Heterostructure-Based Optoelectronic Neuromorphic Devices
The concept of neuromorphic devices, aiming to process large amounts of information in parallel, at low power, high speed, and high efficiency, is to mimic the functions of human brain by emulating biological neural behavior. Optoelectronic neuromorphic devices are particularly suitable for neuromor...
Ausführliche Beschreibung
Autor*in: |
Jisoo Park [verfasserIn] Jihyun Shin [verfasserIn] Hocheon Yoo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronics - MDPI AG, 2013, 13(2024), 6, p 1076 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2024 ; number:6, p 1076 |
Links: |
---|
DOI / URN: |
10.3390/electronics13061076 |
---|
Katalog-ID: |
DOAJ100521223 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ100521223 | ||
003 | DE-627 | ||
005 | 20240414100330.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronics13061076 |2 doi | |
035 | |a (DE-627)DOAJ100521223 | ||
035 | |a (DE-599)DOAJd8645685166944a3b30ee4ba2d164a58 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
100 | 0 | |a Jisoo Park |e verfasserin |4 aut | |
245 | 1 | 0 | |a Heterostructure-Based Optoelectronic Neuromorphic Devices |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The concept of neuromorphic devices, aiming to process large amounts of information in parallel, at low power, high speed, and high efficiency, is to mimic the functions of human brain by emulating biological neural behavior. Optoelectronic neuromorphic devices are particularly suitable for neuromorphic applications with their ability to generate various pulses based on wavelength and to control synaptic stimulation. Each wavelength (ultraviolet, visible, and infrared) has specific advantages and optimal applications. Here, the heterostructure-based optoelectronic neuromorphic devices are explored across the full wavelength range (ultraviolet to infrared) by categorizing them on the basis of irradiated wavelength and structure (two-terminal and three-terminal) with respect to emerging optoelectrical materials. The relationship between neuromorphic applications, light wavelength, and mechanism is revisited. Finally, the potential and challenging aspects of next-generation optoelectronic neuromorphic devices are presented, which can assist in the design of suitable materials and structures for neuromorphic-based applications. | ||
650 | 4 | |a heterostructure | |
650 | 4 | |a optoelectronics | |
650 | 4 | |a neuromorphic devices | |
650 | 4 | |a synaptic devices | |
650 | 4 | |a visual sensors | |
653 | 0 | |a Electronics | |
700 | 0 | |a Jihyun Shin |e verfasserin |4 aut | |
700 | 0 | |a Hocheon Yoo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronics |d MDPI AG, 2013 |g 13(2024), 6, p 1076 |w (DE-627)718626478 |w (DE-600)2662127-7 |x 20799292 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2024 |g number:6, p 1076 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronics13061076 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d8645685166944a3b30ee4ba2d164a58 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9292/13/6/1076 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2024 |e 6, p 1076 |
author_variant |
j p jp j s js h y hy |
---|---|
matchkey_str |
article:20799292:2024----::eeotutrbsdpolcrncer |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TK |
publishDate |
2024 |
allfields |
10.3390/electronics13061076 doi (DE-627)DOAJ100521223 (DE-599)DOAJd8645685166944a3b30ee4ba2d164a58 DE-627 ger DE-627 rakwb eng TK7800-8360 Jisoo Park verfasserin aut Heterostructure-Based Optoelectronic Neuromorphic Devices 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The concept of neuromorphic devices, aiming to process large amounts of information in parallel, at low power, high speed, and high efficiency, is to mimic the functions of human brain by emulating biological neural behavior. Optoelectronic neuromorphic devices are particularly suitable for neuromorphic applications with their ability to generate various pulses based on wavelength and to control synaptic stimulation. Each wavelength (ultraviolet, visible, and infrared) has specific advantages and optimal applications. Here, the heterostructure-based optoelectronic neuromorphic devices are explored across the full wavelength range (ultraviolet to infrared) by categorizing them on the basis of irradiated wavelength and structure (two-terminal and three-terminal) with respect to emerging optoelectrical materials. The relationship between neuromorphic applications, light wavelength, and mechanism is revisited. Finally, the potential and challenging aspects of next-generation optoelectronic neuromorphic devices are presented, which can assist in the design of suitable materials and structures for neuromorphic-based applications. heterostructure optoelectronics neuromorphic devices synaptic devices visual sensors Electronics Jihyun Shin verfasserin aut Hocheon Yoo verfasserin aut In Electronics MDPI AG, 2013 13(2024), 6, p 1076 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:13 year:2024 number:6, p 1076 https://doi.org/10.3390/electronics13061076 kostenfrei https://doaj.org/article/d8645685166944a3b30ee4ba2d164a58 kostenfrei https://www.mdpi.com/2079-9292/13/6/1076 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 6, p 1076 |
spelling |
10.3390/electronics13061076 doi (DE-627)DOAJ100521223 (DE-599)DOAJd8645685166944a3b30ee4ba2d164a58 DE-627 ger DE-627 rakwb eng TK7800-8360 Jisoo Park verfasserin aut Heterostructure-Based Optoelectronic Neuromorphic Devices 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The concept of neuromorphic devices, aiming to process large amounts of information in parallel, at low power, high speed, and high efficiency, is to mimic the functions of human brain by emulating biological neural behavior. Optoelectronic neuromorphic devices are particularly suitable for neuromorphic applications with their ability to generate various pulses based on wavelength and to control synaptic stimulation. Each wavelength (ultraviolet, visible, and infrared) has specific advantages and optimal applications. Here, the heterostructure-based optoelectronic neuromorphic devices are explored across the full wavelength range (ultraviolet to infrared) by categorizing them on the basis of irradiated wavelength and structure (two-terminal and three-terminal) with respect to emerging optoelectrical materials. The relationship between neuromorphic applications, light wavelength, and mechanism is revisited. Finally, the potential and challenging aspects of next-generation optoelectronic neuromorphic devices are presented, which can assist in the design of suitable materials and structures for neuromorphic-based applications. heterostructure optoelectronics neuromorphic devices synaptic devices visual sensors Electronics Jihyun Shin verfasserin aut Hocheon Yoo verfasserin aut In Electronics MDPI AG, 2013 13(2024), 6, p 1076 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:13 year:2024 number:6, p 1076 https://doi.org/10.3390/electronics13061076 kostenfrei https://doaj.org/article/d8645685166944a3b30ee4ba2d164a58 kostenfrei https://www.mdpi.com/2079-9292/13/6/1076 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 6, p 1076 |
allfields_unstemmed |
10.3390/electronics13061076 doi (DE-627)DOAJ100521223 (DE-599)DOAJd8645685166944a3b30ee4ba2d164a58 DE-627 ger DE-627 rakwb eng TK7800-8360 Jisoo Park verfasserin aut Heterostructure-Based Optoelectronic Neuromorphic Devices 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The concept of neuromorphic devices, aiming to process large amounts of information in parallel, at low power, high speed, and high efficiency, is to mimic the functions of human brain by emulating biological neural behavior. Optoelectronic neuromorphic devices are particularly suitable for neuromorphic applications with their ability to generate various pulses based on wavelength and to control synaptic stimulation. Each wavelength (ultraviolet, visible, and infrared) has specific advantages and optimal applications. Here, the heterostructure-based optoelectronic neuromorphic devices are explored across the full wavelength range (ultraviolet to infrared) by categorizing them on the basis of irradiated wavelength and structure (two-terminal and three-terminal) with respect to emerging optoelectrical materials. The relationship between neuromorphic applications, light wavelength, and mechanism is revisited. Finally, the potential and challenging aspects of next-generation optoelectronic neuromorphic devices are presented, which can assist in the design of suitable materials and structures for neuromorphic-based applications. heterostructure optoelectronics neuromorphic devices synaptic devices visual sensors Electronics Jihyun Shin verfasserin aut Hocheon Yoo verfasserin aut In Electronics MDPI AG, 2013 13(2024), 6, p 1076 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:13 year:2024 number:6, p 1076 https://doi.org/10.3390/electronics13061076 kostenfrei https://doaj.org/article/d8645685166944a3b30ee4ba2d164a58 kostenfrei https://www.mdpi.com/2079-9292/13/6/1076 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 6, p 1076 |
allfieldsGer |
10.3390/electronics13061076 doi (DE-627)DOAJ100521223 (DE-599)DOAJd8645685166944a3b30ee4ba2d164a58 DE-627 ger DE-627 rakwb eng TK7800-8360 Jisoo Park verfasserin aut Heterostructure-Based Optoelectronic Neuromorphic Devices 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The concept of neuromorphic devices, aiming to process large amounts of information in parallel, at low power, high speed, and high efficiency, is to mimic the functions of human brain by emulating biological neural behavior. Optoelectronic neuromorphic devices are particularly suitable for neuromorphic applications with their ability to generate various pulses based on wavelength and to control synaptic stimulation. Each wavelength (ultraviolet, visible, and infrared) has specific advantages and optimal applications. Here, the heterostructure-based optoelectronic neuromorphic devices are explored across the full wavelength range (ultraviolet to infrared) by categorizing them on the basis of irradiated wavelength and structure (two-terminal and three-terminal) with respect to emerging optoelectrical materials. The relationship between neuromorphic applications, light wavelength, and mechanism is revisited. Finally, the potential and challenging aspects of next-generation optoelectronic neuromorphic devices are presented, which can assist in the design of suitable materials and structures for neuromorphic-based applications. heterostructure optoelectronics neuromorphic devices synaptic devices visual sensors Electronics Jihyun Shin verfasserin aut Hocheon Yoo verfasserin aut In Electronics MDPI AG, 2013 13(2024), 6, p 1076 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:13 year:2024 number:6, p 1076 https://doi.org/10.3390/electronics13061076 kostenfrei https://doaj.org/article/d8645685166944a3b30ee4ba2d164a58 kostenfrei https://www.mdpi.com/2079-9292/13/6/1076 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 6, p 1076 |
allfieldsSound |
10.3390/electronics13061076 doi (DE-627)DOAJ100521223 (DE-599)DOAJd8645685166944a3b30ee4ba2d164a58 DE-627 ger DE-627 rakwb eng TK7800-8360 Jisoo Park verfasserin aut Heterostructure-Based Optoelectronic Neuromorphic Devices 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The concept of neuromorphic devices, aiming to process large amounts of information in parallel, at low power, high speed, and high efficiency, is to mimic the functions of human brain by emulating biological neural behavior. Optoelectronic neuromorphic devices are particularly suitable for neuromorphic applications with their ability to generate various pulses based on wavelength and to control synaptic stimulation. Each wavelength (ultraviolet, visible, and infrared) has specific advantages and optimal applications. Here, the heterostructure-based optoelectronic neuromorphic devices are explored across the full wavelength range (ultraviolet to infrared) by categorizing them on the basis of irradiated wavelength and structure (two-terminal and three-terminal) with respect to emerging optoelectrical materials. The relationship between neuromorphic applications, light wavelength, and mechanism is revisited. Finally, the potential and challenging aspects of next-generation optoelectronic neuromorphic devices are presented, which can assist in the design of suitable materials and structures for neuromorphic-based applications. heterostructure optoelectronics neuromorphic devices synaptic devices visual sensors Electronics Jihyun Shin verfasserin aut Hocheon Yoo verfasserin aut In Electronics MDPI AG, 2013 13(2024), 6, p 1076 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:13 year:2024 number:6, p 1076 https://doi.org/10.3390/electronics13061076 kostenfrei https://doaj.org/article/d8645685166944a3b30ee4ba2d164a58 kostenfrei https://www.mdpi.com/2079-9292/13/6/1076 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 6, p 1076 |
language |
English |
source |
In Electronics 13(2024), 6, p 1076 volume:13 year:2024 number:6, p 1076 |
sourceStr |
In Electronics 13(2024), 6, p 1076 volume:13 year:2024 number:6, p 1076 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
heterostructure optoelectronics neuromorphic devices synaptic devices visual sensors Electronics |
isfreeaccess_bool |
true |
container_title |
Electronics |
authorswithroles_txt_mv |
Jisoo Park @@aut@@ Jihyun Shin @@aut@@ Hocheon Yoo @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
718626478 |
id |
DOAJ100521223 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100521223</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414100330.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics13061076</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100521223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd8645685166944a3b30ee4ba2d164a58</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jisoo Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heterostructure-Based Optoelectronic Neuromorphic Devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The concept of neuromorphic devices, aiming to process large amounts of information in parallel, at low power, high speed, and high efficiency, is to mimic the functions of human brain by emulating biological neural behavior. Optoelectronic neuromorphic devices are particularly suitable for neuromorphic applications with their ability to generate various pulses based on wavelength and to control synaptic stimulation. Each wavelength (ultraviolet, visible, and infrared) has specific advantages and optimal applications. Here, the heterostructure-based optoelectronic neuromorphic devices are explored across the full wavelength range (ultraviolet to infrared) by categorizing them on the basis of irradiated wavelength and structure (two-terminal and three-terminal) with respect to emerging optoelectrical materials. The relationship between neuromorphic applications, light wavelength, and mechanism is revisited. Finally, the potential and challenging aspects of next-generation optoelectronic neuromorphic devices are presented, which can assist in the design of suitable materials and structures for neuromorphic-based applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterostructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optoelectronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neuromorphic devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synaptic devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">visual sensors</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jihyun Shin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hocheon Yoo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">13(2024), 6, p 1076</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:6, p 1076</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics13061076</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d8645685166944a3b30ee4ba2d164a58</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/13/6/1076</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2024</subfield><subfield code="e">6, p 1076</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jisoo Park |
spellingShingle |
Jisoo Park misc TK7800-8360 misc heterostructure misc optoelectronics misc neuromorphic devices misc synaptic devices misc visual sensors misc Electronics Heterostructure-Based Optoelectronic Neuromorphic Devices |
authorStr |
Jisoo Park |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718626478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
20799292 |
topic_title |
TK7800-8360 Heterostructure-Based Optoelectronic Neuromorphic Devices heterostructure optoelectronics neuromorphic devices synaptic devices visual sensors |
topic |
misc TK7800-8360 misc heterostructure misc optoelectronics misc neuromorphic devices misc synaptic devices misc visual sensors misc Electronics |
topic_unstemmed |
misc TK7800-8360 misc heterostructure misc optoelectronics misc neuromorphic devices misc synaptic devices misc visual sensors misc Electronics |
topic_browse |
misc TK7800-8360 misc heterostructure misc optoelectronics misc neuromorphic devices misc synaptic devices misc visual sensors misc Electronics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronics |
hierarchy_parent_id |
718626478 |
hierarchy_top_title |
Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718626478 (DE-600)2662127-7 |
title |
Heterostructure-Based Optoelectronic Neuromorphic Devices |
ctrlnum |
(DE-627)DOAJ100521223 (DE-599)DOAJd8645685166944a3b30ee4ba2d164a58 |
title_full |
Heterostructure-Based Optoelectronic Neuromorphic Devices |
author_sort |
Jisoo Park |
journal |
Electronics |
journalStr |
Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Jisoo Park Jihyun Shin Hocheon Yoo |
container_volume |
13 |
class |
TK7800-8360 |
format_se |
Elektronische Aufsätze |
author-letter |
Jisoo Park |
doi_str_mv |
10.3390/electronics13061076 |
author2-role |
verfasserin |
title_sort |
heterostructure-based optoelectronic neuromorphic devices |
callnumber |
TK7800-8360 |
title_auth |
Heterostructure-Based Optoelectronic Neuromorphic Devices |
abstract |
The concept of neuromorphic devices, aiming to process large amounts of information in parallel, at low power, high speed, and high efficiency, is to mimic the functions of human brain by emulating biological neural behavior. Optoelectronic neuromorphic devices are particularly suitable for neuromorphic applications with their ability to generate various pulses based on wavelength and to control synaptic stimulation. Each wavelength (ultraviolet, visible, and infrared) has specific advantages and optimal applications. Here, the heterostructure-based optoelectronic neuromorphic devices are explored across the full wavelength range (ultraviolet to infrared) by categorizing them on the basis of irradiated wavelength and structure (two-terminal and three-terminal) with respect to emerging optoelectrical materials. The relationship between neuromorphic applications, light wavelength, and mechanism is revisited. Finally, the potential and challenging aspects of next-generation optoelectronic neuromorphic devices are presented, which can assist in the design of suitable materials and structures for neuromorphic-based applications. |
abstractGer |
The concept of neuromorphic devices, aiming to process large amounts of information in parallel, at low power, high speed, and high efficiency, is to mimic the functions of human brain by emulating biological neural behavior. Optoelectronic neuromorphic devices are particularly suitable for neuromorphic applications with their ability to generate various pulses based on wavelength and to control synaptic stimulation. Each wavelength (ultraviolet, visible, and infrared) has specific advantages and optimal applications. Here, the heterostructure-based optoelectronic neuromorphic devices are explored across the full wavelength range (ultraviolet to infrared) by categorizing them on the basis of irradiated wavelength and structure (two-terminal and three-terminal) with respect to emerging optoelectrical materials. The relationship between neuromorphic applications, light wavelength, and mechanism is revisited. Finally, the potential and challenging aspects of next-generation optoelectronic neuromorphic devices are presented, which can assist in the design of suitable materials and structures for neuromorphic-based applications. |
abstract_unstemmed |
The concept of neuromorphic devices, aiming to process large amounts of information in parallel, at low power, high speed, and high efficiency, is to mimic the functions of human brain by emulating biological neural behavior. Optoelectronic neuromorphic devices are particularly suitable for neuromorphic applications with their ability to generate various pulses based on wavelength and to control synaptic stimulation. Each wavelength (ultraviolet, visible, and infrared) has specific advantages and optimal applications. Here, the heterostructure-based optoelectronic neuromorphic devices are explored across the full wavelength range (ultraviolet to infrared) by categorizing them on the basis of irradiated wavelength and structure (two-terminal and three-terminal) with respect to emerging optoelectrical materials. The relationship between neuromorphic applications, light wavelength, and mechanism is revisited. Finally, the potential and challenging aspects of next-generation optoelectronic neuromorphic devices are presented, which can assist in the design of suitable materials and structures for neuromorphic-based applications. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 1076 |
title_short |
Heterostructure-Based Optoelectronic Neuromorphic Devices |
url |
https://doi.org/10.3390/electronics13061076 https://doaj.org/article/d8645685166944a3b30ee4ba2d164a58 https://www.mdpi.com/2079-9292/13/6/1076 https://doaj.org/toc/2079-9292 |
remote_bool |
true |
author2 |
Jihyun Shin Hocheon Yoo |
author2Str |
Jihyun Shin Hocheon Yoo |
ppnlink |
718626478 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronics13061076 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T15:10:51.410Z |
_version_ |
1803571116292177921 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100521223</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414100330.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics13061076</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100521223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd8645685166944a3b30ee4ba2d164a58</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jisoo Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heterostructure-Based Optoelectronic Neuromorphic Devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The concept of neuromorphic devices, aiming to process large amounts of information in parallel, at low power, high speed, and high efficiency, is to mimic the functions of human brain by emulating biological neural behavior. Optoelectronic neuromorphic devices are particularly suitable for neuromorphic applications with their ability to generate various pulses based on wavelength and to control synaptic stimulation. Each wavelength (ultraviolet, visible, and infrared) has specific advantages and optimal applications. Here, the heterostructure-based optoelectronic neuromorphic devices are explored across the full wavelength range (ultraviolet to infrared) by categorizing them on the basis of irradiated wavelength and structure (two-terminal and three-terminal) with respect to emerging optoelectrical materials. The relationship between neuromorphic applications, light wavelength, and mechanism is revisited. Finally, the potential and challenging aspects of next-generation optoelectronic neuromorphic devices are presented, which can assist in the design of suitable materials and structures for neuromorphic-based applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterostructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optoelectronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neuromorphic devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synaptic devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">visual sensors</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jihyun Shin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hocheon Yoo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">13(2024), 6, p 1076</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:6, p 1076</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics13061076</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d8645685166944a3b30ee4ba2d164a58</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/13/6/1076</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2024</subfield><subfield code="e">6, p 1076</subfield></datafield></record></collection>
|
score |
7.401026 |