A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins
In this paper, a Newton-type iterative scheme for solving nonlinear systems is designed. In the process of proving the convergence order, we use the higher derivatives of the function and show that the convergence order of this iterative method is six. In order to avoid the influence of the existenc...
Ausführliche Beschreibung
Autor*in: |
Xiaofeng Wang [verfasserIn] Wenshuo Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Fractal and Fractional - MDPI AG, 2018, 8(2024), 3, p 133 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2024 ; number:3, p 133 |
Links: |
---|
DOI / URN: |
10.3390/fractalfract8030133 |
---|
Katalog-ID: |
DOAJ100505074 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ100505074 | ||
003 | DE-627 | ||
005 | 20240414100139.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/fractalfract8030133 |2 doi | |
035 | |a (DE-627)DOAJ100505074 | ||
035 | |a (DE-599)DOAJ918a8a4ee7f34958a5cf0544dacb3c92 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC310.15-319 | |
050 | 0 | |a QA1-939 | |
050 | 0 | |a QA299.6-433 | |
100 | 0 | |a Xiaofeng Wang |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, a Newton-type iterative scheme for solving nonlinear systems is designed. In the process of proving the convergence order, we use the higher derivatives of the function and show that the convergence order of this iterative method is six. In order to avoid the influence of the existence of higher derivatives on the proof of convergence, we mainly discuss the convergence of this iterative method under weak conditions. In Banach space, the local convergence of the iterative scheme is established by using the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<ω</mi<</semantics<</math<</inline-formula<-continuity condition of the first-order Fréchet derivative, and the application range of the iterative method is extended. In addition, we also give the radius of a convergence sphere and the uniqueness of its solution. Finally, the superiority of the new iterative method is illustrated by drawing attractive basins and comparing them with the average iterative times of other same-order iterative methods. Additionally, we utilize this iterative method to solve both nonlinear systems and nonlinear matrix sign functions. The applicability of this study is demonstrated by solving practical chemical problems. | ||
650 | 4 | |a iterative method | |
650 | 4 | |a nonlinear system | |
650 | 4 | |a Banach space | |
650 | 4 | |a local convergence | |
650 | 4 | |a attractive basin | |
650 | 4 | |a fractal | |
653 | 0 | |a Thermodynamics | |
653 | 0 | |a Mathematics | |
653 | 0 | |a Analysis | |
700 | 0 | |a Wenshuo Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Fractal and Fractional |d MDPI AG, 2018 |g 8(2024), 3, p 133 |w (DE-627)897435656 |w (DE-600)2905371-7 |x 25043110 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2024 |g number:3, p 133 |
856 | 4 | 0 | |u https://doi.org/10.3390/fractalfract8030133 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/918a8a4ee7f34958a5cf0544dacb3c92 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2504-3110/8/3/133 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2504-3110 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2024 |e 3, p 133 |
author_variant |
x w xw w l wl |
---|---|
matchkey_str |
article:25043110:2024----::casfitodrtrtvmtososligolnasseshcnegne |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QC |
publishDate |
2024 |
allfields |
10.3390/fractalfract8030133 doi (DE-627)DOAJ100505074 (DE-599)DOAJ918a8a4ee7f34958a5cf0544dacb3c92 DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Xiaofeng Wang verfasserin aut A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a Newton-type iterative scheme for solving nonlinear systems is designed. In the process of proving the convergence order, we use the higher derivatives of the function and show that the convergence order of this iterative method is six. In order to avoid the influence of the existence of higher derivatives on the proof of convergence, we mainly discuss the convergence of this iterative method under weak conditions. In Banach space, the local convergence of the iterative scheme is established by using the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<ω</mi<</semantics<</math<</inline-formula<-continuity condition of the first-order Fréchet derivative, and the application range of the iterative method is extended. In addition, we also give the radius of a convergence sphere and the uniqueness of its solution. Finally, the superiority of the new iterative method is illustrated by drawing attractive basins and comparing them with the average iterative times of other same-order iterative methods. Additionally, we utilize this iterative method to solve both nonlinear systems and nonlinear matrix sign functions. The applicability of this study is demonstrated by solving practical chemical problems. iterative method nonlinear system Banach space local convergence attractive basin fractal Thermodynamics Mathematics Analysis Wenshuo Li verfasserin aut In Fractal and Fractional MDPI AG, 2018 8(2024), 3, p 133 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:8 year:2024 number:3, p 133 https://doi.org/10.3390/fractalfract8030133 kostenfrei https://doaj.org/article/918a8a4ee7f34958a5cf0544dacb3c92 kostenfrei https://www.mdpi.com/2504-3110/8/3/133 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2024 3, p 133 |
spelling |
10.3390/fractalfract8030133 doi (DE-627)DOAJ100505074 (DE-599)DOAJ918a8a4ee7f34958a5cf0544dacb3c92 DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Xiaofeng Wang verfasserin aut A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a Newton-type iterative scheme for solving nonlinear systems is designed. In the process of proving the convergence order, we use the higher derivatives of the function and show that the convergence order of this iterative method is six. In order to avoid the influence of the existence of higher derivatives on the proof of convergence, we mainly discuss the convergence of this iterative method under weak conditions. In Banach space, the local convergence of the iterative scheme is established by using the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<ω</mi<</semantics<</math<</inline-formula<-continuity condition of the first-order Fréchet derivative, and the application range of the iterative method is extended. In addition, we also give the radius of a convergence sphere and the uniqueness of its solution. Finally, the superiority of the new iterative method is illustrated by drawing attractive basins and comparing them with the average iterative times of other same-order iterative methods. Additionally, we utilize this iterative method to solve both nonlinear systems and nonlinear matrix sign functions. The applicability of this study is demonstrated by solving practical chemical problems. iterative method nonlinear system Banach space local convergence attractive basin fractal Thermodynamics Mathematics Analysis Wenshuo Li verfasserin aut In Fractal and Fractional MDPI AG, 2018 8(2024), 3, p 133 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:8 year:2024 number:3, p 133 https://doi.org/10.3390/fractalfract8030133 kostenfrei https://doaj.org/article/918a8a4ee7f34958a5cf0544dacb3c92 kostenfrei https://www.mdpi.com/2504-3110/8/3/133 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2024 3, p 133 |
allfields_unstemmed |
10.3390/fractalfract8030133 doi (DE-627)DOAJ100505074 (DE-599)DOAJ918a8a4ee7f34958a5cf0544dacb3c92 DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Xiaofeng Wang verfasserin aut A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a Newton-type iterative scheme for solving nonlinear systems is designed. In the process of proving the convergence order, we use the higher derivatives of the function and show that the convergence order of this iterative method is six. In order to avoid the influence of the existence of higher derivatives on the proof of convergence, we mainly discuss the convergence of this iterative method under weak conditions. In Banach space, the local convergence of the iterative scheme is established by using the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<ω</mi<</semantics<</math<</inline-formula<-continuity condition of the first-order Fréchet derivative, and the application range of the iterative method is extended. In addition, we also give the radius of a convergence sphere and the uniqueness of its solution. Finally, the superiority of the new iterative method is illustrated by drawing attractive basins and comparing them with the average iterative times of other same-order iterative methods. Additionally, we utilize this iterative method to solve both nonlinear systems and nonlinear matrix sign functions. The applicability of this study is demonstrated by solving practical chemical problems. iterative method nonlinear system Banach space local convergence attractive basin fractal Thermodynamics Mathematics Analysis Wenshuo Li verfasserin aut In Fractal and Fractional MDPI AG, 2018 8(2024), 3, p 133 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:8 year:2024 number:3, p 133 https://doi.org/10.3390/fractalfract8030133 kostenfrei https://doaj.org/article/918a8a4ee7f34958a5cf0544dacb3c92 kostenfrei https://www.mdpi.com/2504-3110/8/3/133 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2024 3, p 133 |
allfieldsGer |
10.3390/fractalfract8030133 doi (DE-627)DOAJ100505074 (DE-599)DOAJ918a8a4ee7f34958a5cf0544dacb3c92 DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Xiaofeng Wang verfasserin aut A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a Newton-type iterative scheme for solving nonlinear systems is designed. In the process of proving the convergence order, we use the higher derivatives of the function and show that the convergence order of this iterative method is six. In order to avoid the influence of the existence of higher derivatives on the proof of convergence, we mainly discuss the convergence of this iterative method under weak conditions. In Banach space, the local convergence of the iterative scheme is established by using the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<ω</mi<</semantics<</math<</inline-formula<-continuity condition of the first-order Fréchet derivative, and the application range of the iterative method is extended. In addition, we also give the radius of a convergence sphere and the uniqueness of its solution. Finally, the superiority of the new iterative method is illustrated by drawing attractive basins and comparing them with the average iterative times of other same-order iterative methods. Additionally, we utilize this iterative method to solve both nonlinear systems and nonlinear matrix sign functions. The applicability of this study is demonstrated by solving practical chemical problems. iterative method nonlinear system Banach space local convergence attractive basin fractal Thermodynamics Mathematics Analysis Wenshuo Li verfasserin aut In Fractal and Fractional MDPI AG, 2018 8(2024), 3, p 133 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:8 year:2024 number:3, p 133 https://doi.org/10.3390/fractalfract8030133 kostenfrei https://doaj.org/article/918a8a4ee7f34958a5cf0544dacb3c92 kostenfrei https://www.mdpi.com/2504-3110/8/3/133 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2024 3, p 133 |
allfieldsSound |
10.3390/fractalfract8030133 doi (DE-627)DOAJ100505074 (DE-599)DOAJ918a8a4ee7f34958a5cf0544dacb3c92 DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Xiaofeng Wang verfasserin aut A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a Newton-type iterative scheme for solving nonlinear systems is designed. In the process of proving the convergence order, we use the higher derivatives of the function and show that the convergence order of this iterative method is six. In order to avoid the influence of the existence of higher derivatives on the proof of convergence, we mainly discuss the convergence of this iterative method under weak conditions. In Banach space, the local convergence of the iterative scheme is established by using the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<ω</mi<</semantics<</math<</inline-formula<-continuity condition of the first-order Fréchet derivative, and the application range of the iterative method is extended. In addition, we also give the radius of a convergence sphere and the uniqueness of its solution. Finally, the superiority of the new iterative method is illustrated by drawing attractive basins and comparing them with the average iterative times of other same-order iterative methods. Additionally, we utilize this iterative method to solve both nonlinear systems and nonlinear matrix sign functions. The applicability of this study is demonstrated by solving practical chemical problems. iterative method nonlinear system Banach space local convergence attractive basin fractal Thermodynamics Mathematics Analysis Wenshuo Li verfasserin aut In Fractal and Fractional MDPI AG, 2018 8(2024), 3, p 133 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:8 year:2024 number:3, p 133 https://doi.org/10.3390/fractalfract8030133 kostenfrei https://doaj.org/article/918a8a4ee7f34958a5cf0544dacb3c92 kostenfrei https://www.mdpi.com/2504-3110/8/3/133 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2024 3, p 133 |
language |
English |
source |
In Fractal and Fractional 8(2024), 3, p 133 volume:8 year:2024 number:3, p 133 |
sourceStr |
In Fractal and Fractional 8(2024), 3, p 133 volume:8 year:2024 number:3, p 133 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
iterative method nonlinear system Banach space local convergence attractive basin fractal Thermodynamics Mathematics Analysis |
isfreeaccess_bool |
true |
container_title |
Fractal and Fractional |
authorswithroles_txt_mv |
Xiaofeng Wang @@aut@@ Wenshuo Li @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
897435656 |
id |
DOAJ100505074 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100505074</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414100139.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/fractalfract8030133</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100505074</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ918a8a4ee7f34958a5cf0544dacb3c92</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC310.15-319</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaofeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a Newton-type iterative scheme for solving nonlinear systems is designed. In the process of proving the convergence order, we use the higher derivatives of the function and show that the convergence order of this iterative method is six. In order to avoid the influence of the existence of higher derivatives on the proof of convergence, we mainly discuss the convergence of this iterative method under weak conditions. In Banach space, the local convergence of the iterative scheme is established by using the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<ω</mi<</semantics<</math<</inline-formula<-continuity condition of the first-order Fréchet derivative, and the application range of the iterative method is extended. In addition, we also give the radius of a convergence sphere and the uniqueness of its solution. Finally, the superiority of the new iterative method is illustrated by drawing attractive basins and comparing them with the average iterative times of other same-order iterative methods. Additionally, we utilize this iterative method to solve both nonlinear systems and nonlinear matrix sign functions. The applicability of this study is demonstrated by solving practical chemical problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iterative method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attractive basin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractal</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenshuo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Fractal and Fractional</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">8(2024), 3, p 133</subfield><subfield code="w">(DE-627)897435656</subfield><subfield code="w">(DE-600)2905371-7</subfield><subfield code="x">25043110</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 133</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/fractalfract8030133</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/918a8a4ee7f34958a5cf0544dacb3c92</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-3110/8/3/133</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-3110</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 133</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Xiaofeng Wang |
spellingShingle |
Xiaofeng Wang misc QC310.15-319 misc QA1-939 misc QA299.6-433 misc iterative method misc nonlinear system misc Banach space misc local convergence misc attractive basin misc fractal misc Thermodynamics misc Mathematics misc Analysis A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins |
authorStr |
Xiaofeng Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)897435656 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC310 |
illustrated |
Not Illustrated |
issn |
25043110 |
topic_title |
QC310.15-319 QA1-939 QA299.6-433 A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins iterative method nonlinear system Banach space local convergence attractive basin fractal |
topic |
misc QC310.15-319 misc QA1-939 misc QA299.6-433 misc iterative method misc nonlinear system misc Banach space misc local convergence misc attractive basin misc fractal misc Thermodynamics misc Mathematics misc Analysis |
topic_unstemmed |
misc QC310.15-319 misc QA1-939 misc QA299.6-433 misc iterative method misc nonlinear system misc Banach space misc local convergence misc attractive basin misc fractal misc Thermodynamics misc Mathematics misc Analysis |
topic_browse |
misc QC310.15-319 misc QA1-939 misc QA299.6-433 misc iterative method misc nonlinear system misc Banach space misc local convergence misc attractive basin misc fractal misc Thermodynamics misc Mathematics misc Analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Fractal and Fractional |
hierarchy_parent_id |
897435656 |
hierarchy_top_title |
Fractal and Fractional |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)897435656 (DE-600)2905371-7 |
title |
A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins |
ctrlnum |
(DE-627)DOAJ100505074 (DE-599)DOAJ918a8a4ee7f34958a5cf0544dacb3c92 |
title_full |
A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins |
author_sort |
Xiaofeng Wang |
journal |
Fractal and Fractional |
journalStr |
Fractal and Fractional |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Xiaofeng Wang Wenshuo Li |
container_volume |
8 |
class |
QC310.15-319 QA1-939 QA299.6-433 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaofeng Wang |
doi_str_mv |
10.3390/fractalfract8030133 |
author2-role |
verfasserin |
title_sort |
class of sixth-order iterative methods for solving nonlinear systems: the convergence and fractals of attractive basins |
callnumber |
QC310.15-319 |
title_auth |
A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins |
abstract |
In this paper, a Newton-type iterative scheme for solving nonlinear systems is designed. In the process of proving the convergence order, we use the higher derivatives of the function and show that the convergence order of this iterative method is six. In order to avoid the influence of the existence of higher derivatives on the proof of convergence, we mainly discuss the convergence of this iterative method under weak conditions. In Banach space, the local convergence of the iterative scheme is established by using the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<ω</mi<</semantics<</math<</inline-formula<-continuity condition of the first-order Fréchet derivative, and the application range of the iterative method is extended. In addition, we also give the radius of a convergence sphere and the uniqueness of its solution. Finally, the superiority of the new iterative method is illustrated by drawing attractive basins and comparing them with the average iterative times of other same-order iterative methods. Additionally, we utilize this iterative method to solve both nonlinear systems and nonlinear matrix sign functions. The applicability of this study is demonstrated by solving practical chemical problems. |
abstractGer |
In this paper, a Newton-type iterative scheme for solving nonlinear systems is designed. In the process of proving the convergence order, we use the higher derivatives of the function and show that the convergence order of this iterative method is six. In order to avoid the influence of the existence of higher derivatives on the proof of convergence, we mainly discuss the convergence of this iterative method under weak conditions. In Banach space, the local convergence of the iterative scheme is established by using the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<ω</mi<</semantics<</math<</inline-formula<-continuity condition of the first-order Fréchet derivative, and the application range of the iterative method is extended. In addition, we also give the radius of a convergence sphere and the uniqueness of its solution. Finally, the superiority of the new iterative method is illustrated by drawing attractive basins and comparing them with the average iterative times of other same-order iterative methods. Additionally, we utilize this iterative method to solve both nonlinear systems and nonlinear matrix sign functions. The applicability of this study is demonstrated by solving practical chemical problems. |
abstract_unstemmed |
In this paper, a Newton-type iterative scheme for solving nonlinear systems is designed. In the process of proving the convergence order, we use the higher derivatives of the function and show that the convergence order of this iterative method is six. In order to avoid the influence of the existence of higher derivatives on the proof of convergence, we mainly discuss the convergence of this iterative method under weak conditions. In Banach space, the local convergence of the iterative scheme is established by using the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<ω</mi<</semantics<</math<</inline-formula<-continuity condition of the first-order Fréchet derivative, and the application range of the iterative method is extended. In addition, we also give the radius of a convergence sphere and the uniqueness of its solution. Finally, the superiority of the new iterative method is illustrated by drawing attractive basins and comparing them with the average iterative times of other same-order iterative methods. Additionally, we utilize this iterative method to solve both nonlinear systems and nonlinear matrix sign functions. The applicability of this study is demonstrated by solving practical chemical problems. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 133 |
title_short |
A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins |
url |
https://doi.org/10.3390/fractalfract8030133 https://doaj.org/article/918a8a4ee7f34958a5cf0544dacb3c92 https://www.mdpi.com/2504-3110/8/3/133 https://doaj.org/toc/2504-3110 |
remote_bool |
true |
author2 |
Wenshuo Li |
author2Str |
Wenshuo Li |
ppnlink |
897435656 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/fractalfract8030133 |
callnumber-a |
QC310.15-319 |
up_date |
2024-07-03T15:05:07.216Z |
_version_ |
1803570755371270144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100505074</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414100139.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/fractalfract8030133</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100505074</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ918a8a4ee7f34958a5cf0544dacb3c92</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC310.15-319</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaofeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Class of Sixth-Order Iterative Methods for Solving Nonlinear Systems: The Convergence and Fractals of Attractive Basins</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a Newton-type iterative scheme for solving nonlinear systems is designed. In the process of proving the convergence order, we use the higher derivatives of the function and show that the convergence order of this iterative method is six. In order to avoid the influence of the existence of higher derivatives on the proof of convergence, we mainly discuss the convergence of this iterative method under weak conditions. In Banach space, the local convergence of the iterative scheme is established by using the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<ω</mi<</semantics<</math<</inline-formula<-continuity condition of the first-order Fréchet derivative, and the application range of the iterative method is extended. In addition, we also give the radius of a convergence sphere and the uniqueness of its solution. Finally, the superiority of the new iterative method is illustrated by drawing attractive basins and comparing them with the average iterative times of other same-order iterative methods. Additionally, we utilize this iterative method to solve both nonlinear systems and nonlinear matrix sign functions. The applicability of this study is demonstrated by solving practical chemical problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iterative method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attractive basin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractal</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenshuo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Fractal and Fractional</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">8(2024), 3, p 133</subfield><subfield code="w">(DE-627)897435656</subfield><subfield code="w">(DE-600)2905371-7</subfield><subfield code="x">25043110</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 133</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/fractalfract8030133</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/918a8a4ee7f34958a5cf0544dacb3c92</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-3110/8/3/133</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-3110</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 133</subfield></datafield></record></collection>
|
score |
7.402767 |