziliang Ye Yuanyuan Zhang Panpan He Chun Zhou Sisi Yang Yanjun Zhang Xianhui Qin |
container_volume |
6 |
class |
R858-859.7 |
format_se |
Elektronische Aufsätze |
author-letter |
Mengyi Liu |
doi_str_mv |
10.1038/s41746-023-00969-7 |
author2-role |
verfasserin |
title_sort |
association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident parkinson’s disease |
callnumber |
R858-859.7 |
title_auth |
Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease |
abstract |
Abstract Evidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), sedentary time and exercise timing with incident PD. 96,422 participants without prior PD and with usable accelerometer data were included from UK Biobank. Time spent in sedentary activity, LPA, MVPA, and exercise timing were estimated using machine learning models. The study outcome was incident PD. Over a median follow-up duration of 6.8 years, 313 participants developed PD. There was a L-shaped association for LPA and MVPA, and a reversed L-shaped association for sedentary time, with the risk of incident PD (all P for nonlinearity < 0.001). Similar trends were found across three time-windows (morning, midday-afternoon, and evening). Compared with those with both low LPA (<3.89 h/day) and low MVPA (<0.27 h/day), the adjusted HR (95% CI) of PD risk was 0.49 (0.36–0.66), 0.19 (0.36–0.66) and 0.13 (0.09–0.18), respectively, for participants with high MVPA only, high LPA only, and both high LPA and high MVPA. Moreover, participants with both low LPA and high sedentary time (≥9.41 h/day) (adjusted HR, 5.59; 95% CI: 4.10–7.61), and those with both low MVPA and high sedentary time (adjusted HR, 3.93; 95% CI: 2.82–5.49) had the highest risk of incident PD. In conclusion, regardless of exercise timing (morning, midday-afternoon, and evening), there was an inverse association for accelerometer-measured MVPA and LPA, and a positive association for sedentary time, with incident PD. |
abstractGer |
Abstract Evidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), sedentary time and exercise timing with incident PD. 96,422 participants without prior PD and with usable accelerometer data were included from UK Biobank. Time spent in sedentary activity, LPA, MVPA, and exercise timing were estimated using machine learning models. The study outcome was incident PD. Over a median follow-up duration of 6.8 years, 313 participants developed PD. There was a L-shaped association for LPA and MVPA, and a reversed L-shaped association for sedentary time, with the risk of incident PD (all P for nonlinearity < 0.001). Similar trends were found across three time-windows (morning, midday-afternoon, and evening). Compared with those with both low LPA (<3.89 h/day) and low MVPA (<0.27 h/day), the adjusted HR (95% CI) of PD risk was 0.49 (0.36–0.66), 0.19 (0.36–0.66) and 0.13 (0.09–0.18), respectively, for participants with high MVPA only, high LPA only, and both high LPA and high MVPA. Moreover, participants with both low LPA and high sedentary time (≥9.41 h/day) (adjusted HR, 5.59; 95% CI: 4.10–7.61), and those with both low MVPA and high sedentary time (adjusted HR, 3.93; 95% CI: 2.82–5.49) had the highest risk of incident PD. In conclusion, regardless of exercise timing (morning, midday-afternoon, and evening), there was an inverse association for accelerometer-measured MVPA and LPA, and a positive association for sedentary time, with incident PD. |
abstract_unstemmed |
Abstract Evidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), sedentary time and exercise timing with incident PD. 96,422 participants without prior PD and with usable accelerometer data were included from UK Biobank. Time spent in sedentary activity, LPA, MVPA, and exercise timing were estimated using machine learning models. The study outcome was incident PD. Over a median follow-up duration of 6.8 years, 313 participants developed PD. There was a L-shaped association for LPA and MVPA, and a reversed L-shaped association for sedentary time, with the risk of incident PD (all P for nonlinearity < 0.001). Similar trends were found across three time-windows (morning, midday-afternoon, and evening). Compared with those with both low LPA (<3.89 h/day) and low MVPA (<0.27 h/day), the adjusted HR (95% CI) of PD risk was 0.49 (0.36–0.66), 0.19 (0.36–0.66) and 0.13 (0.09–0.18), respectively, for participants with high MVPA only, high LPA only, and both high LPA and high MVPA. Moreover, participants with both low LPA and high sedentary time (≥9.41 h/day) (adjusted HR, 5.59; 95% CI: 4.10–7.61), and those with both low MVPA and high sedentary time (adjusted HR, 3.93; 95% CI: 2.82–5.49) had the highest risk of incident PD. In conclusion, regardless of exercise timing (morning, midday-afternoon, and evening), there was an inverse association for accelerometer-measured MVPA and LPA, and a positive association for sedentary time, with incident PD. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease |
url |
https://doi.org/10.1038/s41746-023-00969-7 https://doaj.org/article/a23bee96d7714fcda1b8ada6cd5ee928 https://doaj.org/toc/2398-6352 |
remote_bool |
true |
author2 |
Xiaoqin Gan Ziliang Ye Yuanyuan Zhang Panpan He Chun Zhou Sisi Yang Yanjun Zhang Xianhui Qin |
author2Str |
Xiaoqin Gan Ziliang Ye Yuanyuan Zhang Panpan He Chun Zhou Sisi Yang Yanjun Zhang Xianhui Qin |
ppnlink |
1016587104 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41746-023-00969-7 |
callnumber-a |
R858-859.7 |
up_date |
2024-07-04T01:55:32.434Z |
_version_ |
1803611676278259713 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100198384</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414082226.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41746-023-00969-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100198384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa23bee96d7714fcda1b8ada6cd5ee928</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mengyi Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Association of accelerometer-measured physical activity intensity, sedentary time, and exercise time with incident Parkinson’s disease</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Evidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), sedentary time and exercise timing with incident PD. 96,422 participants without prior PD and with usable accelerometer data were included from UK Biobank. Time spent in sedentary activity, LPA, MVPA, and exercise timing were estimated using machine learning models. The study outcome was incident PD. Over a median follow-up duration of 6.8 years, 313 participants developed PD. There was a L-shaped association for LPA and MVPA, and a reversed L-shaped association for sedentary time, with the risk of incident PD (all P for nonlinearity < 0.001). Similar trends were found across three time-windows (morning, midday-afternoon, and evening). Compared with those with both low LPA (<3.89 h/day) and low MVPA (<0.27 h/day), the adjusted HR (95% CI) of PD risk was 0.49 (0.36–0.66), 0.19 (0.36–0.66) and 0.13 (0.09–0.18), respectively, for participants with high MVPA only, high LPA only, and both high LPA and high MVPA. Moreover, participants with both low LPA and high sedentary time (≥9.41 h/day) (adjusted HR, 5.59; 95% CI: 4.10–7.61), and those with both low MVPA and high sedentary time (adjusted HR, 3.93; 95% CI: 2.82–5.49) had the highest risk of incident PD. In conclusion, regardless of exercise timing (morning, midday-afternoon, and evening), there was an inverse association for accelerometer-measured MVPA and LPA, and a positive association for sedentary time, with incident PD.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoqin Gan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziliang Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuanyuan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Panpan He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chun Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sisi Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanjun Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianhui Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">npj Digital Medicine</subfield><subfield code="d">Nature Portfolio, 2018</subfield><subfield code="g">6(2023), 1, Seite 9</subfield><subfield code="w">(DE-627)1016587104</subfield><subfield code="w">(DE-600)2925182-5</subfield><subfield code="x">23986352</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41746-023-00969-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a23bee96d7714fcda1b8ada6cd5ee928</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41746-023-00969-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2398-6352</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">9</subfield></datafield></record></collection>
|
score |
7.399441 |