Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics
The removal of contaminants from aqueous solutions by adsorption onto carbonaceous materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated carbon (AC) fabrics with different surface textures and porosity characteristics were used for the removal of...
Ausführliche Beschreibung
Autor*in: |
Batuhan Mulla [verfasserIn] Kyriacos Ioannou [verfasserIn] Gkerman Kotanidis [verfasserIn] Ioannis Ioannidis [verfasserIn] Georgios Constantinides [verfasserIn] Mark Baker [verfasserIn] Steven Hinder [verfasserIn] Christian Mitterer [verfasserIn] Ioannis Pashalidis [verfasserIn] Nikolaos Kostoglou [verfasserIn] Claus Rebholz [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: C - MDPI AG, 2016, 10(2024), 1, p 19 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2024 ; number:1, p 19 |
Links: |
---|
DOI / URN: |
10.3390/c10010019 |
---|
Katalog-ID: |
DOAJ100536182 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ100536182 | ||
003 | DE-627 | ||
005 | 20240414100517.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/c10010019 |2 doi | |
035 | |a (DE-627)DOAJ100536182 | ||
035 | |a (DE-599)DOAJ68851c3eaf41404e83c7b94f988d355d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD241-441 | |
100 | 0 | |a Batuhan Mulla |e verfasserin |4 aut | |
245 | 1 | 0 | |a Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The removal of contaminants from aqueous solutions by adsorption onto carbonaceous materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated carbon (AC) fabrics with different surface textures and porosity characteristics were used for the removal of crystal violet (CV) dye from aqueous solutions. Batch adsorption experiments were performed to investigate the CV adsorption performance of the AC fabrics in terms of contact time, temperature, adsorbate concentration and adsorbent amount. Evaluation of the thermodynamic parameters and the adsorption performance of the AC fabrics in ground water and sea water solutions were also carried out. <i<Langmuir</i< isotherm model, pseudo first and pseudo second order kinetics models were utilized to analyze and fit the adsorption data. The introduction of oxygen-based functional groups on the surface of AC fabrics was carried out through a nitric acid treatment. This oxidation process resulted in a significant reduction in the surface area and pore volume, along with a small increase in the average pore size and a significant enhancement in the CV adsorption capacity, indicating that the dye molecules are mainly adsorbed on the external surface of the carbon fabrics. The herein evaluated 428 mg/g adsorption capacity at 55 °C for the oxidized non-woven AC fabric is one of the highest adsorption capacity values reported in the literature for CV removal using AC materials. Thermodynamic studies showed that the adsorption occurs spontaneously and is an endothermic and entropy-driven reaction. Furthermore, pristine and oxidized non-woven AC fabrics displayed more than 90% CV uptake from sea water samples, underlining the great potential these fabrics possess for the removal of dyes from natural/multicomponent waters. | ||
650 | 4 | |a crystal violet removal | |
650 | 4 | |a activated carbon fabrics | |
650 | 4 | |a water treatment | |
650 | 4 | |a spectroscopic characterization | |
650 | 4 | |a microscopic characterization | |
650 | 4 | |a thermodynamics | |
653 | 0 | |a Organic chemistry | |
700 | 0 | |a Kyriacos Ioannou |e verfasserin |4 aut | |
700 | 0 | |a Gkerman Kotanidis |e verfasserin |4 aut | |
700 | 0 | |a Ioannis Ioannidis |e verfasserin |4 aut | |
700 | 0 | |a Georgios Constantinides |e verfasserin |4 aut | |
700 | 0 | |a Mark Baker |e verfasserin |4 aut | |
700 | 0 | |a Steven Hinder |e verfasserin |4 aut | |
700 | 0 | |a Christian Mitterer |e verfasserin |4 aut | |
700 | 0 | |a Ioannis Pashalidis |e verfasserin |4 aut | |
700 | 0 | |a Nikolaos Kostoglou |e verfasserin |4 aut | |
700 | 0 | |a Claus Rebholz |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t C |d MDPI AG, 2016 |g 10(2024), 1, p 19 |w (DE-627)820684074 |w (DE-600)2813973-2 |x 23115629 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2024 |g number:1, p 19 |
856 | 4 | 0 | |u https://doi.org/10.3390/c10010019 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/68851c3eaf41404e83c7b94f988d355d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2311-5629/10/1/19 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2311-5629 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2024 |e 1, p 19 |
author_variant |
b m bm k i ki g k gk i i ii g c gc m b mb s h sh c m cm i p ip n k nk c r cr |
---|---|
matchkey_str |
article:23115629:2024----::eoaocytliltyfoauosouintruhdopinno |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QD |
publishDate |
2024 |
allfields |
10.3390/c10010019 doi (DE-627)DOAJ100536182 (DE-599)DOAJ68851c3eaf41404e83c7b94f988d355d DE-627 ger DE-627 rakwb eng QD241-441 Batuhan Mulla verfasserin aut Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The removal of contaminants from aqueous solutions by adsorption onto carbonaceous materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated carbon (AC) fabrics with different surface textures and porosity characteristics were used for the removal of crystal violet (CV) dye from aqueous solutions. Batch adsorption experiments were performed to investigate the CV adsorption performance of the AC fabrics in terms of contact time, temperature, adsorbate concentration and adsorbent amount. Evaluation of the thermodynamic parameters and the adsorption performance of the AC fabrics in ground water and sea water solutions were also carried out. <i<Langmuir</i< isotherm model, pseudo first and pseudo second order kinetics models were utilized to analyze and fit the adsorption data. The introduction of oxygen-based functional groups on the surface of AC fabrics was carried out through a nitric acid treatment. This oxidation process resulted in a significant reduction in the surface area and pore volume, along with a small increase in the average pore size and a significant enhancement in the CV adsorption capacity, indicating that the dye molecules are mainly adsorbed on the external surface of the carbon fabrics. The herein evaluated 428 mg/g adsorption capacity at 55 °C for the oxidized non-woven AC fabric is one of the highest adsorption capacity values reported in the literature for CV removal using AC materials. Thermodynamic studies showed that the adsorption occurs spontaneously and is an endothermic and entropy-driven reaction. Furthermore, pristine and oxidized non-woven AC fabrics displayed more than 90% CV uptake from sea water samples, underlining the great potential these fabrics possess for the removal of dyes from natural/multicomponent waters. crystal violet removal activated carbon fabrics water treatment spectroscopic characterization microscopic characterization thermodynamics Organic chemistry Kyriacos Ioannou verfasserin aut Gkerman Kotanidis verfasserin aut Ioannis Ioannidis verfasserin aut Georgios Constantinides verfasserin aut Mark Baker verfasserin aut Steven Hinder verfasserin aut Christian Mitterer verfasserin aut Ioannis Pashalidis verfasserin aut Nikolaos Kostoglou verfasserin aut Claus Rebholz verfasserin aut In C MDPI AG, 2016 10(2024), 1, p 19 (DE-627)820684074 (DE-600)2813973-2 23115629 nnns volume:10 year:2024 number:1, p 19 https://doi.org/10.3390/c10010019 kostenfrei https://doaj.org/article/68851c3eaf41404e83c7b94f988d355d kostenfrei https://www.mdpi.com/2311-5629/10/1/19 kostenfrei https://doaj.org/toc/2311-5629 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1, p 19 |
spelling |
10.3390/c10010019 doi (DE-627)DOAJ100536182 (DE-599)DOAJ68851c3eaf41404e83c7b94f988d355d DE-627 ger DE-627 rakwb eng QD241-441 Batuhan Mulla verfasserin aut Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The removal of contaminants from aqueous solutions by adsorption onto carbonaceous materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated carbon (AC) fabrics with different surface textures and porosity characteristics were used for the removal of crystal violet (CV) dye from aqueous solutions. Batch adsorption experiments were performed to investigate the CV adsorption performance of the AC fabrics in terms of contact time, temperature, adsorbate concentration and adsorbent amount. Evaluation of the thermodynamic parameters and the adsorption performance of the AC fabrics in ground water and sea water solutions were also carried out. <i<Langmuir</i< isotherm model, pseudo first and pseudo second order kinetics models were utilized to analyze and fit the adsorption data. The introduction of oxygen-based functional groups on the surface of AC fabrics was carried out through a nitric acid treatment. This oxidation process resulted in a significant reduction in the surface area and pore volume, along with a small increase in the average pore size and a significant enhancement in the CV adsorption capacity, indicating that the dye molecules are mainly adsorbed on the external surface of the carbon fabrics. The herein evaluated 428 mg/g adsorption capacity at 55 °C for the oxidized non-woven AC fabric is one of the highest adsorption capacity values reported in the literature for CV removal using AC materials. Thermodynamic studies showed that the adsorption occurs spontaneously and is an endothermic and entropy-driven reaction. Furthermore, pristine and oxidized non-woven AC fabrics displayed more than 90% CV uptake from sea water samples, underlining the great potential these fabrics possess for the removal of dyes from natural/multicomponent waters. crystal violet removal activated carbon fabrics water treatment spectroscopic characterization microscopic characterization thermodynamics Organic chemistry Kyriacos Ioannou verfasserin aut Gkerman Kotanidis verfasserin aut Ioannis Ioannidis verfasserin aut Georgios Constantinides verfasserin aut Mark Baker verfasserin aut Steven Hinder verfasserin aut Christian Mitterer verfasserin aut Ioannis Pashalidis verfasserin aut Nikolaos Kostoglou verfasserin aut Claus Rebholz verfasserin aut In C MDPI AG, 2016 10(2024), 1, p 19 (DE-627)820684074 (DE-600)2813973-2 23115629 nnns volume:10 year:2024 number:1, p 19 https://doi.org/10.3390/c10010019 kostenfrei https://doaj.org/article/68851c3eaf41404e83c7b94f988d355d kostenfrei https://www.mdpi.com/2311-5629/10/1/19 kostenfrei https://doaj.org/toc/2311-5629 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1, p 19 |
allfields_unstemmed |
10.3390/c10010019 doi (DE-627)DOAJ100536182 (DE-599)DOAJ68851c3eaf41404e83c7b94f988d355d DE-627 ger DE-627 rakwb eng QD241-441 Batuhan Mulla verfasserin aut Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The removal of contaminants from aqueous solutions by adsorption onto carbonaceous materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated carbon (AC) fabrics with different surface textures and porosity characteristics were used for the removal of crystal violet (CV) dye from aqueous solutions. Batch adsorption experiments were performed to investigate the CV adsorption performance of the AC fabrics in terms of contact time, temperature, adsorbate concentration and adsorbent amount. Evaluation of the thermodynamic parameters and the adsorption performance of the AC fabrics in ground water and sea water solutions were also carried out. <i<Langmuir</i< isotherm model, pseudo first and pseudo second order kinetics models were utilized to analyze and fit the adsorption data. The introduction of oxygen-based functional groups on the surface of AC fabrics was carried out through a nitric acid treatment. This oxidation process resulted in a significant reduction in the surface area and pore volume, along with a small increase in the average pore size and a significant enhancement in the CV adsorption capacity, indicating that the dye molecules are mainly adsorbed on the external surface of the carbon fabrics. The herein evaluated 428 mg/g adsorption capacity at 55 °C for the oxidized non-woven AC fabric is one of the highest adsorption capacity values reported in the literature for CV removal using AC materials. Thermodynamic studies showed that the adsorption occurs spontaneously and is an endothermic and entropy-driven reaction. Furthermore, pristine and oxidized non-woven AC fabrics displayed more than 90% CV uptake from sea water samples, underlining the great potential these fabrics possess for the removal of dyes from natural/multicomponent waters. crystal violet removal activated carbon fabrics water treatment spectroscopic characterization microscopic characterization thermodynamics Organic chemistry Kyriacos Ioannou verfasserin aut Gkerman Kotanidis verfasserin aut Ioannis Ioannidis verfasserin aut Georgios Constantinides verfasserin aut Mark Baker verfasserin aut Steven Hinder verfasserin aut Christian Mitterer verfasserin aut Ioannis Pashalidis verfasserin aut Nikolaos Kostoglou verfasserin aut Claus Rebholz verfasserin aut In C MDPI AG, 2016 10(2024), 1, p 19 (DE-627)820684074 (DE-600)2813973-2 23115629 nnns volume:10 year:2024 number:1, p 19 https://doi.org/10.3390/c10010019 kostenfrei https://doaj.org/article/68851c3eaf41404e83c7b94f988d355d kostenfrei https://www.mdpi.com/2311-5629/10/1/19 kostenfrei https://doaj.org/toc/2311-5629 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1, p 19 |
allfieldsGer |
10.3390/c10010019 doi (DE-627)DOAJ100536182 (DE-599)DOAJ68851c3eaf41404e83c7b94f988d355d DE-627 ger DE-627 rakwb eng QD241-441 Batuhan Mulla verfasserin aut Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The removal of contaminants from aqueous solutions by adsorption onto carbonaceous materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated carbon (AC) fabrics with different surface textures and porosity characteristics were used for the removal of crystal violet (CV) dye from aqueous solutions. Batch adsorption experiments were performed to investigate the CV adsorption performance of the AC fabrics in terms of contact time, temperature, adsorbate concentration and adsorbent amount. Evaluation of the thermodynamic parameters and the adsorption performance of the AC fabrics in ground water and sea water solutions were also carried out. <i<Langmuir</i< isotherm model, pseudo first and pseudo second order kinetics models were utilized to analyze and fit the adsorption data. The introduction of oxygen-based functional groups on the surface of AC fabrics was carried out through a nitric acid treatment. This oxidation process resulted in a significant reduction in the surface area and pore volume, along with a small increase in the average pore size and a significant enhancement in the CV adsorption capacity, indicating that the dye molecules are mainly adsorbed on the external surface of the carbon fabrics. The herein evaluated 428 mg/g adsorption capacity at 55 °C for the oxidized non-woven AC fabric is one of the highest adsorption capacity values reported in the literature for CV removal using AC materials. Thermodynamic studies showed that the adsorption occurs spontaneously and is an endothermic and entropy-driven reaction. Furthermore, pristine and oxidized non-woven AC fabrics displayed more than 90% CV uptake from sea water samples, underlining the great potential these fabrics possess for the removal of dyes from natural/multicomponent waters. crystal violet removal activated carbon fabrics water treatment spectroscopic characterization microscopic characterization thermodynamics Organic chemistry Kyriacos Ioannou verfasserin aut Gkerman Kotanidis verfasserin aut Ioannis Ioannidis verfasserin aut Georgios Constantinides verfasserin aut Mark Baker verfasserin aut Steven Hinder verfasserin aut Christian Mitterer verfasserin aut Ioannis Pashalidis verfasserin aut Nikolaos Kostoglou verfasserin aut Claus Rebholz verfasserin aut In C MDPI AG, 2016 10(2024), 1, p 19 (DE-627)820684074 (DE-600)2813973-2 23115629 nnns volume:10 year:2024 number:1, p 19 https://doi.org/10.3390/c10010019 kostenfrei https://doaj.org/article/68851c3eaf41404e83c7b94f988d355d kostenfrei https://www.mdpi.com/2311-5629/10/1/19 kostenfrei https://doaj.org/toc/2311-5629 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1, p 19 |
allfieldsSound |
10.3390/c10010019 doi (DE-627)DOAJ100536182 (DE-599)DOAJ68851c3eaf41404e83c7b94f988d355d DE-627 ger DE-627 rakwb eng QD241-441 Batuhan Mulla verfasserin aut Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The removal of contaminants from aqueous solutions by adsorption onto carbonaceous materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated carbon (AC) fabrics with different surface textures and porosity characteristics were used for the removal of crystal violet (CV) dye from aqueous solutions. Batch adsorption experiments were performed to investigate the CV adsorption performance of the AC fabrics in terms of contact time, temperature, adsorbate concentration and adsorbent amount. Evaluation of the thermodynamic parameters and the adsorption performance of the AC fabrics in ground water and sea water solutions were also carried out. <i<Langmuir</i< isotherm model, pseudo first and pseudo second order kinetics models were utilized to analyze and fit the adsorption data. The introduction of oxygen-based functional groups on the surface of AC fabrics was carried out through a nitric acid treatment. This oxidation process resulted in a significant reduction in the surface area and pore volume, along with a small increase in the average pore size and a significant enhancement in the CV adsorption capacity, indicating that the dye molecules are mainly adsorbed on the external surface of the carbon fabrics. The herein evaluated 428 mg/g adsorption capacity at 55 °C for the oxidized non-woven AC fabric is one of the highest adsorption capacity values reported in the literature for CV removal using AC materials. Thermodynamic studies showed that the adsorption occurs spontaneously and is an endothermic and entropy-driven reaction. Furthermore, pristine and oxidized non-woven AC fabrics displayed more than 90% CV uptake from sea water samples, underlining the great potential these fabrics possess for the removal of dyes from natural/multicomponent waters. crystal violet removal activated carbon fabrics water treatment spectroscopic characterization microscopic characterization thermodynamics Organic chemistry Kyriacos Ioannou verfasserin aut Gkerman Kotanidis verfasserin aut Ioannis Ioannidis verfasserin aut Georgios Constantinides verfasserin aut Mark Baker verfasserin aut Steven Hinder verfasserin aut Christian Mitterer verfasserin aut Ioannis Pashalidis verfasserin aut Nikolaos Kostoglou verfasserin aut Claus Rebholz verfasserin aut In C MDPI AG, 2016 10(2024), 1, p 19 (DE-627)820684074 (DE-600)2813973-2 23115629 nnns volume:10 year:2024 number:1, p 19 https://doi.org/10.3390/c10010019 kostenfrei https://doaj.org/article/68851c3eaf41404e83c7b94f988d355d kostenfrei https://www.mdpi.com/2311-5629/10/1/19 kostenfrei https://doaj.org/toc/2311-5629 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1, p 19 |
language |
English |
source |
In C 10(2024), 1, p 19 volume:10 year:2024 number:1, p 19 |
sourceStr |
In C 10(2024), 1, p 19 volume:10 year:2024 number:1, p 19 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
crystal violet removal activated carbon fabrics water treatment spectroscopic characterization microscopic characterization thermodynamics Organic chemistry |
isfreeaccess_bool |
true |
container_title |
C |
authorswithroles_txt_mv |
Batuhan Mulla @@aut@@ Kyriacos Ioannou @@aut@@ Gkerman Kotanidis @@aut@@ Ioannis Ioannidis @@aut@@ Georgios Constantinides @@aut@@ Mark Baker @@aut@@ Steven Hinder @@aut@@ Christian Mitterer @@aut@@ Ioannis Pashalidis @@aut@@ Nikolaos Kostoglou @@aut@@ Claus Rebholz @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
820684074 |
id |
DOAJ100536182 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100536182</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414100517.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/c10010019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100536182</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ68851c3eaf41404e83c7b94f988d355d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Batuhan Mulla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The removal of contaminants from aqueous solutions by adsorption onto carbonaceous materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated carbon (AC) fabrics with different surface textures and porosity characteristics were used for the removal of crystal violet (CV) dye from aqueous solutions. Batch adsorption experiments were performed to investigate the CV adsorption performance of the AC fabrics in terms of contact time, temperature, adsorbate concentration and adsorbent amount. Evaluation of the thermodynamic parameters and the adsorption performance of the AC fabrics in ground water and sea water solutions were also carried out. <i<Langmuir</i< isotherm model, pseudo first and pseudo second order kinetics models were utilized to analyze and fit the adsorption data. The introduction of oxygen-based functional groups on the surface of AC fabrics was carried out through a nitric acid treatment. This oxidation process resulted in a significant reduction in the surface area and pore volume, along with a small increase in the average pore size and a significant enhancement in the CV adsorption capacity, indicating that the dye molecules are mainly adsorbed on the external surface of the carbon fabrics. The herein evaluated 428 mg/g adsorption capacity at 55 °C for the oxidized non-woven AC fabric is one of the highest adsorption capacity values reported in the literature for CV removal using AC materials. Thermodynamic studies showed that the adsorption occurs spontaneously and is an endothermic and entropy-driven reaction. Furthermore, pristine and oxidized non-woven AC fabrics displayed more than 90% CV uptake from sea water samples, underlining the great potential these fabrics possess for the removal of dyes from natural/multicomponent waters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crystal violet removal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">activated carbon fabrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water treatment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectroscopic characterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microscopic characterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kyriacos Ioannou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gkerman Kotanidis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ioannis Ioannidis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georgios Constantinides</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mark Baker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Steven Hinder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christian Mitterer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ioannis Pashalidis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikolaos Kostoglou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claus Rebholz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">C</subfield><subfield code="d">MDPI AG, 2016</subfield><subfield code="g">10(2024), 1, p 19</subfield><subfield code="w">(DE-627)820684074</subfield><subfield code="w">(DE-600)2813973-2</subfield><subfield code="x">23115629</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/c10010019</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/68851c3eaf41404e83c7b94f988d355d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2311-5629/10/1/19</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2311-5629</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 19</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Batuhan Mulla |
spellingShingle |
Batuhan Mulla misc QD241-441 misc crystal violet removal misc activated carbon fabrics misc water treatment misc spectroscopic characterization misc microscopic characterization misc thermodynamics misc Organic chemistry Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics |
authorStr |
Batuhan Mulla |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820684074 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD241-441 |
illustrated |
Not Illustrated |
issn |
23115629 |
topic_title |
QD241-441 Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics crystal violet removal activated carbon fabrics water treatment spectroscopic characterization microscopic characterization thermodynamics |
topic |
misc QD241-441 misc crystal violet removal misc activated carbon fabrics misc water treatment misc spectroscopic characterization misc microscopic characterization misc thermodynamics misc Organic chemistry |
topic_unstemmed |
misc QD241-441 misc crystal violet removal misc activated carbon fabrics misc water treatment misc spectroscopic characterization misc microscopic characterization misc thermodynamics misc Organic chemistry |
topic_browse |
misc QD241-441 misc crystal violet removal misc activated carbon fabrics misc water treatment misc spectroscopic characterization misc microscopic characterization misc thermodynamics misc Organic chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
C |
hierarchy_parent_id |
820684074 |
hierarchy_top_title |
C |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820684074 (DE-600)2813973-2 |
title |
Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics |
ctrlnum |
(DE-627)DOAJ100536182 (DE-599)DOAJ68851c3eaf41404e83c7b94f988d355d |
title_full |
Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics |
author_sort |
Batuhan Mulla |
journal |
C |
journalStr |
C |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Batuhan Mulla Kyriacos Ioannou Gkerman Kotanidis Ioannis Ioannidis Georgios Constantinides Mark Baker Steven Hinder Christian Mitterer Ioannis Pashalidis Nikolaos Kostoglou Claus Rebholz |
container_volume |
10 |
class |
QD241-441 |
format_se |
Elektronische Aufsätze |
author-letter |
Batuhan Mulla |
doi_str_mv |
10.3390/c10010019 |
author2-role |
verfasserin |
title_sort |
removal of crystal violet dye from aqueous solutions through adsorption onto activated carbon fabrics |
callnumber |
QD241-441 |
title_auth |
Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics |
abstract |
The removal of contaminants from aqueous solutions by adsorption onto carbonaceous materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated carbon (AC) fabrics with different surface textures and porosity characteristics were used for the removal of crystal violet (CV) dye from aqueous solutions. Batch adsorption experiments were performed to investigate the CV adsorption performance of the AC fabrics in terms of contact time, temperature, adsorbate concentration and adsorbent amount. Evaluation of the thermodynamic parameters and the adsorption performance of the AC fabrics in ground water and sea water solutions were also carried out. <i<Langmuir</i< isotherm model, pseudo first and pseudo second order kinetics models were utilized to analyze and fit the adsorption data. The introduction of oxygen-based functional groups on the surface of AC fabrics was carried out through a nitric acid treatment. This oxidation process resulted in a significant reduction in the surface area and pore volume, along with a small increase in the average pore size and a significant enhancement in the CV adsorption capacity, indicating that the dye molecules are mainly adsorbed on the external surface of the carbon fabrics. The herein evaluated 428 mg/g adsorption capacity at 55 °C for the oxidized non-woven AC fabric is one of the highest adsorption capacity values reported in the literature for CV removal using AC materials. Thermodynamic studies showed that the adsorption occurs spontaneously and is an endothermic and entropy-driven reaction. Furthermore, pristine and oxidized non-woven AC fabrics displayed more than 90% CV uptake from sea water samples, underlining the great potential these fabrics possess for the removal of dyes from natural/multicomponent waters. |
abstractGer |
The removal of contaminants from aqueous solutions by adsorption onto carbonaceous materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated carbon (AC) fabrics with different surface textures and porosity characteristics were used for the removal of crystal violet (CV) dye from aqueous solutions. Batch adsorption experiments were performed to investigate the CV adsorption performance of the AC fabrics in terms of contact time, temperature, adsorbate concentration and adsorbent amount. Evaluation of the thermodynamic parameters and the adsorption performance of the AC fabrics in ground water and sea water solutions were also carried out. <i<Langmuir</i< isotherm model, pseudo first and pseudo second order kinetics models were utilized to analyze and fit the adsorption data. The introduction of oxygen-based functional groups on the surface of AC fabrics was carried out through a nitric acid treatment. This oxidation process resulted in a significant reduction in the surface area and pore volume, along with a small increase in the average pore size and a significant enhancement in the CV adsorption capacity, indicating that the dye molecules are mainly adsorbed on the external surface of the carbon fabrics. The herein evaluated 428 mg/g adsorption capacity at 55 °C for the oxidized non-woven AC fabric is one of the highest adsorption capacity values reported in the literature for CV removal using AC materials. Thermodynamic studies showed that the adsorption occurs spontaneously and is an endothermic and entropy-driven reaction. Furthermore, pristine and oxidized non-woven AC fabrics displayed more than 90% CV uptake from sea water samples, underlining the great potential these fabrics possess for the removal of dyes from natural/multicomponent waters. |
abstract_unstemmed |
The removal of contaminants from aqueous solutions by adsorption onto carbonaceous materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated carbon (AC) fabrics with different surface textures and porosity characteristics were used for the removal of crystal violet (CV) dye from aqueous solutions. Batch adsorption experiments were performed to investigate the CV adsorption performance of the AC fabrics in terms of contact time, temperature, adsorbate concentration and adsorbent amount. Evaluation of the thermodynamic parameters and the adsorption performance of the AC fabrics in ground water and sea water solutions were also carried out. <i<Langmuir</i< isotherm model, pseudo first and pseudo second order kinetics models were utilized to analyze and fit the adsorption data. The introduction of oxygen-based functional groups on the surface of AC fabrics was carried out through a nitric acid treatment. This oxidation process resulted in a significant reduction in the surface area and pore volume, along with a small increase in the average pore size and a significant enhancement in the CV adsorption capacity, indicating that the dye molecules are mainly adsorbed on the external surface of the carbon fabrics. The herein evaluated 428 mg/g adsorption capacity at 55 °C for the oxidized non-woven AC fabric is one of the highest adsorption capacity values reported in the literature for CV removal using AC materials. Thermodynamic studies showed that the adsorption occurs spontaneously and is an endothermic and entropy-driven reaction. Furthermore, pristine and oxidized non-woven AC fabrics displayed more than 90% CV uptake from sea water samples, underlining the great potential these fabrics possess for the removal of dyes from natural/multicomponent waters. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 19 |
title_short |
Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics |
url |
https://doi.org/10.3390/c10010019 https://doaj.org/article/68851c3eaf41404e83c7b94f988d355d https://www.mdpi.com/2311-5629/10/1/19 https://doaj.org/toc/2311-5629 |
remote_bool |
true |
author2 |
Kyriacos Ioannou Gkerman Kotanidis Ioannis Ioannidis Georgios Constantinides Mark Baker Steven Hinder Christian Mitterer Ioannis Pashalidis Nikolaos Kostoglou Claus Rebholz |
author2Str |
Kyriacos Ioannou Gkerman Kotanidis Ioannis Ioannidis Georgios Constantinides Mark Baker Steven Hinder Christian Mitterer Ioannis Pashalidis Nikolaos Kostoglou Claus Rebholz |
ppnlink |
820684074 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/c10010019 |
callnumber-a |
QD241-441 |
up_date |
2024-07-03T15:16:21.964Z |
_version_ |
1803571462894780416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100536182</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414100517.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/c10010019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100536182</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ68851c3eaf41404e83c7b94f988d355d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Batuhan Mulla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The removal of contaminants from aqueous solutions by adsorption onto carbonaceous materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated carbon (AC) fabrics with different surface textures and porosity characteristics were used for the removal of crystal violet (CV) dye from aqueous solutions. Batch adsorption experiments were performed to investigate the CV adsorption performance of the AC fabrics in terms of contact time, temperature, adsorbate concentration and adsorbent amount. Evaluation of the thermodynamic parameters and the adsorption performance of the AC fabrics in ground water and sea water solutions were also carried out. <i<Langmuir</i< isotherm model, pseudo first and pseudo second order kinetics models were utilized to analyze and fit the adsorption data. The introduction of oxygen-based functional groups on the surface of AC fabrics was carried out through a nitric acid treatment. This oxidation process resulted in a significant reduction in the surface area and pore volume, along with a small increase in the average pore size and a significant enhancement in the CV adsorption capacity, indicating that the dye molecules are mainly adsorbed on the external surface of the carbon fabrics. The herein evaluated 428 mg/g adsorption capacity at 55 °C for the oxidized non-woven AC fabric is one of the highest adsorption capacity values reported in the literature for CV removal using AC materials. Thermodynamic studies showed that the adsorption occurs spontaneously and is an endothermic and entropy-driven reaction. Furthermore, pristine and oxidized non-woven AC fabrics displayed more than 90% CV uptake from sea water samples, underlining the great potential these fabrics possess for the removal of dyes from natural/multicomponent waters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crystal violet removal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">activated carbon fabrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water treatment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectroscopic characterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microscopic characterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kyriacos Ioannou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gkerman Kotanidis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ioannis Ioannidis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georgios Constantinides</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mark Baker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Steven Hinder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christian Mitterer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ioannis Pashalidis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikolaos Kostoglou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claus Rebholz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">C</subfield><subfield code="d">MDPI AG, 2016</subfield><subfield code="g">10(2024), 1, p 19</subfield><subfield code="w">(DE-627)820684074</subfield><subfield code="w">(DE-600)2813973-2</subfield><subfield code="x">23115629</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/c10010019</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/68851c3eaf41404e83c7b94f988d355d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2311-5629/10/1/19</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2311-5629</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 19</subfield></datafield></record></collection>
|
score |
7.401348 |