Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task
Recently, multi-agent systems have become widespread as essential technologies for various practical problems. An essential problem in multi-agent systems is collaborative automating picking and delivery operations in warehouses. The warehouse commissioning task involves finding specified items in a...
Ausführliche Beschreibung
Autor*in: |
Satoshi Warita [verfasserIn] Katsuhide Fujita [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Information - MDPI AG, 2010, 15(2024), 3, p 130 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2024 ; number:3, p 130 |
Links: |
---|
DOI / URN: |
10.3390/info15030130 |
---|
Katalog-ID: |
DOAJ100490255 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ100490255 | ||
003 | DE-627 | ||
005 | 20240414095955.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/info15030130 |2 doi | |
035 | |a (DE-627)DOAJ100490255 | ||
035 | |a (DE-599)DOAJe5aa442cab5c480ba47e005f5ef41403 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T58.5-58.64 | |
100 | 0 | |a Satoshi Warita |e verfasserin |4 aut | |
245 | 1 | 0 | |a Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Recently, multi-agent systems have become widespread as essential technologies for various practical problems. An essential problem in multi-agent systems is collaborative automating picking and delivery operations in warehouses. The warehouse commissioning task involves finding specified items in a warehouse and moving them to a specified location using robots. This task is defined as a spatial task-allocation problem (SPATAP) based on a Markov decision process (MDP). It is considered a decentralized multi-agent system rather than a system that manages and optimizes agents in a central manner. Existing research on SPATAP involving modeling the environment as a MDP and applying Monte Carlo tree searches has shown that this approach is efficient. However, there has not been sufficient research into scenarios in which all agents are provided a common plan despite the fact that their actions are decided independently. Thus, previous studies have not considered cooperative robot behaviors with different goals, and the problem where each robot has different goals has not been studied extensively. In terms of the cooperative element, the item exchange approach has not been considered effectively in previous studies. Therefore, in this paper, we focus on the problem of each robot being assigned a different task to optimize the percentage of picking and delivering items in time in social situations. We propose an action-planning method based on the Monte Carlo tree search and an item-exchange method between agents. We also generate a simulator to evaluate the proposed methods. The results of simulations demonstrate that the achievement rate is improved in small- and medium-sized warehouses. However, the achievement rate did not improve in large warehouses because the average distance from the depot to the items increased. | ||
650 | 4 | |a decentralized online planning | |
650 | 4 | |a warehouse commissioning | |
650 | 4 | |a autonomous mobile robot | |
650 | 4 | |a multi-agent system | |
653 | 0 | |a Information technology | |
700 | 0 | |a Katsuhide Fujita |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Information |d MDPI AG, 2010 |g 15(2024), 3, p 130 |w (DE-627)654746753 |w (DE-600)2599790-7 |x 20782489 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2024 |g number:3, p 130 |
856 | 4 | 0 | |u https://doi.org/10.3390/info15030130 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e5aa442cab5c480ba47e005f5ef41403 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2078-2489/15/3/130 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2078-2489 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2024 |e 3, p 130 |
author_variant |
s w sw k f kf |
---|---|
matchkey_str |
article:20782489:2024----::nielnigoatnmumblrbtwtdfeetbetvsna |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
T |
publishDate |
2024 |
allfields |
10.3390/info15030130 doi (DE-627)DOAJ100490255 (DE-599)DOAJe5aa442cab5c480ba47e005f5ef41403 DE-627 ger DE-627 rakwb eng T58.5-58.64 Satoshi Warita verfasserin aut Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, multi-agent systems have become widespread as essential technologies for various practical problems. An essential problem in multi-agent systems is collaborative automating picking and delivery operations in warehouses. The warehouse commissioning task involves finding specified items in a warehouse and moving them to a specified location using robots. This task is defined as a spatial task-allocation problem (SPATAP) based on a Markov decision process (MDP). It is considered a decentralized multi-agent system rather than a system that manages and optimizes agents in a central manner. Existing research on SPATAP involving modeling the environment as a MDP and applying Monte Carlo tree searches has shown that this approach is efficient. However, there has not been sufficient research into scenarios in which all agents are provided a common plan despite the fact that their actions are decided independently. Thus, previous studies have not considered cooperative robot behaviors with different goals, and the problem where each robot has different goals has not been studied extensively. In terms of the cooperative element, the item exchange approach has not been considered effectively in previous studies. Therefore, in this paper, we focus on the problem of each robot being assigned a different task to optimize the percentage of picking and delivering items in time in social situations. We propose an action-planning method based on the Monte Carlo tree search and an item-exchange method between agents. We also generate a simulator to evaluate the proposed methods. The results of simulations demonstrate that the achievement rate is improved in small- and medium-sized warehouses. However, the achievement rate did not improve in large warehouses because the average distance from the depot to the items increased. decentralized online planning warehouse commissioning autonomous mobile robot multi-agent system Information technology Katsuhide Fujita verfasserin aut In Information MDPI AG, 2010 15(2024), 3, p 130 (DE-627)654746753 (DE-600)2599790-7 20782489 nnns volume:15 year:2024 number:3, p 130 https://doi.org/10.3390/info15030130 kostenfrei https://doaj.org/article/e5aa442cab5c480ba47e005f5ef41403 kostenfrei https://www.mdpi.com/2078-2489/15/3/130 kostenfrei https://doaj.org/toc/2078-2489 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2024 3, p 130 |
spelling |
10.3390/info15030130 doi (DE-627)DOAJ100490255 (DE-599)DOAJe5aa442cab5c480ba47e005f5ef41403 DE-627 ger DE-627 rakwb eng T58.5-58.64 Satoshi Warita verfasserin aut Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, multi-agent systems have become widespread as essential technologies for various practical problems. An essential problem in multi-agent systems is collaborative automating picking and delivery operations in warehouses. The warehouse commissioning task involves finding specified items in a warehouse and moving them to a specified location using robots. This task is defined as a spatial task-allocation problem (SPATAP) based on a Markov decision process (MDP). It is considered a decentralized multi-agent system rather than a system that manages and optimizes agents in a central manner. Existing research on SPATAP involving modeling the environment as a MDP and applying Monte Carlo tree searches has shown that this approach is efficient. However, there has not been sufficient research into scenarios in which all agents are provided a common plan despite the fact that their actions are decided independently. Thus, previous studies have not considered cooperative robot behaviors with different goals, and the problem where each robot has different goals has not been studied extensively. In terms of the cooperative element, the item exchange approach has not been considered effectively in previous studies. Therefore, in this paper, we focus on the problem of each robot being assigned a different task to optimize the percentage of picking and delivering items in time in social situations. We propose an action-planning method based on the Monte Carlo tree search and an item-exchange method between agents. We also generate a simulator to evaluate the proposed methods. The results of simulations demonstrate that the achievement rate is improved in small- and medium-sized warehouses. However, the achievement rate did not improve in large warehouses because the average distance from the depot to the items increased. decentralized online planning warehouse commissioning autonomous mobile robot multi-agent system Information technology Katsuhide Fujita verfasserin aut In Information MDPI AG, 2010 15(2024), 3, p 130 (DE-627)654746753 (DE-600)2599790-7 20782489 nnns volume:15 year:2024 number:3, p 130 https://doi.org/10.3390/info15030130 kostenfrei https://doaj.org/article/e5aa442cab5c480ba47e005f5ef41403 kostenfrei https://www.mdpi.com/2078-2489/15/3/130 kostenfrei https://doaj.org/toc/2078-2489 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2024 3, p 130 |
allfields_unstemmed |
10.3390/info15030130 doi (DE-627)DOAJ100490255 (DE-599)DOAJe5aa442cab5c480ba47e005f5ef41403 DE-627 ger DE-627 rakwb eng T58.5-58.64 Satoshi Warita verfasserin aut Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, multi-agent systems have become widespread as essential technologies for various practical problems. An essential problem in multi-agent systems is collaborative automating picking and delivery operations in warehouses. The warehouse commissioning task involves finding specified items in a warehouse and moving them to a specified location using robots. This task is defined as a spatial task-allocation problem (SPATAP) based on a Markov decision process (MDP). It is considered a decentralized multi-agent system rather than a system that manages and optimizes agents in a central manner. Existing research on SPATAP involving modeling the environment as a MDP and applying Monte Carlo tree searches has shown that this approach is efficient. However, there has not been sufficient research into scenarios in which all agents are provided a common plan despite the fact that their actions are decided independently. Thus, previous studies have not considered cooperative robot behaviors with different goals, and the problem where each robot has different goals has not been studied extensively. In terms of the cooperative element, the item exchange approach has not been considered effectively in previous studies. Therefore, in this paper, we focus on the problem of each robot being assigned a different task to optimize the percentage of picking and delivering items in time in social situations. We propose an action-planning method based on the Monte Carlo tree search and an item-exchange method between agents. We also generate a simulator to evaluate the proposed methods. The results of simulations demonstrate that the achievement rate is improved in small- and medium-sized warehouses. However, the achievement rate did not improve in large warehouses because the average distance from the depot to the items increased. decentralized online planning warehouse commissioning autonomous mobile robot multi-agent system Information technology Katsuhide Fujita verfasserin aut In Information MDPI AG, 2010 15(2024), 3, p 130 (DE-627)654746753 (DE-600)2599790-7 20782489 nnns volume:15 year:2024 number:3, p 130 https://doi.org/10.3390/info15030130 kostenfrei https://doaj.org/article/e5aa442cab5c480ba47e005f5ef41403 kostenfrei https://www.mdpi.com/2078-2489/15/3/130 kostenfrei https://doaj.org/toc/2078-2489 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2024 3, p 130 |
allfieldsGer |
10.3390/info15030130 doi (DE-627)DOAJ100490255 (DE-599)DOAJe5aa442cab5c480ba47e005f5ef41403 DE-627 ger DE-627 rakwb eng T58.5-58.64 Satoshi Warita verfasserin aut Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, multi-agent systems have become widespread as essential technologies for various practical problems. An essential problem in multi-agent systems is collaborative automating picking and delivery operations in warehouses. The warehouse commissioning task involves finding specified items in a warehouse and moving them to a specified location using robots. This task is defined as a spatial task-allocation problem (SPATAP) based on a Markov decision process (MDP). It is considered a decentralized multi-agent system rather than a system that manages and optimizes agents in a central manner. Existing research on SPATAP involving modeling the environment as a MDP and applying Monte Carlo tree searches has shown that this approach is efficient. However, there has not been sufficient research into scenarios in which all agents are provided a common plan despite the fact that their actions are decided independently. Thus, previous studies have not considered cooperative robot behaviors with different goals, and the problem where each robot has different goals has not been studied extensively. In terms of the cooperative element, the item exchange approach has not been considered effectively in previous studies. Therefore, in this paper, we focus on the problem of each robot being assigned a different task to optimize the percentage of picking and delivering items in time in social situations. We propose an action-planning method based on the Monte Carlo tree search and an item-exchange method between agents. We also generate a simulator to evaluate the proposed methods. The results of simulations demonstrate that the achievement rate is improved in small- and medium-sized warehouses. However, the achievement rate did not improve in large warehouses because the average distance from the depot to the items increased. decentralized online planning warehouse commissioning autonomous mobile robot multi-agent system Information technology Katsuhide Fujita verfasserin aut In Information MDPI AG, 2010 15(2024), 3, p 130 (DE-627)654746753 (DE-600)2599790-7 20782489 nnns volume:15 year:2024 number:3, p 130 https://doi.org/10.3390/info15030130 kostenfrei https://doaj.org/article/e5aa442cab5c480ba47e005f5ef41403 kostenfrei https://www.mdpi.com/2078-2489/15/3/130 kostenfrei https://doaj.org/toc/2078-2489 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2024 3, p 130 |
allfieldsSound |
10.3390/info15030130 doi (DE-627)DOAJ100490255 (DE-599)DOAJe5aa442cab5c480ba47e005f5ef41403 DE-627 ger DE-627 rakwb eng T58.5-58.64 Satoshi Warita verfasserin aut Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, multi-agent systems have become widespread as essential technologies for various practical problems. An essential problem in multi-agent systems is collaborative automating picking and delivery operations in warehouses. The warehouse commissioning task involves finding specified items in a warehouse and moving them to a specified location using robots. This task is defined as a spatial task-allocation problem (SPATAP) based on a Markov decision process (MDP). It is considered a decentralized multi-agent system rather than a system that manages and optimizes agents in a central manner. Existing research on SPATAP involving modeling the environment as a MDP and applying Monte Carlo tree searches has shown that this approach is efficient. However, there has not been sufficient research into scenarios in which all agents are provided a common plan despite the fact that their actions are decided independently. Thus, previous studies have not considered cooperative robot behaviors with different goals, and the problem where each robot has different goals has not been studied extensively. In terms of the cooperative element, the item exchange approach has not been considered effectively in previous studies. Therefore, in this paper, we focus on the problem of each robot being assigned a different task to optimize the percentage of picking and delivering items in time in social situations. We propose an action-planning method based on the Monte Carlo tree search and an item-exchange method between agents. We also generate a simulator to evaluate the proposed methods. The results of simulations demonstrate that the achievement rate is improved in small- and medium-sized warehouses. However, the achievement rate did not improve in large warehouses because the average distance from the depot to the items increased. decentralized online planning warehouse commissioning autonomous mobile robot multi-agent system Information technology Katsuhide Fujita verfasserin aut In Information MDPI AG, 2010 15(2024), 3, p 130 (DE-627)654746753 (DE-600)2599790-7 20782489 nnns volume:15 year:2024 number:3, p 130 https://doi.org/10.3390/info15030130 kostenfrei https://doaj.org/article/e5aa442cab5c480ba47e005f5ef41403 kostenfrei https://www.mdpi.com/2078-2489/15/3/130 kostenfrei https://doaj.org/toc/2078-2489 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2024 3, p 130 |
language |
English |
source |
In Information 15(2024), 3, p 130 volume:15 year:2024 number:3, p 130 |
sourceStr |
In Information 15(2024), 3, p 130 volume:15 year:2024 number:3, p 130 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
decentralized online planning warehouse commissioning autonomous mobile robot multi-agent system Information technology |
isfreeaccess_bool |
true |
container_title |
Information |
authorswithroles_txt_mv |
Satoshi Warita @@aut@@ Katsuhide Fujita @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
654746753 |
id |
DOAJ100490255 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100490255</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414095955.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/info15030130</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100490255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe5aa442cab5c480ba47e005f5ef41403</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T58.5-58.64</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Satoshi Warita</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recently, multi-agent systems have become widespread as essential technologies for various practical problems. An essential problem in multi-agent systems is collaborative automating picking and delivery operations in warehouses. The warehouse commissioning task involves finding specified items in a warehouse and moving them to a specified location using robots. This task is defined as a spatial task-allocation problem (SPATAP) based on a Markov decision process (MDP). It is considered a decentralized multi-agent system rather than a system that manages and optimizes agents in a central manner. Existing research on SPATAP involving modeling the environment as a MDP and applying Monte Carlo tree searches has shown that this approach is efficient. However, there has not been sufficient research into scenarios in which all agents are provided a common plan despite the fact that their actions are decided independently. Thus, previous studies have not considered cooperative robot behaviors with different goals, and the problem where each robot has different goals has not been studied extensively. In terms of the cooperative element, the item exchange approach has not been considered effectively in previous studies. Therefore, in this paper, we focus on the problem of each robot being assigned a different task to optimize the percentage of picking and delivering items in time in social situations. We propose an action-planning method based on the Monte Carlo tree search and an item-exchange method between agents. We also generate a simulator to evaluate the proposed methods. The results of simulations demonstrate that the achievement rate is improved in small- and medium-sized warehouses. However, the achievement rate did not improve in large warehouses because the average distance from the depot to the items increased.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decentralized online planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">warehouse commissioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autonomous mobile robot</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-agent system</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Information technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katsuhide Fujita</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Information</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">15(2024), 3, p 130</subfield><subfield code="w">(DE-627)654746753</subfield><subfield code="w">(DE-600)2599790-7</subfield><subfield code="x">20782489</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 130</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/info15030130</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e5aa442cab5c480ba47e005f5ef41403</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2078-2489/15/3/130</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2078-2489</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 130</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Satoshi Warita |
spellingShingle |
Satoshi Warita misc T58.5-58.64 misc decentralized online planning misc warehouse commissioning misc autonomous mobile robot misc multi-agent system misc Information technology Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task |
authorStr |
Satoshi Warita |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)654746753 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T58 |
illustrated |
Not Illustrated |
issn |
20782489 |
topic_title |
T58.5-58.64 Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task decentralized online planning warehouse commissioning autonomous mobile robot multi-agent system |
topic |
misc T58.5-58.64 misc decentralized online planning misc warehouse commissioning misc autonomous mobile robot misc multi-agent system misc Information technology |
topic_unstemmed |
misc T58.5-58.64 misc decentralized online planning misc warehouse commissioning misc autonomous mobile robot misc multi-agent system misc Information technology |
topic_browse |
misc T58.5-58.64 misc decentralized online planning misc warehouse commissioning misc autonomous mobile robot misc multi-agent system misc Information technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Information |
hierarchy_parent_id |
654746753 |
hierarchy_top_title |
Information |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)654746753 (DE-600)2599790-7 |
title |
Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task |
ctrlnum |
(DE-627)DOAJ100490255 (DE-599)DOAJe5aa442cab5c480ba47e005f5ef41403 |
title_full |
Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task |
author_sort |
Satoshi Warita |
journal |
Information |
journalStr |
Information |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Satoshi Warita Katsuhide Fujita |
container_volume |
15 |
class |
T58.5-58.64 |
format_se |
Elektronische Aufsätze |
author-letter |
Satoshi Warita |
doi_str_mv |
10.3390/info15030130 |
author2-role |
verfasserin |
title_sort |
online planning for autonomous mobile robots with different objectives in warehouse commissioning task |
callnumber |
T58.5-58.64 |
title_auth |
Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task |
abstract |
Recently, multi-agent systems have become widespread as essential technologies for various practical problems. An essential problem in multi-agent systems is collaborative automating picking and delivery operations in warehouses. The warehouse commissioning task involves finding specified items in a warehouse and moving them to a specified location using robots. This task is defined as a spatial task-allocation problem (SPATAP) based on a Markov decision process (MDP). It is considered a decentralized multi-agent system rather than a system that manages and optimizes agents in a central manner. Existing research on SPATAP involving modeling the environment as a MDP and applying Monte Carlo tree searches has shown that this approach is efficient. However, there has not been sufficient research into scenarios in which all agents are provided a common plan despite the fact that their actions are decided independently. Thus, previous studies have not considered cooperative robot behaviors with different goals, and the problem where each robot has different goals has not been studied extensively. In terms of the cooperative element, the item exchange approach has not been considered effectively in previous studies. Therefore, in this paper, we focus on the problem of each robot being assigned a different task to optimize the percentage of picking and delivering items in time in social situations. We propose an action-planning method based on the Monte Carlo tree search and an item-exchange method between agents. We also generate a simulator to evaluate the proposed methods. The results of simulations demonstrate that the achievement rate is improved in small- and medium-sized warehouses. However, the achievement rate did not improve in large warehouses because the average distance from the depot to the items increased. |
abstractGer |
Recently, multi-agent systems have become widespread as essential technologies for various practical problems. An essential problem in multi-agent systems is collaborative automating picking and delivery operations in warehouses. The warehouse commissioning task involves finding specified items in a warehouse and moving them to a specified location using robots. This task is defined as a spatial task-allocation problem (SPATAP) based on a Markov decision process (MDP). It is considered a decentralized multi-agent system rather than a system that manages and optimizes agents in a central manner. Existing research on SPATAP involving modeling the environment as a MDP and applying Monte Carlo tree searches has shown that this approach is efficient. However, there has not been sufficient research into scenarios in which all agents are provided a common plan despite the fact that their actions are decided independently. Thus, previous studies have not considered cooperative robot behaviors with different goals, and the problem where each robot has different goals has not been studied extensively. In terms of the cooperative element, the item exchange approach has not been considered effectively in previous studies. Therefore, in this paper, we focus on the problem of each robot being assigned a different task to optimize the percentage of picking and delivering items in time in social situations. We propose an action-planning method based on the Monte Carlo tree search and an item-exchange method between agents. We also generate a simulator to evaluate the proposed methods. The results of simulations demonstrate that the achievement rate is improved in small- and medium-sized warehouses. However, the achievement rate did not improve in large warehouses because the average distance from the depot to the items increased. |
abstract_unstemmed |
Recently, multi-agent systems have become widespread as essential technologies for various practical problems. An essential problem in multi-agent systems is collaborative automating picking and delivery operations in warehouses. The warehouse commissioning task involves finding specified items in a warehouse and moving them to a specified location using robots. This task is defined as a spatial task-allocation problem (SPATAP) based on a Markov decision process (MDP). It is considered a decentralized multi-agent system rather than a system that manages and optimizes agents in a central manner. Existing research on SPATAP involving modeling the environment as a MDP and applying Monte Carlo tree searches has shown that this approach is efficient. However, there has not been sufficient research into scenarios in which all agents are provided a common plan despite the fact that their actions are decided independently. Thus, previous studies have not considered cooperative robot behaviors with different goals, and the problem where each robot has different goals has not been studied extensively. In terms of the cooperative element, the item exchange approach has not been considered effectively in previous studies. Therefore, in this paper, we focus on the problem of each robot being assigned a different task to optimize the percentage of picking and delivering items in time in social situations. We propose an action-planning method based on the Monte Carlo tree search and an item-exchange method between agents. We also generate a simulator to evaluate the proposed methods. The results of simulations demonstrate that the achievement rate is improved in small- and medium-sized warehouses. However, the achievement rate did not improve in large warehouses because the average distance from the depot to the items increased. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 130 |
title_short |
Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task |
url |
https://doi.org/10.3390/info15030130 https://doaj.org/article/e5aa442cab5c480ba47e005f5ef41403 https://www.mdpi.com/2078-2489/15/3/130 https://doaj.org/toc/2078-2489 |
remote_bool |
true |
author2 |
Katsuhide Fujita |
author2Str |
Katsuhide Fujita |
ppnlink |
654746753 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/info15030130 |
callnumber-a |
T58.5-58.64 |
up_date |
2024-07-03T14:59:24.129Z |
_version_ |
1803570395619524608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100490255</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414095955.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/info15030130</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100490255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe5aa442cab5c480ba47e005f5ef41403</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T58.5-58.64</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Satoshi Warita</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Online Planning for Autonomous Mobile Robots with Different Objectives in Warehouse Commissioning Task</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recently, multi-agent systems have become widespread as essential technologies for various practical problems. An essential problem in multi-agent systems is collaborative automating picking and delivery operations in warehouses. The warehouse commissioning task involves finding specified items in a warehouse and moving them to a specified location using robots. This task is defined as a spatial task-allocation problem (SPATAP) based on a Markov decision process (MDP). It is considered a decentralized multi-agent system rather than a system that manages and optimizes agents in a central manner. Existing research on SPATAP involving modeling the environment as a MDP and applying Monte Carlo tree searches has shown that this approach is efficient. However, there has not been sufficient research into scenarios in which all agents are provided a common plan despite the fact that their actions are decided independently. Thus, previous studies have not considered cooperative robot behaviors with different goals, and the problem where each robot has different goals has not been studied extensively. In terms of the cooperative element, the item exchange approach has not been considered effectively in previous studies. Therefore, in this paper, we focus on the problem of each robot being assigned a different task to optimize the percentage of picking and delivering items in time in social situations. We propose an action-planning method based on the Monte Carlo tree search and an item-exchange method between agents. We also generate a simulator to evaluate the proposed methods. The results of simulations demonstrate that the achievement rate is improved in small- and medium-sized warehouses. However, the achievement rate did not improve in large warehouses because the average distance from the depot to the items increased.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decentralized online planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">warehouse commissioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autonomous mobile robot</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-agent system</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Information technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katsuhide Fujita</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Information</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">15(2024), 3, p 130</subfield><subfield code="w">(DE-627)654746753</subfield><subfield code="w">(DE-600)2599790-7</subfield><subfield code="x">20782489</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 130</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/info15030130</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e5aa442cab5c480ba47e005f5ef41403</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2078-2489/15/3/130</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2078-2489</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 130</subfield></datafield></record></collection>
|
score |
7.401904 |