Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters
To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential...
Ausführliche Beschreibung
Autor*in: |
Pedro Paiva [verfasserIn] Rui Castro [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronics - MDPI AG, 2013, 13(2024), 6, p 1083 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2024 ; number:6, p 1083 |
Links: |
---|
DOI / URN: |
10.3390/electronics13061083 |
---|
Katalog-ID: |
DOAJ100521193 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ100521193 | ||
003 | DE-627 | ||
005 | 20240414100330.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronics13061083 |2 doi | |
035 | |a (DE-627)DOAJ100521193 | ||
035 | |a (DE-599)DOAJ5b034ad29a814976901279a707344a81 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
100 | 0 | |a Pedro Paiva |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential for maintaining grid frequency stability. In this study, a grid resembling Madeira Island’s power generation mix was modeled using the Matlab/Simulink platform. The model included solar, wind, hydro, and thermo-electric generation to accurately represent the energy landscape of Madeira Island. Three scenarios were examined: one reflecting the current power generation on Madeira Island, a future scenario with a substantial rise in the percentage of photovoltaic (PV) generation, and the same future scenario but incorporating a battery energy storage system (BESS). Various analyses were conducted to assess the impact on frequency stability during a ground fault and rapid load/generation changes. In the future scenario without a BESS, the thermoelectric power plant generator desynchronized, leading to system collapse in several simulations. However, with the addition of a BESS, a significant improvement in frequency stability was observed. The thermoelectric power plant generator could return to a steady state after each disturbance. Furthermore, both the maximum frequency deviation and the absolute value of the Rate of Change of Frequency (ROCOF) were reduced, indicating enhanced system performance and stability. | ||
650 | 4 | |a photovoltaics integration | |
650 | 4 | |a weak grids | |
650 | 4 | |a transient stability | |
650 | 4 | |a frequency stability | |
650 | 4 | |a rate of change of frequency | |
650 | 4 | |a load shedding | |
653 | 0 | |a Electronics | |
700 | 0 | |a Rui Castro |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronics |d MDPI AG, 2013 |g 13(2024), 6, p 1083 |w (DE-627)718626478 |w (DE-600)2662127-7 |x 20799292 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2024 |g number:6, p 1083 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronics13061083 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5b034ad29a814976901279a707344a81 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9292/13/6/1083 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2024 |e 6, p 1083 |
author_variant |
p p pp r c rc |
---|---|
matchkey_str |
article:20799292:2024----::fetobteynrytrgssesnhfeunytbltowagisihhgs |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TK |
publishDate |
2024 |
allfields |
10.3390/electronics13061083 doi (DE-627)DOAJ100521193 (DE-599)DOAJ5b034ad29a814976901279a707344a81 DE-627 ger DE-627 rakwb eng TK7800-8360 Pedro Paiva verfasserin aut Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential for maintaining grid frequency stability. In this study, a grid resembling Madeira Island’s power generation mix was modeled using the Matlab/Simulink platform. The model included solar, wind, hydro, and thermo-electric generation to accurately represent the energy landscape of Madeira Island. Three scenarios were examined: one reflecting the current power generation on Madeira Island, a future scenario with a substantial rise in the percentage of photovoltaic (PV) generation, and the same future scenario but incorporating a battery energy storage system (BESS). Various analyses were conducted to assess the impact on frequency stability during a ground fault and rapid load/generation changes. In the future scenario without a BESS, the thermoelectric power plant generator desynchronized, leading to system collapse in several simulations. However, with the addition of a BESS, a significant improvement in frequency stability was observed. The thermoelectric power plant generator could return to a steady state after each disturbance. Furthermore, both the maximum frequency deviation and the absolute value of the Rate of Change of Frequency (ROCOF) were reduced, indicating enhanced system performance and stability. photovoltaics integration weak grids transient stability frequency stability rate of change of frequency load shedding Electronics Rui Castro verfasserin aut In Electronics MDPI AG, 2013 13(2024), 6, p 1083 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:13 year:2024 number:6, p 1083 https://doi.org/10.3390/electronics13061083 kostenfrei https://doaj.org/article/5b034ad29a814976901279a707344a81 kostenfrei https://www.mdpi.com/2079-9292/13/6/1083 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 6, p 1083 |
spelling |
10.3390/electronics13061083 doi (DE-627)DOAJ100521193 (DE-599)DOAJ5b034ad29a814976901279a707344a81 DE-627 ger DE-627 rakwb eng TK7800-8360 Pedro Paiva verfasserin aut Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential for maintaining grid frequency stability. In this study, a grid resembling Madeira Island’s power generation mix was modeled using the Matlab/Simulink platform. The model included solar, wind, hydro, and thermo-electric generation to accurately represent the energy landscape of Madeira Island. Three scenarios were examined: one reflecting the current power generation on Madeira Island, a future scenario with a substantial rise in the percentage of photovoltaic (PV) generation, and the same future scenario but incorporating a battery energy storage system (BESS). Various analyses were conducted to assess the impact on frequency stability during a ground fault and rapid load/generation changes. In the future scenario without a BESS, the thermoelectric power plant generator desynchronized, leading to system collapse in several simulations. However, with the addition of a BESS, a significant improvement in frequency stability was observed. The thermoelectric power plant generator could return to a steady state after each disturbance. Furthermore, both the maximum frequency deviation and the absolute value of the Rate of Change of Frequency (ROCOF) were reduced, indicating enhanced system performance and stability. photovoltaics integration weak grids transient stability frequency stability rate of change of frequency load shedding Electronics Rui Castro verfasserin aut In Electronics MDPI AG, 2013 13(2024), 6, p 1083 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:13 year:2024 number:6, p 1083 https://doi.org/10.3390/electronics13061083 kostenfrei https://doaj.org/article/5b034ad29a814976901279a707344a81 kostenfrei https://www.mdpi.com/2079-9292/13/6/1083 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 6, p 1083 |
allfields_unstemmed |
10.3390/electronics13061083 doi (DE-627)DOAJ100521193 (DE-599)DOAJ5b034ad29a814976901279a707344a81 DE-627 ger DE-627 rakwb eng TK7800-8360 Pedro Paiva verfasserin aut Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential for maintaining grid frequency stability. In this study, a grid resembling Madeira Island’s power generation mix was modeled using the Matlab/Simulink platform. The model included solar, wind, hydro, and thermo-electric generation to accurately represent the energy landscape of Madeira Island. Three scenarios were examined: one reflecting the current power generation on Madeira Island, a future scenario with a substantial rise in the percentage of photovoltaic (PV) generation, and the same future scenario but incorporating a battery energy storage system (BESS). Various analyses were conducted to assess the impact on frequency stability during a ground fault and rapid load/generation changes. In the future scenario without a BESS, the thermoelectric power plant generator desynchronized, leading to system collapse in several simulations. However, with the addition of a BESS, a significant improvement in frequency stability was observed. The thermoelectric power plant generator could return to a steady state after each disturbance. Furthermore, both the maximum frequency deviation and the absolute value of the Rate of Change of Frequency (ROCOF) were reduced, indicating enhanced system performance and stability. photovoltaics integration weak grids transient stability frequency stability rate of change of frequency load shedding Electronics Rui Castro verfasserin aut In Electronics MDPI AG, 2013 13(2024), 6, p 1083 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:13 year:2024 number:6, p 1083 https://doi.org/10.3390/electronics13061083 kostenfrei https://doaj.org/article/5b034ad29a814976901279a707344a81 kostenfrei https://www.mdpi.com/2079-9292/13/6/1083 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 6, p 1083 |
allfieldsGer |
10.3390/electronics13061083 doi (DE-627)DOAJ100521193 (DE-599)DOAJ5b034ad29a814976901279a707344a81 DE-627 ger DE-627 rakwb eng TK7800-8360 Pedro Paiva verfasserin aut Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential for maintaining grid frequency stability. In this study, a grid resembling Madeira Island’s power generation mix was modeled using the Matlab/Simulink platform. The model included solar, wind, hydro, and thermo-electric generation to accurately represent the energy landscape of Madeira Island. Three scenarios were examined: one reflecting the current power generation on Madeira Island, a future scenario with a substantial rise in the percentage of photovoltaic (PV) generation, and the same future scenario but incorporating a battery energy storage system (BESS). Various analyses were conducted to assess the impact on frequency stability during a ground fault and rapid load/generation changes. In the future scenario without a BESS, the thermoelectric power plant generator desynchronized, leading to system collapse in several simulations. However, with the addition of a BESS, a significant improvement in frequency stability was observed. The thermoelectric power plant generator could return to a steady state after each disturbance. Furthermore, both the maximum frequency deviation and the absolute value of the Rate of Change of Frequency (ROCOF) were reduced, indicating enhanced system performance and stability. photovoltaics integration weak grids transient stability frequency stability rate of change of frequency load shedding Electronics Rui Castro verfasserin aut In Electronics MDPI AG, 2013 13(2024), 6, p 1083 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:13 year:2024 number:6, p 1083 https://doi.org/10.3390/electronics13061083 kostenfrei https://doaj.org/article/5b034ad29a814976901279a707344a81 kostenfrei https://www.mdpi.com/2079-9292/13/6/1083 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 6, p 1083 |
allfieldsSound |
10.3390/electronics13061083 doi (DE-627)DOAJ100521193 (DE-599)DOAJ5b034ad29a814976901279a707344a81 DE-627 ger DE-627 rakwb eng TK7800-8360 Pedro Paiva verfasserin aut Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential for maintaining grid frequency stability. In this study, a grid resembling Madeira Island’s power generation mix was modeled using the Matlab/Simulink platform. The model included solar, wind, hydro, and thermo-electric generation to accurately represent the energy landscape of Madeira Island. Three scenarios were examined: one reflecting the current power generation on Madeira Island, a future scenario with a substantial rise in the percentage of photovoltaic (PV) generation, and the same future scenario but incorporating a battery energy storage system (BESS). Various analyses were conducted to assess the impact on frequency stability during a ground fault and rapid load/generation changes. In the future scenario without a BESS, the thermoelectric power plant generator desynchronized, leading to system collapse in several simulations. However, with the addition of a BESS, a significant improvement in frequency stability was observed. The thermoelectric power plant generator could return to a steady state after each disturbance. Furthermore, both the maximum frequency deviation and the absolute value of the Rate of Change of Frequency (ROCOF) were reduced, indicating enhanced system performance and stability. photovoltaics integration weak grids transient stability frequency stability rate of change of frequency load shedding Electronics Rui Castro verfasserin aut In Electronics MDPI AG, 2013 13(2024), 6, p 1083 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:13 year:2024 number:6, p 1083 https://doi.org/10.3390/electronics13061083 kostenfrei https://doaj.org/article/5b034ad29a814976901279a707344a81 kostenfrei https://www.mdpi.com/2079-9292/13/6/1083 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 6, p 1083 |
language |
English |
source |
In Electronics 13(2024), 6, p 1083 volume:13 year:2024 number:6, p 1083 |
sourceStr |
In Electronics 13(2024), 6, p 1083 volume:13 year:2024 number:6, p 1083 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
photovoltaics integration weak grids transient stability frequency stability rate of change of frequency load shedding Electronics |
isfreeaccess_bool |
true |
container_title |
Electronics |
authorswithroles_txt_mv |
Pedro Paiva @@aut@@ Rui Castro @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
718626478 |
id |
DOAJ100521193 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100521193</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414100330.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics13061083</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100521193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b034ad29a814976901279a707344a81</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pedro Paiva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential for maintaining grid frequency stability. In this study, a grid resembling Madeira Island’s power generation mix was modeled using the Matlab/Simulink platform. The model included solar, wind, hydro, and thermo-electric generation to accurately represent the energy landscape of Madeira Island. Three scenarios were examined: one reflecting the current power generation on Madeira Island, a future scenario with a substantial rise in the percentage of photovoltaic (PV) generation, and the same future scenario but incorporating a battery energy storage system (BESS). Various analyses were conducted to assess the impact on frequency stability during a ground fault and rapid load/generation changes. In the future scenario without a BESS, the thermoelectric power plant generator desynchronized, leading to system collapse in several simulations. However, with the addition of a BESS, a significant improvement in frequency stability was observed. The thermoelectric power plant generator could return to a steady state after each disturbance. Furthermore, both the maximum frequency deviation and the absolute value of the Rate of Change of Frequency (ROCOF) were reduced, indicating enhanced system performance and stability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photovoltaics integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weak grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transient stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rate of change of frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">load shedding</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rui Castro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">13(2024), 6, p 1083</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:6, p 1083</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics13061083</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b034ad29a814976901279a707344a81</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/13/6/1083</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2024</subfield><subfield code="e">6, p 1083</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Pedro Paiva |
spellingShingle |
Pedro Paiva misc TK7800-8360 misc photovoltaics integration misc weak grids misc transient stability misc frequency stability misc rate of change of frequency misc load shedding misc Electronics Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters |
authorStr |
Pedro Paiva |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718626478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
20799292 |
topic_title |
TK7800-8360 Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters photovoltaics integration weak grids transient stability frequency stability rate of change of frequency load shedding |
topic |
misc TK7800-8360 misc photovoltaics integration misc weak grids misc transient stability misc frequency stability misc rate of change of frequency misc load shedding misc Electronics |
topic_unstemmed |
misc TK7800-8360 misc photovoltaics integration misc weak grids misc transient stability misc frequency stability misc rate of change of frequency misc load shedding misc Electronics |
topic_browse |
misc TK7800-8360 misc photovoltaics integration misc weak grids misc transient stability misc frequency stability misc rate of change of frequency misc load shedding misc Electronics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronics |
hierarchy_parent_id |
718626478 |
hierarchy_top_title |
Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718626478 (DE-600)2662127-7 |
title |
Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters |
ctrlnum |
(DE-627)DOAJ100521193 (DE-599)DOAJ5b034ad29a814976901279a707344a81 |
title_full |
Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters |
author_sort |
Pedro Paiva |
journal |
Electronics |
journalStr |
Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Pedro Paiva Rui Castro |
container_volume |
13 |
class |
TK7800-8360 |
format_se |
Elektronische Aufsätze |
author-letter |
Pedro Paiva |
doi_str_mv |
10.3390/electronics13061083 |
author2-role |
verfasserin |
title_sort |
effects of battery energy storage systems on the frequency stability of weak grids with a high-share of grid-connected converters |
callnumber |
TK7800-8360 |
title_auth |
Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters |
abstract |
To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential for maintaining grid frequency stability. In this study, a grid resembling Madeira Island’s power generation mix was modeled using the Matlab/Simulink platform. The model included solar, wind, hydro, and thermo-electric generation to accurately represent the energy landscape of Madeira Island. Three scenarios were examined: one reflecting the current power generation on Madeira Island, a future scenario with a substantial rise in the percentage of photovoltaic (PV) generation, and the same future scenario but incorporating a battery energy storage system (BESS). Various analyses were conducted to assess the impact on frequency stability during a ground fault and rapid load/generation changes. In the future scenario without a BESS, the thermoelectric power plant generator desynchronized, leading to system collapse in several simulations. However, with the addition of a BESS, a significant improvement in frequency stability was observed. The thermoelectric power plant generator could return to a steady state after each disturbance. Furthermore, both the maximum frequency deviation and the absolute value of the Rate of Change of Frequency (ROCOF) were reduced, indicating enhanced system performance and stability. |
abstractGer |
To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential for maintaining grid frequency stability. In this study, a grid resembling Madeira Island’s power generation mix was modeled using the Matlab/Simulink platform. The model included solar, wind, hydro, and thermo-electric generation to accurately represent the energy landscape of Madeira Island. Three scenarios were examined: one reflecting the current power generation on Madeira Island, a future scenario with a substantial rise in the percentage of photovoltaic (PV) generation, and the same future scenario but incorporating a battery energy storage system (BESS). Various analyses were conducted to assess the impact on frequency stability during a ground fault and rapid load/generation changes. In the future scenario without a BESS, the thermoelectric power plant generator desynchronized, leading to system collapse in several simulations. However, with the addition of a BESS, a significant improvement in frequency stability was observed. The thermoelectric power plant generator could return to a steady state after each disturbance. Furthermore, both the maximum frequency deviation and the absolute value of the Rate of Change of Frequency (ROCOF) were reduced, indicating enhanced system performance and stability. |
abstract_unstemmed |
To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential for maintaining grid frequency stability. In this study, a grid resembling Madeira Island’s power generation mix was modeled using the Matlab/Simulink platform. The model included solar, wind, hydro, and thermo-electric generation to accurately represent the energy landscape of Madeira Island. Three scenarios were examined: one reflecting the current power generation on Madeira Island, a future scenario with a substantial rise in the percentage of photovoltaic (PV) generation, and the same future scenario but incorporating a battery energy storage system (BESS). Various analyses were conducted to assess the impact on frequency stability during a ground fault and rapid load/generation changes. In the future scenario without a BESS, the thermoelectric power plant generator desynchronized, leading to system collapse in several simulations. However, with the addition of a BESS, a significant improvement in frequency stability was observed. The thermoelectric power plant generator could return to a steady state after each disturbance. Furthermore, both the maximum frequency deviation and the absolute value of the Rate of Change of Frequency (ROCOF) were reduced, indicating enhanced system performance and stability. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 1083 |
title_short |
Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters |
url |
https://doi.org/10.3390/electronics13061083 https://doaj.org/article/5b034ad29a814976901279a707344a81 https://www.mdpi.com/2079-9292/13/6/1083 https://doaj.org/toc/2079-9292 |
remote_bool |
true |
author2 |
Rui Castro |
author2Str |
Rui Castro |
ppnlink |
718626478 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronics13061083 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T15:10:50.888Z |
_version_ |
1803571115737481216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100521193</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414100330.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics13061083</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100521193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b034ad29a814976901279a707344a81</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pedro Paiva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential for maintaining grid frequency stability. In this study, a grid resembling Madeira Island’s power generation mix was modeled using the Matlab/Simulink platform. The model included solar, wind, hydro, and thermo-electric generation to accurately represent the energy landscape of Madeira Island. Three scenarios were examined: one reflecting the current power generation on Madeira Island, a future scenario with a substantial rise in the percentage of photovoltaic (PV) generation, and the same future scenario but incorporating a battery energy storage system (BESS). Various analyses were conducted to assess the impact on frequency stability during a ground fault and rapid load/generation changes. In the future scenario without a BESS, the thermoelectric power plant generator desynchronized, leading to system collapse in several simulations. However, with the addition of a BESS, a significant improvement in frequency stability was observed. The thermoelectric power plant generator could return to a steady state after each disturbance. Furthermore, both the maximum frequency deviation and the absolute value of the Rate of Change of Frequency (ROCOF) were reduced, indicating enhanced system performance and stability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photovoltaics integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weak grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transient stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rate of change of frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">load shedding</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rui Castro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">13(2024), 6, p 1083</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:6, p 1083</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics13061083</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b034ad29a814976901279a707344a81</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/13/6/1083</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2024</subfield><subfield code="e">6, p 1083</subfield></datafield></record></collection>
|
score |
7.401078 |