Algorithms and statistical analysis for linear structured weighted total least squares problem
Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free...
Ausführliche Beschreibung
Autor*in: |
Jian Xie [verfasserIn] Tianwei Qiu [verfasserIn] Cui Zhou [verfasserIn] Dongfang Lin [verfasserIn] Sichun Long [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Geodesy and Geodynamics - KeAi Communications Co., Ltd., 2017, 15(2024), 2, Seite 177-188 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2024 ; number:2 ; pages:177-188 |
Links: |
---|
DOI / URN: |
10.1016/j.geog.2023.06.001 |
---|
Katalog-ID: |
DOAJ100319750 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ100319750 | ||
003 | DE-627 | ||
005 | 20240414091325.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.geog.2023.06.001 |2 doi | |
035 | |a (DE-627)DOAJ100319750 | ||
035 | |a (DE-599)DOAJf7a31156b43647c0affb65c3e80791dc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB275-343 | |
050 | 0 | |a QC801-809 | |
100 | 0 | |a Jian Xie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Algorithms and statistical analysis for linear structured weighted total least squares problem |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations. | ||
650 | 4 | |a Linear structured weighted total least squares | |
650 | 4 | |a Errors-in-variables | |
650 | 4 | |a Errors-in-observations | |
650 | 4 | |a Functional model modification | |
650 | 4 | |a Stochastic model modification | |
650 | 4 | |a Accuracy evaluation | |
653 | 0 | |a Geodesy | |
653 | 0 | |a Geophysics. Cosmic physics | |
700 | 0 | |a Tianwei Qiu |e verfasserin |4 aut | |
700 | 0 | |a Cui Zhou |e verfasserin |4 aut | |
700 | 0 | |a Dongfang Lin |e verfasserin |4 aut | |
700 | 0 | |a Sichun Long |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Geodesy and Geodynamics |d KeAi Communications Co., Ltd., 2017 |g 15(2024), 2, Seite 177-188 |w (DE-627)750085827 |w (DE-600)2719789-X |x 16749847 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2024 |g number:2 |g pages:177-188 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.geog.2023.06.001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f7a31156b43647c0affb65c3e80791dc |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1674984723000708 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1674-9847 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_121 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2036 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_2817 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4346 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
912 | |a GBV_ILN_4753 | ||
951 | |a AR | ||
952 | |d 15 |j 2024 |e 2 |h 177-188 |
author_variant |
j x jx t q tq c z cz d l dl s l sl |
---|---|
matchkey_str |
article:16749847:2024----::loihsnsaitclnlssolnasrcuewihet |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QB |
publishDate |
2024 |
allfields |
10.1016/j.geog.2023.06.001 doi (DE-627)DOAJ100319750 (DE-599)DOAJf7a31156b43647c0affb65c3e80791dc DE-627 ger DE-627 rakwb eng QB275-343 QC801-809 Jian Xie verfasserin aut Algorithms and statistical analysis for linear structured weighted total least squares problem 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations. Linear structured weighted total least squares Errors-in-variables Errors-in-observations Functional model modification Stochastic model modification Accuracy evaluation Geodesy Geophysics. Cosmic physics Tianwei Qiu verfasserin aut Cui Zhou verfasserin aut Dongfang Lin verfasserin aut Sichun Long verfasserin aut In Geodesy and Geodynamics KeAi Communications Co., Ltd., 2017 15(2024), 2, Seite 177-188 (DE-627)750085827 (DE-600)2719789-X 16749847 nnns volume:15 year:2024 number:2 pages:177-188 https://doi.org/10.1016/j.geog.2023.06.001 kostenfrei https://doaj.org/article/f7a31156b43647c0affb65c3e80791dc kostenfrei http://www.sciencedirect.com/science/article/pii/S1674984723000708 kostenfrei https://doaj.org/toc/1674-9847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2036 GBV_ILN_2037 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2817 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 15 2024 2 177-188 |
spelling |
10.1016/j.geog.2023.06.001 doi (DE-627)DOAJ100319750 (DE-599)DOAJf7a31156b43647c0affb65c3e80791dc DE-627 ger DE-627 rakwb eng QB275-343 QC801-809 Jian Xie verfasserin aut Algorithms and statistical analysis for linear structured weighted total least squares problem 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations. Linear structured weighted total least squares Errors-in-variables Errors-in-observations Functional model modification Stochastic model modification Accuracy evaluation Geodesy Geophysics. Cosmic physics Tianwei Qiu verfasserin aut Cui Zhou verfasserin aut Dongfang Lin verfasserin aut Sichun Long verfasserin aut In Geodesy and Geodynamics KeAi Communications Co., Ltd., 2017 15(2024), 2, Seite 177-188 (DE-627)750085827 (DE-600)2719789-X 16749847 nnns volume:15 year:2024 number:2 pages:177-188 https://doi.org/10.1016/j.geog.2023.06.001 kostenfrei https://doaj.org/article/f7a31156b43647c0affb65c3e80791dc kostenfrei http://www.sciencedirect.com/science/article/pii/S1674984723000708 kostenfrei https://doaj.org/toc/1674-9847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2036 GBV_ILN_2037 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2817 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 15 2024 2 177-188 |
allfields_unstemmed |
10.1016/j.geog.2023.06.001 doi (DE-627)DOAJ100319750 (DE-599)DOAJf7a31156b43647c0affb65c3e80791dc DE-627 ger DE-627 rakwb eng QB275-343 QC801-809 Jian Xie verfasserin aut Algorithms and statistical analysis for linear structured weighted total least squares problem 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations. Linear structured weighted total least squares Errors-in-variables Errors-in-observations Functional model modification Stochastic model modification Accuracy evaluation Geodesy Geophysics. Cosmic physics Tianwei Qiu verfasserin aut Cui Zhou verfasserin aut Dongfang Lin verfasserin aut Sichun Long verfasserin aut In Geodesy and Geodynamics KeAi Communications Co., Ltd., 2017 15(2024), 2, Seite 177-188 (DE-627)750085827 (DE-600)2719789-X 16749847 nnns volume:15 year:2024 number:2 pages:177-188 https://doi.org/10.1016/j.geog.2023.06.001 kostenfrei https://doaj.org/article/f7a31156b43647c0affb65c3e80791dc kostenfrei http://www.sciencedirect.com/science/article/pii/S1674984723000708 kostenfrei https://doaj.org/toc/1674-9847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2036 GBV_ILN_2037 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2817 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 15 2024 2 177-188 |
allfieldsGer |
10.1016/j.geog.2023.06.001 doi (DE-627)DOAJ100319750 (DE-599)DOAJf7a31156b43647c0affb65c3e80791dc DE-627 ger DE-627 rakwb eng QB275-343 QC801-809 Jian Xie verfasserin aut Algorithms and statistical analysis for linear structured weighted total least squares problem 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations. Linear structured weighted total least squares Errors-in-variables Errors-in-observations Functional model modification Stochastic model modification Accuracy evaluation Geodesy Geophysics. Cosmic physics Tianwei Qiu verfasserin aut Cui Zhou verfasserin aut Dongfang Lin verfasserin aut Sichun Long verfasserin aut In Geodesy and Geodynamics KeAi Communications Co., Ltd., 2017 15(2024), 2, Seite 177-188 (DE-627)750085827 (DE-600)2719789-X 16749847 nnns volume:15 year:2024 number:2 pages:177-188 https://doi.org/10.1016/j.geog.2023.06.001 kostenfrei https://doaj.org/article/f7a31156b43647c0affb65c3e80791dc kostenfrei http://www.sciencedirect.com/science/article/pii/S1674984723000708 kostenfrei https://doaj.org/toc/1674-9847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2036 GBV_ILN_2037 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2817 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 15 2024 2 177-188 |
allfieldsSound |
10.1016/j.geog.2023.06.001 doi (DE-627)DOAJ100319750 (DE-599)DOAJf7a31156b43647c0affb65c3e80791dc DE-627 ger DE-627 rakwb eng QB275-343 QC801-809 Jian Xie verfasserin aut Algorithms and statistical analysis for linear structured weighted total least squares problem 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations. Linear structured weighted total least squares Errors-in-variables Errors-in-observations Functional model modification Stochastic model modification Accuracy evaluation Geodesy Geophysics. Cosmic physics Tianwei Qiu verfasserin aut Cui Zhou verfasserin aut Dongfang Lin verfasserin aut Sichun Long verfasserin aut In Geodesy and Geodynamics KeAi Communications Co., Ltd., 2017 15(2024), 2, Seite 177-188 (DE-627)750085827 (DE-600)2719789-X 16749847 nnns volume:15 year:2024 number:2 pages:177-188 https://doi.org/10.1016/j.geog.2023.06.001 kostenfrei https://doaj.org/article/f7a31156b43647c0affb65c3e80791dc kostenfrei http://www.sciencedirect.com/science/article/pii/S1674984723000708 kostenfrei https://doaj.org/toc/1674-9847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2036 GBV_ILN_2037 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2817 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 15 2024 2 177-188 |
language |
English |
source |
In Geodesy and Geodynamics 15(2024), 2, Seite 177-188 volume:15 year:2024 number:2 pages:177-188 |
sourceStr |
In Geodesy and Geodynamics 15(2024), 2, Seite 177-188 volume:15 year:2024 number:2 pages:177-188 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Linear structured weighted total least squares Errors-in-variables Errors-in-observations Functional model modification Stochastic model modification Accuracy evaluation Geodesy Geophysics. Cosmic physics |
isfreeaccess_bool |
true |
container_title |
Geodesy and Geodynamics |
authorswithroles_txt_mv |
Jian Xie @@aut@@ Tianwei Qiu @@aut@@ Cui Zhou @@aut@@ Dongfang Lin @@aut@@ Sichun Long @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
750085827 |
id |
DOAJ100319750 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100319750</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414091325.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.geog.2023.06.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100319750</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf7a31156b43647c0affb65c3e80791dc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB275-343</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC801-809</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jian Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algorithms and statistical analysis for linear structured weighted total least squares problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear structured weighted total least squares</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Errors-in-variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Errors-in-observations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional model modification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic model modification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accuracy evaluation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geodesy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geophysics. Cosmic physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianwei Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cui Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongfang Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sichun Long</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geodesy and Geodynamics</subfield><subfield code="d">KeAi Communications Co., Ltd., 2017</subfield><subfield code="g">15(2024), 2, Seite 177-188</subfield><subfield code="w">(DE-627)750085827</subfield><subfield code="w">(DE-600)2719789-X</subfield><subfield code="x">16749847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:177-188</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.geog.2023.06.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f7a31156b43647c0affb65c3e80791dc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1674984723000708</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1674-9847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2817</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4346</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4753</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="h">177-188</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Jian Xie |
spellingShingle |
Jian Xie misc QB275-343 misc QC801-809 misc Linear structured weighted total least squares misc Errors-in-variables misc Errors-in-observations misc Functional model modification misc Stochastic model modification misc Accuracy evaluation misc Geodesy misc Geophysics. Cosmic physics Algorithms and statistical analysis for linear structured weighted total least squares problem |
authorStr |
Jian Xie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750085827 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB275-343 |
illustrated |
Not Illustrated |
issn |
16749847 |
topic_title |
QB275-343 QC801-809 Algorithms and statistical analysis for linear structured weighted total least squares problem Linear structured weighted total least squares Errors-in-variables Errors-in-observations Functional model modification Stochastic model modification Accuracy evaluation |
topic |
misc QB275-343 misc QC801-809 misc Linear structured weighted total least squares misc Errors-in-variables misc Errors-in-observations misc Functional model modification misc Stochastic model modification misc Accuracy evaluation misc Geodesy misc Geophysics. Cosmic physics |
topic_unstemmed |
misc QB275-343 misc QC801-809 misc Linear structured weighted total least squares misc Errors-in-variables misc Errors-in-observations misc Functional model modification misc Stochastic model modification misc Accuracy evaluation misc Geodesy misc Geophysics. Cosmic physics |
topic_browse |
misc QB275-343 misc QC801-809 misc Linear structured weighted total least squares misc Errors-in-variables misc Errors-in-observations misc Functional model modification misc Stochastic model modification misc Accuracy evaluation misc Geodesy misc Geophysics. Cosmic physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geodesy and Geodynamics |
hierarchy_parent_id |
750085827 |
hierarchy_top_title |
Geodesy and Geodynamics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750085827 (DE-600)2719789-X |
title |
Algorithms and statistical analysis for linear structured weighted total least squares problem |
ctrlnum |
(DE-627)DOAJ100319750 (DE-599)DOAJf7a31156b43647c0affb65c3e80791dc |
title_full |
Algorithms and statistical analysis for linear structured weighted total least squares problem |
author_sort |
Jian Xie |
journal |
Geodesy and Geodynamics |
journalStr |
Geodesy and Geodynamics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
177 |
author_browse |
Jian Xie Tianwei Qiu Cui Zhou Dongfang Lin Sichun Long |
container_volume |
15 |
class |
QB275-343 QC801-809 |
format_se |
Elektronische Aufsätze |
author-letter |
Jian Xie |
doi_str_mv |
10.1016/j.geog.2023.06.001 |
author2-role |
verfasserin |
title_sort |
algorithms and statistical analysis for linear structured weighted total least squares problem |
callnumber |
QB275-343 |
title_auth |
Algorithms and statistical analysis for linear structured weighted total least squares problem |
abstract |
Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations. |
abstractGer |
Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations. |
abstract_unstemmed |
Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2036 GBV_ILN_2037 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2817 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 |
container_issue |
2 |
title_short |
Algorithms and statistical analysis for linear structured weighted total least squares problem |
url |
https://doi.org/10.1016/j.geog.2023.06.001 https://doaj.org/article/f7a31156b43647c0affb65c3e80791dc http://www.sciencedirect.com/science/article/pii/S1674984723000708 https://doaj.org/toc/1674-9847 |
remote_bool |
true |
author2 |
Tianwei Qiu Cui Zhou Dongfang Lin Sichun Long |
author2Str |
Tianwei Qiu Cui Zhou Dongfang Lin Sichun Long |
ppnlink |
750085827 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.geog.2023.06.001 |
callnumber-a |
QB275-343 |
up_date |
2024-07-03T14:00:30.779Z |
_version_ |
1803566690631417856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100319750</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414091325.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.geog.2023.06.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100319750</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf7a31156b43647c0affb65c3e80791dc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB275-343</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC801-809</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jian Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algorithms and statistical analysis for linear structured weighted total least squares problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear structured weighted total least squares</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Errors-in-variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Errors-in-observations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional model modification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic model modification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accuracy evaluation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geodesy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geophysics. Cosmic physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianwei Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cui Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongfang Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sichun Long</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geodesy and Geodynamics</subfield><subfield code="d">KeAi Communications Co., Ltd., 2017</subfield><subfield code="g">15(2024), 2, Seite 177-188</subfield><subfield code="w">(DE-627)750085827</subfield><subfield code="w">(DE-600)2719789-X</subfield><subfield code="x">16749847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:177-188</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.geog.2023.06.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f7a31156b43647c0affb65c3e80791dc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1674984723000708</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1674-9847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2817</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4346</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4753</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="h">177-188</subfield></datafield></record></collection>
|
score |
7.4019966 |