Computing Power and Sample Size for the False Discovery Rate in Multiple Applications
The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-re...
Ausführliche Beschreibung
Autor*in: |
Yonghui Ni [verfasserIn] Anna Eames Seffernick [verfasserIn] Arzu Onar-Thomas [verfasserIn] Stanley B. Pounds [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Genes - MDPI AG, 2010, 15(2024), 3, p 344 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2024 ; number:3, p 344 |
Links: |
---|
DOI / URN: |
10.3390/genes15030344 |
---|
Katalog-ID: |
DOAJ100501648 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ100501648 | ||
003 | DE-627 | ||
005 | 20240414100115.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/genes15030344 |2 doi | |
035 | |a (DE-627)DOAJ100501648 | ||
035 | |a (DE-599)DOAJ298b4d368a384ca1b6cce69fe8aa8fe3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH426-470 | |
100 | 0 | |a Yonghui Ni |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computing Power and Sample Size for the False Discovery Rate in Multiple Applications |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a <i<p</i<-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package <i<FDRsamplesize2</i<, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The <i<FDRsamplesize2</i< package is available on CRAN. | ||
650 | 4 | |a false discovery rate | |
650 | 4 | |a power | |
650 | 4 | |a sample size | |
650 | 4 | |a multiple testing | |
650 | 4 | |a proportion of true null hypotheses | |
653 | 0 | |a Genetics | |
700 | 0 | |a Anna Eames Seffernick |e verfasserin |4 aut | |
700 | 0 | |a Arzu Onar-Thomas |e verfasserin |4 aut | |
700 | 0 | |a Stanley B. Pounds |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Genes |d MDPI AG, 2010 |g 15(2024), 3, p 344 |w (DE-627)614096537 |w (DE-600)2527218-4 |x 20734425 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2024 |g number:3, p 344 |
856 | 4 | 0 | |u https://doi.org/10.3390/genes15030344 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/298b4d368a384ca1b6cce69fe8aa8fe3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4425/15/3/344 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4425 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2024 |e 3, p 344 |
author_variant |
y n yn a e s aes a o t aot s b p sbp |
---|---|
matchkey_str |
article:20734425:2024----::optnpwrnsmlszfrhfleicvrrtim |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QH |
publishDate |
2024 |
allfields |
10.3390/genes15030344 doi (DE-627)DOAJ100501648 (DE-599)DOAJ298b4d368a384ca1b6cce69fe8aa8fe3 DE-627 ger DE-627 rakwb eng QH426-470 Yonghui Ni verfasserin aut Computing Power and Sample Size for the False Discovery Rate in Multiple Applications 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a <i<p</i<-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package <i<FDRsamplesize2</i<, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The <i<FDRsamplesize2</i< package is available on CRAN. false discovery rate power sample size multiple testing proportion of true null hypotheses Genetics Anna Eames Seffernick verfasserin aut Arzu Onar-Thomas verfasserin aut Stanley B. Pounds verfasserin aut In Genes MDPI AG, 2010 15(2024), 3, p 344 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:15 year:2024 number:3, p 344 https://doi.org/10.3390/genes15030344 kostenfrei https://doaj.org/article/298b4d368a384ca1b6cce69fe8aa8fe3 kostenfrei https://www.mdpi.com/2073-4425/15/3/344 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2024 3, p 344 |
spelling |
10.3390/genes15030344 doi (DE-627)DOAJ100501648 (DE-599)DOAJ298b4d368a384ca1b6cce69fe8aa8fe3 DE-627 ger DE-627 rakwb eng QH426-470 Yonghui Ni verfasserin aut Computing Power and Sample Size for the False Discovery Rate in Multiple Applications 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a <i<p</i<-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package <i<FDRsamplesize2</i<, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The <i<FDRsamplesize2</i< package is available on CRAN. false discovery rate power sample size multiple testing proportion of true null hypotheses Genetics Anna Eames Seffernick verfasserin aut Arzu Onar-Thomas verfasserin aut Stanley B. Pounds verfasserin aut In Genes MDPI AG, 2010 15(2024), 3, p 344 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:15 year:2024 number:3, p 344 https://doi.org/10.3390/genes15030344 kostenfrei https://doaj.org/article/298b4d368a384ca1b6cce69fe8aa8fe3 kostenfrei https://www.mdpi.com/2073-4425/15/3/344 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2024 3, p 344 |
allfields_unstemmed |
10.3390/genes15030344 doi (DE-627)DOAJ100501648 (DE-599)DOAJ298b4d368a384ca1b6cce69fe8aa8fe3 DE-627 ger DE-627 rakwb eng QH426-470 Yonghui Ni verfasserin aut Computing Power and Sample Size for the False Discovery Rate in Multiple Applications 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a <i<p</i<-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package <i<FDRsamplesize2</i<, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The <i<FDRsamplesize2</i< package is available on CRAN. false discovery rate power sample size multiple testing proportion of true null hypotheses Genetics Anna Eames Seffernick verfasserin aut Arzu Onar-Thomas verfasserin aut Stanley B. Pounds verfasserin aut In Genes MDPI AG, 2010 15(2024), 3, p 344 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:15 year:2024 number:3, p 344 https://doi.org/10.3390/genes15030344 kostenfrei https://doaj.org/article/298b4d368a384ca1b6cce69fe8aa8fe3 kostenfrei https://www.mdpi.com/2073-4425/15/3/344 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2024 3, p 344 |
allfieldsGer |
10.3390/genes15030344 doi (DE-627)DOAJ100501648 (DE-599)DOAJ298b4d368a384ca1b6cce69fe8aa8fe3 DE-627 ger DE-627 rakwb eng QH426-470 Yonghui Ni verfasserin aut Computing Power and Sample Size for the False Discovery Rate in Multiple Applications 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a <i<p</i<-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package <i<FDRsamplesize2</i<, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The <i<FDRsamplesize2</i< package is available on CRAN. false discovery rate power sample size multiple testing proportion of true null hypotheses Genetics Anna Eames Seffernick verfasserin aut Arzu Onar-Thomas verfasserin aut Stanley B. Pounds verfasserin aut In Genes MDPI AG, 2010 15(2024), 3, p 344 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:15 year:2024 number:3, p 344 https://doi.org/10.3390/genes15030344 kostenfrei https://doaj.org/article/298b4d368a384ca1b6cce69fe8aa8fe3 kostenfrei https://www.mdpi.com/2073-4425/15/3/344 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2024 3, p 344 |
allfieldsSound |
10.3390/genes15030344 doi (DE-627)DOAJ100501648 (DE-599)DOAJ298b4d368a384ca1b6cce69fe8aa8fe3 DE-627 ger DE-627 rakwb eng QH426-470 Yonghui Ni verfasserin aut Computing Power and Sample Size for the False Discovery Rate in Multiple Applications 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a <i<p</i<-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package <i<FDRsamplesize2</i<, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The <i<FDRsamplesize2</i< package is available on CRAN. false discovery rate power sample size multiple testing proportion of true null hypotheses Genetics Anna Eames Seffernick verfasserin aut Arzu Onar-Thomas verfasserin aut Stanley B. Pounds verfasserin aut In Genes MDPI AG, 2010 15(2024), 3, p 344 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:15 year:2024 number:3, p 344 https://doi.org/10.3390/genes15030344 kostenfrei https://doaj.org/article/298b4d368a384ca1b6cce69fe8aa8fe3 kostenfrei https://www.mdpi.com/2073-4425/15/3/344 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2024 3, p 344 |
language |
English |
source |
In Genes 15(2024), 3, p 344 volume:15 year:2024 number:3, p 344 |
sourceStr |
In Genes 15(2024), 3, p 344 volume:15 year:2024 number:3, p 344 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
false discovery rate power sample size multiple testing proportion of true null hypotheses Genetics |
isfreeaccess_bool |
true |
container_title |
Genes |
authorswithroles_txt_mv |
Yonghui Ni @@aut@@ Anna Eames Seffernick @@aut@@ Arzu Onar-Thomas @@aut@@ Stanley B. Pounds @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
614096537 |
id |
DOAJ100501648 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100501648</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414100115.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/genes15030344</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100501648</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ298b4d368a384ca1b6cce69fe8aa8fe3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yonghui Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computing Power and Sample Size for the False Discovery Rate in Multiple Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a <i<p</i<-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package <i<FDRsamplesize2</i<, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The <i<FDRsamplesize2</i< package is available on CRAN.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">false discovery rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sample size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proportion of true null hypotheses</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Eames Seffernick</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arzu Onar-Thomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stanley B. Pounds</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genes</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">15(2024), 3, p 344</subfield><subfield code="w">(DE-627)614096537</subfield><subfield code="w">(DE-600)2527218-4</subfield><subfield code="x">20734425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 344</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/genes15030344</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/298b4d368a384ca1b6cce69fe8aa8fe3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4425/15/3/344</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 344</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yonghui Ni |
spellingShingle |
Yonghui Ni misc QH426-470 misc false discovery rate misc power misc sample size misc multiple testing misc proportion of true null hypotheses misc Genetics Computing Power and Sample Size for the False Discovery Rate in Multiple Applications |
authorStr |
Yonghui Ni |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614096537 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH426-470 |
illustrated |
Not Illustrated |
issn |
20734425 |
topic_title |
QH426-470 Computing Power and Sample Size for the False Discovery Rate in Multiple Applications false discovery rate power sample size multiple testing proportion of true null hypotheses |
topic |
misc QH426-470 misc false discovery rate misc power misc sample size misc multiple testing misc proportion of true null hypotheses misc Genetics |
topic_unstemmed |
misc QH426-470 misc false discovery rate misc power misc sample size misc multiple testing misc proportion of true null hypotheses misc Genetics |
topic_browse |
misc QH426-470 misc false discovery rate misc power misc sample size misc multiple testing misc proportion of true null hypotheses misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genes |
hierarchy_parent_id |
614096537 |
hierarchy_top_title |
Genes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614096537 (DE-600)2527218-4 |
title |
Computing Power and Sample Size for the False Discovery Rate in Multiple Applications |
ctrlnum |
(DE-627)DOAJ100501648 (DE-599)DOAJ298b4d368a384ca1b6cce69fe8aa8fe3 |
title_full |
Computing Power and Sample Size for the False Discovery Rate in Multiple Applications |
author_sort |
Yonghui Ni |
journal |
Genes |
journalStr |
Genes |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Yonghui Ni Anna Eames Seffernick Arzu Onar-Thomas Stanley B. Pounds |
container_volume |
15 |
class |
QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Yonghui Ni |
doi_str_mv |
10.3390/genes15030344 |
author2-role |
verfasserin |
title_sort |
computing power and sample size for the false discovery rate in multiple applications |
callnumber |
QH426-470 |
title_auth |
Computing Power and Sample Size for the False Discovery Rate in Multiple Applications |
abstract |
The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a <i<p</i<-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package <i<FDRsamplesize2</i<, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The <i<FDRsamplesize2</i< package is available on CRAN. |
abstractGer |
The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a <i<p</i<-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package <i<FDRsamplesize2</i<, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The <i<FDRsamplesize2</i< package is available on CRAN. |
abstract_unstemmed |
The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a <i<p</i<-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package <i<FDRsamplesize2</i<, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The <i<FDRsamplesize2</i< package is available on CRAN. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 344 |
title_short |
Computing Power and Sample Size for the False Discovery Rate in Multiple Applications |
url |
https://doi.org/10.3390/genes15030344 https://doaj.org/article/298b4d368a384ca1b6cce69fe8aa8fe3 https://www.mdpi.com/2073-4425/15/3/344 https://doaj.org/toc/2073-4425 |
remote_bool |
true |
author2 |
Anna Eames Seffernick Arzu Onar-Thomas Stanley B. Pounds |
author2Str |
Anna Eames Seffernick Arzu Onar-Thomas Stanley B. Pounds |
ppnlink |
614096537 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/genes15030344 |
callnumber-a |
QH426-470 |
up_date |
2024-07-03T15:03:50.353Z |
_version_ |
1803570674772475904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100501648</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414100115.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/genes15030344</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100501648</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ298b4d368a384ca1b6cce69fe8aa8fe3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yonghui Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computing Power and Sample Size for the False Discovery Rate in Multiple Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a <i<p</i<-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package <i<FDRsamplesize2</i<, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The <i<FDRsamplesize2</i< package is available on CRAN.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">false discovery rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sample size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proportion of true null hypotheses</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Eames Seffernick</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arzu Onar-Thomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stanley B. Pounds</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genes</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">15(2024), 3, p 344</subfield><subfield code="w">(DE-627)614096537</subfield><subfield code="w">(DE-600)2527218-4</subfield><subfield code="x">20734425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 344</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/genes15030344</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/298b4d368a384ca1b6cce69fe8aa8fe3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4425/15/3/344</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 344</subfield></datafield></record></collection>
|
score |
7.401515 |