Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality
A normative gait dataset of 246 healthy adults (122 men / 124 women, range in age 18-91 years, body weight 46.80-116.10 kg, height 1.53-1.97 m and BMI 18.25-35.63 kg/m2) is presented and publicly shared for three walking speed conditions.Raw and processed data are presented for each subject separate...
Ausführliche Beschreibung
Autor*in: |
Rachel Senden [verfasserIn] Rik Marcellis [verfasserIn] Paul Willems [verfasserIn] Marianne Witlox [verfasserIn] Kenneth Meijer [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Data in Brief - Elsevier, 2015, 53(2024), Seite 110230- |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2024 ; pages:110230- |
Links: |
---|
DOI / URN: |
10.1016/j.dib.2024.110230 |
---|
Katalog-ID: |
DOAJ100440665 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ100440665 | ||
003 | DE-627 | ||
005 | 20240414131306.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.dib.2024.110230 |2 doi | |
035 | |a (DE-627)DOAJ100440665 | ||
035 | |a (DE-599)DOAJ275e3a77fc194e988ef86b5903a5248e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R858-859.7 | |
050 | 0 | |a Q1-390 | |
100 | 0 | |a Rachel Senden |e verfasserin |4 aut | |
245 | 1 | 0 | |a Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A normative gait dataset of 246 healthy adults (122 men / 124 women, range in age 18-91 years, body weight 46.80-116.10 kg, height 1.53-1.97 m and BMI 18.25-35.63 kg/m2) is presented and publicly shared for three walking speed conditions.Raw and processed data are presented for each subject separately and for each walking speed, including data of every single step of both legs. The subject demographics and results from the physical examination are also presented which allows researchers and clinicians to create a self-selected reference group based on specific demographics. Besides the data per individual, data are also presented in age and gender groups. This provides a quick overview of healthy gait parameters which is relevant for use in clinical practice.Three dimensional gait analysis was performed at the Computer Assisted Rehabilitation Environment (CAREN) at the Maastricht University Medical Centre (MUMC+). Subjects walked on the instrumented treadmill surrounded with twelve 3D cameras, three 2D cameras and a virtual industrial environment projected on a 180° screen using the Human Body Lower Limb Model with trunk markers (HBM-II) as biomechanical model [1,2].Subjects walked at comfortable walking speed, 30% slower and 30% faster. These walking speed conditions were applied in a random sequence. Comfortable walking speed was determined using a RAMP protocol: subjects started to walk at 0.5m/s and every second the speed was increased with 0.01 m/s until the preferred speed was reached. The average of three repetitions was considered the comfortable speed. For each walking speed condition, 250 steps were recorded.The 3D gait data was collected using the D-flow CAREN software. For each subject, raw data of each walking speed condition is provided in .mox files, including the output from the model such as subject data (e.g. gender, body mass, knee and ankle width), center of mass (CoM), marker and force data, kinematic data (joint angles) and kinetic data (joint moments, ground reaction forces (GRFs) and joint powers) for each single step of both legs. Unfiltered and filtered data are included. C3D files with raw marker and GRF data were recorded in Nexus (Vicon software, version 2.8.1) and are available upon request.Raw data were processed in Matlab (Mathworks 2016), including quality check, step determination and the exportation of data to .xls files. For each adult and for each walking speed, an .xls file was created, containing spatiotemporal parameters, medio-lateral (ML) and back-forward (BF) margins of stability (MoS), 3D joint angles, anterior-posterior (AP) and vertical GRFs, 3D joint moments and 3D joint power of each step of both legs. Overview files per walking speed condition are created in .xls, presenting the averaged gait parameters (calculated as average over all valid steps) of every subject. The processed data is also presented and visualized per gender for different age groups (18-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, ≥70 years). This can serve as normative data for treadmill based 3D gait analyses in adults, applicable for clinical and research purposes. Data is available at OSF.io (https://osf.io/t72cw/). | ||
650 | 4 | |a Gait analysis | |
650 | 4 | |a Healthy adults | |
650 | 4 | |a CAREN | |
650 | 4 | |a Spatiotemporal parameters | |
650 | 4 | |a Joint angles | |
650 | 4 | |a Ground reaction forces | |
653 | 0 | |a Computer applications to medicine. Medical informatics | |
653 | 0 | |a Science (General) | |
700 | 0 | |a Rik Marcellis |e verfasserin |4 aut | |
700 | 0 | |a Paul Willems |e verfasserin |4 aut | |
700 | 0 | |a Marianne Witlox |e verfasserin |4 aut | |
700 | 0 | |a Kenneth Meijer |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Data in Brief |d Elsevier, 2015 |g 53(2024), Seite 110230- |w (DE-627)797838937 |w (DE-600)2786545-9 |x 23523409 |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2024 |g pages:110230- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.dib.2024.110230 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/275e3a77fc194e988ef86b5903a5248e |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2352340924002014 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2352-3409 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 53 |j 2024 |h 110230- |
author_variant |
r s rs r m rm p w pw m w mw k m km |
---|---|
matchkey_str |
article:23523409:2024----::omtv3gidtohatydlsaknatreifrnsedoaisrmne |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
R |
publishDate |
2024 |
allfields |
10.1016/j.dib.2024.110230 doi (DE-627)DOAJ100440665 (DE-599)DOAJ275e3a77fc194e988ef86b5903a5248e DE-627 ger DE-627 rakwb eng R858-859.7 Q1-390 Rachel Senden verfasserin aut Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A normative gait dataset of 246 healthy adults (122 men / 124 women, range in age 18-91 years, body weight 46.80-116.10 kg, height 1.53-1.97 m and BMI 18.25-35.63 kg/m2) is presented and publicly shared for three walking speed conditions.Raw and processed data are presented for each subject separately and for each walking speed, including data of every single step of both legs. The subject demographics and results from the physical examination are also presented which allows researchers and clinicians to create a self-selected reference group based on specific demographics. Besides the data per individual, data are also presented in age and gender groups. This provides a quick overview of healthy gait parameters which is relevant for use in clinical practice.Three dimensional gait analysis was performed at the Computer Assisted Rehabilitation Environment (CAREN) at the Maastricht University Medical Centre (MUMC+). Subjects walked on the instrumented treadmill surrounded with twelve 3D cameras, three 2D cameras and a virtual industrial environment projected on a 180° screen using the Human Body Lower Limb Model with trunk markers (HBM-II) as biomechanical model [1,2].Subjects walked at comfortable walking speed, 30% slower and 30% faster. These walking speed conditions were applied in a random sequence. Comfortable walking speed was determined using a RAMP protocol: subjects started to walk at 0.5m/s and every second the speed was increased with 0.01 m/s until the preferred speed was reached. The average of three repetitions was considered the comfortable speed. For each walking speed condition, 250 steps were recorded.The 3D gait data was collected using the D-flow CAREN software. For each subject, raw data of each walking speed condition is provided in .mox files, including the output from the model such as subject data (e.g. gender, body mass, knee and ankle width), center of mass (CoM), marker and force data, kinematic data (joint angles) and kinetic data (joint moments, ground reaction forces (GRFs) and joint powers) for each single step of both legs. Unfiltered and filtered data are included. C3D files with raw marker and GRF data were recorded in Nexus (Vicon software, version 2.8.1) and are available upon request.Raw data were processed in Matlab (Mathworks 2016), including quality check, step determination and the exportation of data to .xls files. For each adult and for each walking speed, an .xls file was created, containing spatiotemporal parameters, medio-lateral (ML) and back-forward (BF) margins of stability (MoS), 3D joint angles, anterior-posterior (AP) and vertical GRFs, 3D joint moments and 3D joint power of each step of both legs. Overview files per walking speed condition are created in .xls, presenting the averaged gait parameters (calculated as average over all valid steps) of every subject. The processed data is also presented and visualized per gender for different age groups (18-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, ≥70 years). This can serve as normative data for treadmill based 3D gait analyses in adults, applicable for clinical and research purposes. Data is available at OSF.io (https://osf.io/t72cw/). Gait analysis Healthy adults CAREN Spatiotemporal parameters Joint angles Ground reaction forces Computer applications to medicine. Medical informatics Science (General) Rik Marcellis verfasserin aut Paul Willems verfasserin aut Marianne Witlox verfasserin aut Kenneth Meijer verfasserin aut In Data in Brief Elsevier, 2015 53(2024), Seite 110230- (DE-627)797838937 (DE-600)2786545-9 23523409 nnns volume:53 year:2024 pages:110230- https://doi.org/10.1016/j.dib.2024.110230 kostenfrei https://doaj.org/article/275e3a77fc194e988ef86b5903a5248e kostenfrei http://www.sciencedirect.com/science/article/pii/S2352340924002014 kostenfrei https://doaj.org/toc/2352-3409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 53 2024 110230- |
spelling |
10.1016/j.dib.2024.110230 doi (DE-627)DOAJ100440665 (DE-599)DOAJ275e3a77fc194e988ef86b5903a5248e DE-627 ger DE-627 rakwb eng R858-859.7 Q1-390 Rachel Senden verfasserin aut Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A normative gait dataset of 246 healthy adults (122 men / 124 women, range in age 18-91 years, body weight 46.80-116.10 kg, height 1.53-1.97 m and BMI 18.25-35.63 kg/m2) is presented and publicly shared for three walking speed conditions.Raw and processed data are presented for each subject separately and for each walking speed, including data of every single step of both legs. The subject demographics and results from the physical examination are also presented which allows researchers and clinicians to create a self-selected reference group based on specific demographics. Besides the data per individual, data are also presented in age and gender groups. This provides a quick overview of healthy gait parameters which is relevant for use in clinical practice.Three dimensional gait analysis was performed at the Computer Assisted Rehabilitation Environment (CAREN) at the Maastricht University Medical Centre (MUMC+). Subjects walked on the instrumented treadmill surrounded with twelve 3D cameras, three 2D cameras and a virtual industrial environment projected on a 180° screen using the Human Body Lower Limb Model with trunk markers (HBM-II) as biomechanical model [1,2].Subjects walked at comfortable walking speed, 30% slower and 30% faster. These walking speed conditions were applied in a random sequence. Comfortable walking speed was determined using a RAMP protocol: subjects started to walk at 0.5m/s and every second the speed was increased with 0.01 m/s until the preferred speed was reached. The average of three repetitions was considered the comfortable speed. For each walking speed condition, 250 steps were recorded.The 3D gait data was collected using the D-flow CAREN software. For each subject, raw data of each walking speed condition is provided in .mox files, including the output from the model such as subject data (e.g. gender, body mass, knee and ankle width), center of mass (CoM), marker and force data, kinematic data (joint angles) and kinetic data (joint moments, ground reaction forces (GRFs) and joint powers) for each single step of both legs. Unfiltered and filtered data are included. C3D files with raw marker and GRF data were recorded in Nexus (Vicon software, version 2.8.1) and are available upon request.Raw data were processed in Matlab (Mathworks 2016), including quality check, step determination and the exportation of data to .xls files. For each adult and for each walking speed, an .xls file was created, containing spatiotemporal parameters, medio-lateral (ML) and back-forward (BF) margins of stability (MoS), 3D joint angles, anterior-posterior (AP) and vertical GRFs, 3D joint moments and 3D joint power of each step of both legs. Overview files per walking speed condition are created in .xls, presenting the averaged gait parameters (calculated as average over all valid steps) of every subject. The processed data is also presented and visualized per gender for different age groups (18-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, ≥70 years). This can serve as normative data for treadmill based 3D gait analyses in adults, applicable for clinical and research purposes. Data is available at OSF.io (https://osf.io/t72cw/). Gait analysis Healthy adults CAREN Spatiotemporal parameters Joint angles Ground reaction forces Computer applications to medicine. Medical informatics Science (General) Rik Marcellis verfasserin aut Paul Willems verfasserin aut Marianne Witlox verfasserin aut Kenneth Meijer verfasserin aut In Data in Brief Elsevier, 2015 53(2024), Seite 110230- (DE-627)797838937 (DE-600)2786545-9 23523409 nnns volume:53 year:2024 pages:110230- https://doi.org/10.1016/j.dib.2024.110230 kostenfrei https://doaj.org/article/275e3a77fc194e988ef86b5903a5248e kostenfrei http://www.sciencedirect.com/science/article/pii/S2352340924002014 kostenfrei https://doaj.org/toc/2352-3409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 53 2024 110230- |
allfields_unstemmed |
10.1016/j.dib.2024.110230 doi (DE-627)DOAJ100440665 (DE-599)DOAJ275e3a77fc194e988ef86b5903a5248e DE-627 ger DE-627 rakwb eng R858-859.7 Q1-390 Rachel Senden verfasserin aut Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A normative gait dataset of 246 healthy adults (122 men / 124 women, range in age 18-91 years, body weight 46.80-116.10 kg, height 1.53-1.97 m and BMI 18.25-35.63 kg/m2) is presented and publicly shared for three walking speed conditions.Raw and processed data are presented for each subject separately and for each walking speed, including data of every single step of both legs. The subject demographics and results from the physical examination are also presented which allows researchers and clinicians to create a self-selected reference group based on specific demographics. Besides the data per individual, data are also presented in age and gender groups. This provides a quick overview of healthy gait parameters which is relevant for use in clinical practice.Three dimensional gait analysis was performed at the Computer Assisted Rehabilitation Environment (CAREN) at the Maastricht University Medical Centre (MUMC+). Subjects walked on the instrumented treadmill surrounded with twelve 3D cameras, three 2D cameras and a virtual industrial environment projected on a 180° screen using the Human Body Lower Limb Model with trunk markers (HBM-II) as biomechanical model [1,2].Subjects walked at comfortable walking speed, 30% slower and 30% faster. These walking speed conditions were applied in a random sequence. Comfortable walking speed was determined using a RAMP protocol: subjects started to walk at 0.5m/s and every second the speed was increased with 0.01 m/s until the preferred speed was reached. The average of three repetitions was considered the comfortable speed. For each walking speed condition, 250 steps were recorded.The 3D gait data was collected using the D-flow CAREN software. For each subject, raw data of each walking speed condition is provided in .mox files, including the output from the model such as subject data (e.g. gender, body mass, knee and ankle width), center of mass (CoM), marker and force data, kinematic data (joint angles) and kinetic data (joint moments, ground reaction forces (GRFs) and joint powers) for each single step of both legs. Unfiltered and filtered data are included. C3D files with raw marker and GRF data were recorded in Nexus (Vicon software, version 2.8.1) and are available upon request.Raw data were processed in Matlab (Mathworks 2016), including quality check, step determination and the exportation of data to .xls files. For each adult and for each walking speed, an .xls file was created, containing spatiotemporal parameters, medio-lateral (ML) and back-forward (BF) margins of stability (MoS), 3D joint angles, anterior-posterior (AP) and vertical GRFs, 3D joint moments and 3D joint power of each step of both legs. Overview files per walking speed condition are created in .xls, presenting the averaged gait parameters (calculated as average over all valid steps) of every subject. The processed data is also presented and visualized per gender for different age groups (18-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, ≥70 years). This can serve as normative data for treadmill based 3D gait analyses in adults, applicable for clinical and research purposes. Data is available at OSF.io (https://osf.io/t72cw/). Gait analysis Healthy adults CAREN Spatiotemporal parameters Joint angles Ground reaction forces Computer applications to medicine. Medical informatics Science (General) Rik Marcellis verfasserin aut Paul Willems verfasserin aut Marianne Witlox verfasserin aut Kenneth Meijer verfasserin aut In Data in Brief Elsevier, 2015 53(2024), Seite 110230- (DE-627)797838937 (DE-600)2786545-9 23523409 nnns volume:53 year:2024 pages:110230- https://doi.org/10.1016/j.dib.2024.110230 kostenfrei https://doaj.org/article/275e3a77fc194e988ef86b5903a5248e kostenfrei http://www.sciencedirect.com/science/article/pii/S2352340924002014 kostenfrei https://doaj.org/toc/2352-3409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 53 2024 110230- |
allfieldsGer |
10.1016/j.dib.2024.110230 doi (DE-627)DOAJ100440665 (DE-599)DOAJ275e3a77fc194e988ef86b5903a5248e DE-627 ger DE-627 rakwb eng R858-859.7 Q1-390 Rachel Senden verfasserin aut Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A normative gait dataset of 246 healthy adults (122 men / 124 women, range in age 18-91 years, body weight 46.80-116.10 kg, height 1.53-1.97 m and BMI 18.25-35.63 kg/m2) is presented and publicly shared for three walking speed conditions.Raw and processed data are presented for each subject separately and for each walking speed, including data of every single step of both legs. The subject demographics and results from the physical examination are also presented which allows researchers and clinicians to create a self-selected reference group based on specific demographics. Besides the data per individual, data are also presented in age and gender groups. This provides a quick overview of healthy gait parameters which is relevant for use in clinical practice.Three dimensional gait analysis was performed at the Computer Assisted Rehabilitation Environment (CAREN) at the Maastricht University Medical Centre (MUMC+). Subjects walked on the instrumented treadmill surrounded with twelve 3D cameras, three 2D cameras and a virtual industrial environment projected on a 180° screen using the Human Body Lower Limb Model with trunk markers (HBM-II) as biomechanical model [1,2].Subjects walked at comfortable walking speed, 30% slower and 30% faster. These walking speed conditions were applied in a random sequence. Comfortable walking speed was determined using a RAMP protocol: subjects started to walk at 0.5m/s and every second the speed was increased with 0.01 m/s until the preferred speed was reached. The average of three repetitions was considered the comfortable speed. For each walking speed condition, 250 steps were recorded.The 3D gait data was collected using the D-flow CAREN software. For each subject, raw data of each walking speed condition is provided in .mox files, including the output from the model such as subject data (e.g. gender, body mass, knee and ankle width), center of mass (CoM), marker and force data, kinematic data (joint angles) and kinetic data (joint moments, ground reaction forces (GRFs) and joint powers) for each single step of both legs. Unfiltered and filtered data are included. C3D files with raw marker and GRF data were recorded in Nexus (Vicon software, version 2.8.1) and are available upon request.Raw data were processed in Matlab (Mathworks 2016), including quality check, step determination and the exportation of data to .xls files. For each adult and for each walking speed, an .xls file was created, containing spatiotemporal parameters, medio-lateral (ML) and back-forward (BF) margins of stability (MoS), 3D joint angles, anterior-posterior (AP) and vertical GRFs, 3D joint moments and 3D joint power of each step of both legs. Overview files per walking speed condition are created in .xls, presenting the averaged gait parameters (calculated as average over all valid steps) of every subject. The processed data is also presented and visualized per gender for different age groups (18-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, ≥70 years). This can serve as normative data for treadmill based 3D gait analyses in adults, applicable for clinical and research purposes. Data is available at OSF.io (https://osf.io/t72cw/). Gait analysis Healthy adults CAREN Spatiotemporal parameters Joint angles Ground reaction forces Computer applications to medicine. Medical informatics Science (General) Rik Marcellis verfasserin aut Paul Willems verfasserin aut Marianne Witlox verfasserin aut Kenneth Meijer verfasserin aut In Data in Brief Elsevier, 2015 53(2024), Seite 110230- (DE-627)797838937 (DE-600)2786545-9 23523409 nnns volume:53 year:2024 pages:110230- https://doi.org/10.1016/j.dib.2024.110230 kostenfrei https://doaj.org/article/275e3a77fc194e988ef86b5903a5248e kostenfrei http://www.sciencedirect.com/science/article/pii/S2352340924002014 kostenfrei https://doaj.org/toc/2352-3409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 53 2024 110230- |
allfieldsSound |
10.1016/j.dib.2024.110230 doi (DE-627)DOAJ100440665 (DE-599)DOAJ275e3a77fc194e988ef86b5903a5248e DE-627 ger DE-627 rakwb eng R858-859.7 Q1-390 Rachel Senden verfasserin aut Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A normative gait dataset of 246 healthy adults (122 men / 124 women, range in age 18-91 years, body weight 46.80-116.10 kg, height 1.53-1.97 m and BMI 18.25-35.63 kg/m2) is presented and publicly shared for three walking speed conditions.Raw and processed data are presented for each subject separately and for each walking speed, including data of every single step of both legs. The subject demographics and results from the physical examination are also presented which allows researchers and clinicians to create a self-selected reference group based on specific demographics. Besides the data per individual, data are also presented in age and gender groups. This provides a quick overview of healthy gait parameters which is relevant for use in clinical practice.Three dimensional gait analysis was performed at the Computer Assisted Rehabilitation Environment (CAREN) at the Maastricht University Medical Centre (MUMC+). Subjects walked on the instrumented treadmill surrounded with twelve 3D cameras, three 2D cameras and a virtual industrial environment projected on a 180° screen using the Human Body Lower Limb Model with trunk markers (HBM-II) as biomechanical model [1,2].Subjects walked at comfortable walking speed, 30% slower and 30% faster. These walking speed conditions were applied in a random sequence. Comfortable walking speed was determined using a RAMP protocol: subjects started to walk at 0.5m/s and every second the speed was increased with 0.01 m/s until the preferred speed was reached. The average of three repetitions was considered the comfortable speed. For each walking speed condition, 250 steps were recorded.The 3D gait data was collected using the D-flow CAREN software. For each subject, raw data of each walking speed condition is provided in .mox files, including the output from the model such as subject data (e.g. gender, body mass, knee and ankle width), center of mass (CoM), marker and force data, kinematic data (joint angles) and kinetic data (joint moments, ground reaction forces (GRFs) and joint powers) for each single step of both legs. Unfiltered and filtered data are included. C3D files with raw marker and GRF data were recorded in Nexus (Vicon software, version 2.8.1) and are available upon request.Raw data were processed in Matlab (Mathworks 2016), including quality check, step determination and the exportation of data to .xls files. For each adult and for each walking speed, an .xls file was created, containing spatiotemporal parameters, medio-lateral (ML) and back-forward (BF) margins of stability (MoS), 3D joint angles, anterior-posterior (AP) and vertical GRFs, 3D joint moments and 3D joint power of each step of both legs. Overview files per walking speed condition are created in .xls, presenting the averaged gait parameters (calculated as average over all valid steps) of every subject. The processed data is also presented and visualized per gender for different age groups (18-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, ≥70 years). This can serve as normative data for treadmill based 3D gait analyses in adults, applicable for clinical and research purposes. Data is available at OSF.io (https://osf.io/t72cw/). Gait analysis Healthy adults CAREN Spatiotemporal parameters Joint angles Ground reaction forces Computer applications to medicine. Medical informatics Science (General) Rik Marcellis verfasserin aut Paul Willems verfasserin aut Marianne Witlox verfasserin aut Kenneth Meijer verfasserin aut In Data in Brief Elsevier, 2015 53(2024), Seite 110230- (DE-627)797838937 (DE-600)2786545-9 23523409 nnns volume:53 year:2024 pages:110230- https://doi.org/10.1016/j.dib.2024.110230 kostenfrei https://doaj.org/article/275e3a77fc194e988ef86b5903a5248e kostenfrei http://www.sciencedirect.com/science/article/pii/S2352340924002014 kostenfrei https://doaj.org/toc/2352-3409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 53 2024 110230- |
language |
English |
source |
In Data in Brief 53(2024), Seite 110230- volume:53 year:2024 pages:110230- |
sourceStr |
In Data in Brief 53(2024), Seite 110230- volume:53 year:2024 pages:110230- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gait analysis Healthy adults CAREN Spatiotemporal parameters Joint angles Ground reaction forces Computer applications to medicine. Medical informatics Science (General) |
isfreeaccess_bool |
true |
container_title |
Data in Brief |
authorswithroles_txt_mv |
Rachel Senden @@aut@@ Rik Marcellis @@aut@@ Paul Willems @@aut@@ Marianne Witlox @@aut@@ Kenneth Meijer @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
797838937 |
id |
DOAJ100440665 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100440665</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414131306.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dib.2024.110230</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100440665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ275e3a77fc194e988ef86b5903a5248e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rachel Senden</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A normative gait dataset of 246 healthy adults (122 men / 124 women, range in age 18-91 years, body weight 46.80-116.10 kg, height 1.53-1.97 m and BMI 18.25-35.63 kg/m2) is presented and publicly shared for three walking speed conditions.Raw and processed data are presented for each subject separately and for each walking speed, including data of every single step of both legs. The subject demographics and results from the physical examination are also presented which allows researchers and clinicians to create a self-selected reference group based on specific demographics. Besides the data per individual, data are also presented in age and gender groups. This provides a quick overview of healthy gait parameters which is relevant for use in clinical practice.Three dimensional gait analysis was performed at the Computer Assisted Rehabilitation Environment (CAREN) at the Maastricht University Medical Centre (MUMC+). Subjects walked on the instrumented treadmill surrounded with twelve 3D cameras, three 2D cameras and a virtual industrial environment projected on a 180° screen using the Human Body Lower Limb Model with trunk markers (HBM-II) as biomechanical model [1,2].Subjects walked at comfortable walking speed, 30% slower and 30% faster. These walking speed conditions were applied in a random sequence. Comfortable walking speed was determined using a RAMP protocol: subjects started to walk at 0.5m/s and every second the speed was increased with 0.01 m/s until the preferred speed was reached. The average of three repetitions was considered the comfortable speed. For each walking speed condition, 250 steps were recorded.The 3D gait data was collected using the D-flow CAREN software. For each subject, raw data of each walking speed condition is provided in .mox files, including the output from the model such as subject data (e.g. gender, body mass, knee and ankle width), center of mass (CoM), marker and force data, kinematic data (joint angles) and kinetic data (joint moments, ground reaction forces (GRFs) and joint powers) for each single step of both legs. Unfiltered and filtered data are included. C3D files with raw marker and GRF data were recorded in Nexus (Vicon software, version 2.8.1) and are available upon request.Raw data were processed in Matlab (Mathworks 2016), including quality check, step determination and the exportation of data to .xls files. For each adult and for each walking speed, an .xls file was created, containing spatiotemporal parameters, medio-lateral (ML) and back-forward (BF) margins of stability (MoS), 3D joint angles, anterior-posterior (AP) and vertical GRFs, 3D joint moments and 3D joint power of each step of both legs. Overview files per walking speed condition are created in .xls, presenting the averaged gait parameters (calculated as average over all valid steps) of every subject. The processed data is also presented and visualized per gender for different age groups (18-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, ≥70 years). This can serve as normative data for treadmill based 3D gait analyses in adults, applicable for clinical and research purposes. Data is available at OSF.io (https://osf.io/t72cw/).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gait analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Healthy adults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CAREN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatiotemporal parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Joint angles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ground reaction forces</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rik Marcellis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paul Willems</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marianne Witlox</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kenneth Meijer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Data in Brief</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">53(2024), Seite 110230-</subfield><subfield code="w">(DE-627)797838937</subfield><subfield code="w">(DE-600)2786545-9</subfield><subfield code="x">23523409</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:110230-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.dib.2024.110230</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/275e3a77fc194e988ef86b5903a5248e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2352340924002014</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2352-3409</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2024</subfield><subfield code="h">110230-</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Rachel Senden |
spellingShingle |
Rachel Senden misc R858-859.7 misc Q1-390 misc Gait analysis misc Healthy adults misc CAREN misc Spatiotemporal parameters misc Joint angles misc Ground reaction forces misc Computer applications to medicine. Medical informatics misc Science (General) Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality |
authorStr |
Rachel Senden |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)797838937 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R858-859 |
illustrated |
Not Illustrated |
issn |
23523409 |
topic_title |
R858-859.7 Q1-390 Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality Gait analysis Healthy adults CAREN Spatiotemporal parameters Joint angles Ground reaction forces |
topic |
misc R858-859.7 misc Q1-390 misc Gait analysis misc Healthy adults misc CAREN misc Spatiotemporal parameters misc Joint angles misc Ground reaction forces misc Computer applications to medicine. Medical informatics misc Science (General) |
topic_unstemmed |
misc R858-859.7 misc Q1-390 misc Gait analysis misc Healthy adults misc CAREN misc Spatiotemporal parameters misc Joint angles misc Ground reaction forces misc Computer applications to medicine. Medical informatics misc Science (General) |
topic_browse |
misc R858-859.7 misc Q1-390 misc Gait analysis misc Healthy adults misc CAREN misc Spatiotemporal parameters misc Joint angles misc Ground reaction forces misc Computer applications to medicine. Medical informatics misc Science (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Data in Brief |
hierarchy_parent_id |
797838937 |
hierarchy_top_title |
Data in Brief |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)797838937 (DE-600)2786545-9 |
title |
Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality |
ctrlnum |
(DE-627)DOAJ100440665 (DE-599)DOAJ275e3a77fc194e988ef86b5903a5248e |
title_full |
Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality |
author_sort |
Rachel Senden |
journal |
Data in Brief |
journalStr |
Data in Brief |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
110230 |
author_browse |
Rachel Senden Rik Marcellis Paul Willems Marianne Witlox Kenneth Meijer |
container_volume |
53 |
class |
R858-859.7 Q1-390 |
format_se |
Elektronische Aufsätze |
author-letter |
Rachel Senden |
doi_str_mv |
10.1016/j.dib.2024.110230 |
author2-role |
verfasserin |
title_sort |
normative 3d gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality |
callnumber |
R858-859.7 |
title_auth |
Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality |
abstract |
A normative gait dataset of 246 healthy adults (122 men / 124 women, range in age 18-91 years, body weight 46.80-116.10 kg, height 1.53-1.97 m and BMI 18.25-35.63 kg/m2) is presented and publicly shared for three walking speed conditions.Raw and processed data are presented for each subject separately and for each walking speed, including data of every single step of both legs. The subject demographics and results from the physical examination are also presented which allows researchers and clinicians to create a self-selected reference group based on specific demographics. Besides the data per individual, data are also presented in age and gender groups. This provides a quick overview of healthy gait parameters which is relevant for use in clinical practice.Three dimensional gait analysis was performed at the Computer Assisted Rehabilitation Environment (CAREN) at the Maastricht University Medical Centre (MUMC+). Subjects walked on the instrumented treadmill surrounded with twelve 3D cameras, three 2D cameras and a virtual industrial environment projected on a 180° screen using the Human Body Lower Limb Model with trunk markers (HBM-II) as biomechanical model [1,2].Subjects walked at comfortable walking speed, 30% slower and 30% faster. These walking speed conditions were applied in a random sequence. Comfortable walking speed was determined using a RAMP protocol: subjects started to walk at 0.5m/s and every second the speed was increased with 0.01 m/s until the preferred speed was reached. The average of three repetitions was considered the comfortable speed. For each walking speed condition, 250 steps were recorded.The 3D gait data was collected using the D-flow CAREN software. For each subject, raw data of each walking speed condition is provided in .mox files, including the output from the model such as subject data (e.g. gender, body mass, knee and ankle width), center of mass (CoM), marker and force data, kinematic data (joint angles) and kinetic data (joint moments, ground reaction forces (GRFs) and joint powers) for each single step of both legs. Unfiltered and filtered data are included. C3D files with raw marker and GRF data were recorded in Nexus (Vicon software, version 2.8.1) and are available upon request.Raw data were processed in Matlab (Mathworks 2016), including quality check, step determination and the exportation of data to .xls files. For each adult and for each walking speed, an .xls file was created, containing spatiotemporal parameters, medio-lateral (ML) and back-forward (BF) margins of stability (MoS), 3D joint angles, anterior-posterior (AP) and vertical GRFs, 3D joint moments and 3D joint power of each step of both legs. Overview files per walking speed condition are created in .xls, presenting the averaged gait parameters (calculated as average over all valid steps) of every subject. The processed data is also presented and visualized per gender for different age groups (18-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, ≥70 years). This can serve as normative data for treadmill based 3D gait analyses in adults, applicable for clinical and research purposes. Data is available at OSF.io (https://osf.io/t72cw/). |
abstractGer |
A normative gait dataset of 246 healthy adults (122 men / 124 women, range in age 18-91 years, body weight 46.80-116.10 kg, height 1.53-1.97 m and BMI 18.25-35.63 kg/m2) is presented and publicly shared for three walking speed conditions.Raw and processed data are presented for each subject separately and for each walking speed, including data of every single step of both legs. The subject demographics and results from the physical examination are also presented which allows researchers and clinicians to create a self-selected reference group based on specific demographics. Besides the data per individual, data are also presented in age and gender groups. This provides a quick overview of healthy gait parameters which is relevant for use in clinical practice.Three dimensional gait analysis was performed at the Computer Assisted Rehabilitation Environment (CAREN) at the Maastricht University Medical Centre (MUMC+). Subjects walked on the instrumented treadmill surrounded with twelve 3D cameras, three 2D cameras and a virtual industrial environment projected on a 180° screen using the Human Body Lower Limb Model with trunk markers (HBM-II) as biomechanical model [1,2].Subjects walked at comfortable walking speed, 30% slower and 30% faster. These walking speed conditions were applied in a random sequence. Comfortable walking speed was determined using a RAMP protocol: subjects started to walk at 0.5m/s and every second the speed was increased with 0.01 m/s until the preferred speed was reached. The average of three repetitions was considered the comfortable speed. For each walking speed condition, 250 steps were recorded.The 3D gait data was collected using the D-flow CAREN software. For each subject, raw data of each walking speed condition is provided in .mox files, including the output from the model such as subject data (e.g. gender, body mass, knee and ankle width), center of mass (CoM), marker and force data, kinematic data (joint angles) and kinetic data (joint moments, ground reaction forces (GRFs) and joint powers) for each single step of both legs. Unfiltered and filtered data are included. C3D files with raw marker and GRF data were recorded in Nexus (Vicon software, version 2.8.1) and are available upon request.Raw data were processed in Matlab (Mathworks 2016), including quality check, step determination and the exportation of data to .xls files. For each adult and for each walking speed, an .xls file was created, containing spatiotemporal parameters, medio-lateral (ML) and back-forward (BF) margins of stability (MoS), 3D joint angles, anterior-posterior (AP) and vertical GRFs, 3D joint moments and 3D joint power of each step of both legs. Overview files per walking speed condition are created in .xls, presenting the averaged gait parameters (calculated as average over all valid steps) of every subject. The processed data is also presented and visualized per gender for different age groups (18-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, ≥70 years). This can serve as normative data for treadmill based 3D gait analyses in adults, applicable for clinical and research purposes. Data is available at OSF.io (https://osf.io/t72cw/). |
abstract_unstemmed |
A normative gait dataset of 246 healthy adults (122 men / 124 women, range in age 18-91 years, body weight 46.80-116.10 kg, height 1.53-1.97 m and BMI 18.25-35.63 kg/m2) is presented and publicly shared for three walking speed conditions.Raw and processed data are presented for each subject separately and for each walking speed, including data of every single step of both legs. The subject demographics and results from the physical examination are also presented which allows researchers and clinicians to create a self-selected reference group based on specific demographics. Besides the data per individual, data are also presented in age and gender groups. This provides a quick overview of healthy gait parameters which is relevant for use in clinical practice.Three dimensional gait analysis was performed at the Computer Assisted Rehabilitation Environment (CAREN) at the Maastricht University Medical Centre (MUMC+). Subjects walked on the instrumented treadmill surrounded with twelve 3D cameras, three 2D cameras and a virtual industrial environment projected on a 180° screen using the Human Body Lower Limb Model with trunk markers (HBM-II) as biomechanical model [1,2].Subjects walked at comfortable walking speed, 30% slower and 30% faster. These walking speed conditions were applied in a random sequence. Comfortable walking speed was determined using a RAMP protocol: subjects started to walk at 0.5m/s and every second the speed was increased with 0.01 m/s until the preferred speed was reached. The average of three repetitions was considered the comfortable speed. For each walking speed condition, 250 steps were recorded.The 3D gait data was collected using the D-flow CAREN software. For each subject, raw data of each walking speed condition is provided in .mox files, including the output from the model such as subject data (e.g. gender, body mass, knee and ankle width), center of mass (CoM), marker and force data, kinematic data (joint angles) and kinetic data (joint moments, ground reaction forces (GRFs) and joint powers) for each single step of both legs. Unfiltered and filtered data are included. C3D files with raw marker and GRF data were recorded in Nexus (Vicon software, version 2.8.1) and are available upon request.Raw data were processed in Matlab (Mathworks 2016), including quality check, step determination and the exportation of data to .xls files. For each adult and for each walking speed, an .xls file was created, containing spatiotemporal parameters, medio-lateral (ML) and back-forward (BF) margins of stability (MoS), 3D joint angles, anterior-posterior (AP) and vertical GRFs, 3D joint moments and 3D joint power of each step of both legs. Overview files per walking speed condition are created in .xls, presenting the averaged gait parameters (calculated as average over all valid steps) of every subject. The processed data is also presented and visualized per gender for different age groups (18-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, ≥70 years). This can serve as normative data for treadmill based 3D gait analyses in adults, applicable for clinical and research purposes. Data is available at OSF.io (https://osf.io/t72cw/). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality |
url |
https://doi.org/10.1016/j.dib.2024.110230 https://doaj.org/article/275e3a77fc194e988ef86b5903a5248e http://www.sciencedirect.com/science/article/pii/S2352340924002014 https://doaj.org/toc/2352-3409 |
remote_bool |
true |
author2 |
Rik Marcellis Paul Willems Marianne Witlox Kenneth Meijer |
author2Str |
Rik Marcellis Paul Willems Marianne Witlox Kenneth Meijer |
ppnlink |
797838937 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.dib.2024.110230 |
callnumber-a |
R858-859.7 |
up_date |
2024-07-03T14:40:24.182Z |
_version_ |
1803569200296361984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100440665</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414131306.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dib.2024.110230</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100440665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ275e3a77fc194e988ef86b5903a5248e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rachel Senden</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A normative gait dataset of 246 healthy adults (122 men / 124 women, range in age 18-91 years, body weight 46.80-116.10 kg, height 1.53-1.97 m and BMI 18.25-35.63 kg/m2) is presented and publicly shared for three walking speed conditions.Raw and processed data are presented for each subject separately and for each walking speed, including data of every single step of both legs. The subject demographics and results from the physical examination are also presented which allows researchers and clinicians to create a self-selected reference group based on specific demographics. Besides the data per individual, data are also presented in age and gender groups. This provides a quick overview of healthy gait parameters which is relevant for use in clinical practice.Three dimensional gait analysis was performed at the Computer Assisted Rehabilitation Environment (CAREN) at the Maastricht University Medical Centre (MUMC+). Subjects walked on the instrumented treadmill surrounded with twelve 3D cameras, three 2D cameras and a virtual industrial environment projected on a 180° screen using the Human Body Lower Limb Model with trunk markers (HBM-II) as biomechanical model [1,2].Subjects walked at comfortable walking speed, 30% slower and 30% faster. These walking speed conditions were applied in a random sequence. Comfortable walking speed was determined using a RAMP protocol: subjects started to walk at 0.5m/s and every second the speed was increased with 0.01 m/s until the preferred speed was reached. The average of three repetitions was considered the comfortable speed. For each walking speed condition, 250 steps were recorded.The 3D gait data was collected using the D-flow CAREN software. For each subject, raw data of each walking speed condition is provided in .mox files, including the output from the model such as subject data (e.g. gender, body mass, knee and ankle width), center of mass (CoM), marker and force data, kinematic data (joint angles) and kinetic data (joint moments, ground reaction forces (GRFs) and joint powers) for each single step of both legs. Unfiltered and filtered data are included. C3D files with raw marker and GRF data were recorded in Nexus (Vicon software, version 2.8.1) and are available upon request.Raw data were processed in Matlab (Mathworks 2016), including quality check, step determination and the exportation of data to .xls files. For each adult and for each walking speed, an .xls file was created, containing spatiotemporal parameters, medio-lateral (ML) and back-forward (BF) margins of stability (MoS), 3D joint angles, anterior-posterior (AP) and vertical GRFs, 3D joint moments and 3D joint power of each step of both legs. Overview files per walking speed condition are created in .xls, presenting the averaged gait parameters (calculated as average over all valid steps) of every subject. The processed data is also presented and visualized per gender for different age groups (18-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, ≥70 years). This can serve as normative data for treadmill based 3D gait analyses in adults, applicable for clinical and research purposes. Data is available at OSF.io (https://osf.io/t72cw/).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gait analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Healthy adults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CAREN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatiotemporal parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Joint angles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ground reaction forces</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rik Marcellis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paul Willems</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marianne Witlox</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kenneth Meijer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Data in Brief</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">53(2024), Seite 110230-</subfield><subfield code="w">(DE-627)797838937</subfield><subfield code="w">(DE-600)2786545-9</subfield><subfield code="x">23523409</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:110230-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.dib.2024.110230</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/275e3a77fc194e988ef86b5903a5248e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2352340924002014</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2352-3409</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2024</subfield><subfield code="h">110230-</subfield></datafield></record></collection>
|
score |
7.4008837 |