Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA
Shrinkage during hardening and curing is one of the largest challenges for the widespread application of metakaolin-based geopolymers (MKGs). To solve this problem, a silane coupling agent (SCA) and waterborne epoxy resin (WER) were used to synthesize MKG composites. The individual and synergistic e...
Ausführliche Beschreibung
Autor*in: |
Mo Zhang [verfasserIn] Yongquan Zang [verfasserIn] Lingyan Shan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Buildings - MDPI AG, 2012, 14(2024), 3, p 586 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2024 ; number:3, p 586 |
Links: |
---|
DOI / URN: |
10.3390/buildings14030586 |
---|
Katalog-ID: |
DOAJ100540848 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ100540848 | ||
003 | DE-627 | ||
005 | 20240414100555.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/buildings14030586 |2 doi | |
035 | |a (DE-627)DOAJ100540848 | ||
035 | |a (DE-599)DOAJe3d89263085a4340834b2bf7b2994a5a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TH1-9745 | |
100 | 0 | |a Mo Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Shrinkage during hardening and curing is one of the largest challenges for the widespread application of metakaolin-based geopolymers (MKGs). To solve this problem, a silane coupling agent (SCA) and waterborne epoxy resin (WER) were used to synthesize MKG composites. The individual and synergistic effects of the SCA and WER on chemical, autogenous, and drying shrinkage were assessed, the modification mechanisms were investigated by microstructural characterization, and shrinkage resistance was evaluated by the chloride ion permeability of MKG composite coatings. The results showed that the SCA and WER significantly decreased the chemical shrinkage, autogenous shrinkage, and drying shrinkage of the MKG, with the highest reductions of 46.4%, 131.2%, and 25.2% obtained by the combination of 20 wt% WER and 1 wt% SCA. The incorporation of the organic modifiers densified the microstructure. Compared with the MKG, the total volume of mesopores and macropores in MKG-WER, MKG-SCA, and MKG-WER-SCA decreased by 11.5%, 8.7%, and 3.8%, respectively. In particular, the silanol hydrolyzed from the SCA can react with the opened epoxy ring of the WER and the aluminosilicate oligomers simultaneously to form a compact network and resist shrinkage during the hardening and continuous reaction of the geopolymer. Furthermore, the apparently lowered chloride ion diffusion coefficient of concrete (i.e., reduction of 51.4% to 59.5%) by the WER- and SCA-modified MKG coatings verified their improved shrinkage resistance. The findings in this study provide promising methods to essentially solve the shrinkage problem of MKGs at the microscale and shed light on the modification mechanism by WERs and SCAs, and they also suggest the applicability of MKG composites in protective coatings for marine concrete. | ||
650 | 4 | |a metakaolin-based geopolymer | |
650 | 4 | |a chemical shrinkage | |
650 | 4 | |a autogenous shrinkage | |
650 | 4 | |a drying shrinkage | |
650 | 4 | |a organic modification | |
653 | 0 | |a Building construction | |
700 | 0 | |a Yongquan Zang |e verfasserin |4 aut | |
700 | 0 | |a Lingyan Shan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Buildings |d MDPI AG, 2012 |g 14(2024), 3, p 586 |w (DE-627)718622251 |w (DE-600)2661539-3 |x 20755309 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2024 |g number:3, p 586 |
856 | 4 | 0 | |u https://doi.org/10.3390/buildings14030586 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e3d89263085a4340834b2bf7b2994a5a |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-5309/14/3/586 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-5309 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2024 |e 3, p 586 |
author_variant |
m z mz y z yz l s ls |
---|---|
matchkey_str |
article:20755309:2024----::nacnvlmtisaiiyfeaalnaegooyecmoiewt |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TH |
publishDate |
2024 |
allfields |
10.3390/buildings14030586 doi (DE-627)DOAJ100540848 (DE-599)DOAJe3d89263085a4340834b2bf7b2994a5a DE-627 ger DE-627 rakwb eng TH1-9745 Mo Zhang verfasserin aut Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Shrinkage during hardening and curing is one of the largest challenges for the widespread application of metakaolin-based geopolymers (MKGs). To solve this problem, a silane coupling agent (SCA) and waterborne epoxy resin (WER) were used to synthesize MKG composites. The individual and synergistic effects of the SCA and WER on chemical, autogenous, and drying shrinkage were assessed, the modification mechanisms were investigated by microstructural characterization, and shrinkage resistance was evaluated by the chloride ion permeability of MKG composite coatings. The results showed that the SCA and WER significantly decreased the chemical shrinkage, autogenous shrinkage, and drying shrinkage of the MKG, with the highest reductions of 46.4%, 131.2%, and 25.2% obtained by the combination of 20 wt% WER and 1 wt% SCA. The incorporation of the organic modifiers densified the microstructure. Compared with the MKG, the total volume of mesopores and macropores in MKG-WER, MKG-SCA, and MKG-WER-SCA decreased by 11.5%, 8.7%, and 3.8%, respectively. In particular, the silanol hydrolyzed from the SCA can react with the opened epoxy ring of the WER and the aluminosilicate oligomers simultaneously to form a compact network and resist shrinkage during the hardening and continuous reaction of the geopolymer. Furthermore, the apparently lowered chloride ion diffusion coefficient of concrete (i.e., reduction of 51.4% to 59.5%) by the WER- and SCA-modified MKG coatings verified their improved shrinkage resistance. The findings in this study provide promising methods to essentially solve the shrinkage problem of MKGs at the microscale and shed light on the modification mechanism by WERs and SCAs, and they also suggest the applicability of MKG composites in protective coatings for marine concrete. metakaolin-based geopolymer chemical shrinkage autogenous shrinkage drying shrinkage organic modification Building construction Yongquan Zang verfasserin aut Lingyan Shan verfasserin aut In Buildings MDPI AG, 2012 14(2024), 3, p 586 (DE-627)718622251 (DE-600)2661539-3 20755309 nnns volume:14 year:2024 number:3, p 586 https://doi.org/10.3390/buildings14030586 kostenfrei https://doaj.org/article/e3d89263085a4340834b2bf7b2994a5a kostenfrei https://www.mdpi.com/2075-5309/14/3/586 kostenfrei https://doaj.org/toc/2075-5309 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2024 3, p 586 |
spelling |
10.3390/buildings14030586 doi (DE-627)DOAJ100540848 (DE-599)DOAJe3d89263085a4340834b2bf7b2994a5a DE-627 ger DE-627 rakwb eng TH1-9745 Mo Zhang verfasserin aut Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Shrinkage during hardening and curing is one of the largest challenges for the widespread application of metakaolin-based geopolymers (MKGs). To solve this problem, a silane coupling agent (SCA) and waterborne epoxy resin (WER) were used to synthesize MKG composites. The individual and synergistic effects of the SCA and WER on chemical, autogenous, and drying shrinkage were assessed, the modification mechanisms were investigated by microstructural characterization, and shrinkage resistance was evaluated by the chloride ion permeability of MKG composite coatings. The results showed that the SCA and WER significantly decreased the chemical shrinkage, autogenous shrinkage, and drying shrinkage of the MKG, with the highest reductions of 46.4%, 131.2%, and 25.2% obtained by the combination of 20 wt% WER and 1 wt% SCA. The incorporation of the organic modifiers densified the microstructure. Compared with the MKG, the total volume of mesopores and macropores in MKG-WER, MKG-SCA, and MKG-WER-SCA decreased by 11.5%, 8.7%, and 3.8%, respectively. In particular, the silanol hydrolyzed from the SCA can react with the opened epoxy ring of the WER and the aluminosilicate oligomers simultaneously to form a compact network and resist shrinkage during the hardening and continuous reaction of the geopolymer. Furthermore, the apparently lowered chloride ion diffusion coefficient of concrete (i.e., reduction of 51.4% to 59.5%) by the WER- and SCA-modified MKG coatings verified their improved shrinkage resistance. The findings in this study provide promising methods to essentially solve the shrinkage problem of MKGs at the microscale and shed light on the modification mechanism by WERs and SCAs, and they also suggest the applicability of MKG composites in protective coatings for marine concrete. metakaolin-based geopolymer chemical shrinkage autogenous shrinkage drying shrinkage organic modification Building construction Yongquan Zang verfasserin aut Lingyan Shan verfasserin aut In Buildings MDPI AG, 2012 14(2024), 3, p 586 (DE-627)718622251 (DE-600)2661539-3 20755309 nnns volume:14 year:2024 number:3, p 586 https://doi.org/10.3390/buildings14030586 kostenfrei https://doaj.org/article/e3d89263085a4340834b2bf7b2994a5a kostenfrei https://www.mdpi.com/2075-5309/14/3/586 kostenfrei https://doaj.org/toc/2075-5309 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2024 3, p 586 |
allfields_unstemmed |
10.3390/buildings14030586 doi (DE-627)DOAJ100540848 (DE-599)DOAJe3d89263085a4340834b2bf7b2994a5a DE-627 ger DE-627 rakwb eng TH1-9745 Mo Zhang verfasserin aut Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Shrinkage during hardening and curing is one of the largest challenges for the widespread application of metakaolin-based geopolymers (MKGs). To solve this problem, a silane coupling agent (SCA) and waterborne epoxy resin (WER) were used to synthesize MKG composites. The individual and synergistic effects of the SCA and WER on chemical, autogenous, and drying shrinkage were assessed, the modification mechanisms were investigated by microstructural characterization, and shrinkage resistance was evaluated by the chloride ion permeability of MKG composite coatings. The results showed that the SCA and WER significantly decreased the chemical shrinkage, autogenous shrinkage, and drying shrinkage of the MKG, with the highest reductions of 46.4%, 131.2%, and 25.2% obtained by the combination of 20 wt% WER and 1 wt% SCA. The incorporation of the organic modifiers densified the microstructure. Compared with the MKG, the total volume of mesopores and macropores in MKG-WER, MKG-SCA, and MKG-WER-SCA decreased by 11.5%, 8.7%, and 3.8%, respectively. In particular, the silanol hydrolyzed from the SCA can react with the opened epoxy ring of the WER and the aluminosilicate oligomers simultaneously to form a compact network and resist shrinkage during the hardening and continuous reaction of the geopolymer. Furthermore, the apparently lowered chloride ion diffusion coefficient of concrete (i.e., reduction of 51.4% to 59.5%) by the WER- and SCA-modified MKG coatings verified their improved shrinkage resistance. The findings in this study provide promising methods to essentially solve the shrinkage problem of MKGs at the microscale and shed light on the modification mechanism by WERs and SCAs, and they also suggest the applicability of MKG composites in protective coatings for marine concrete. metakaolin-based geopolymer chemical shrinkage autogenous shrinkage drying shrinkage organic modification Building construction Yongquan Zang verfasserin aut Lingyan Shan verfasserin aut In Buildings MDPI AG, 2012 14(2024), 3, p 586 (DE-627)718622251 (DE-600)2661539-3 20755309 nnns volume:14 year:2024 number:3, p 586 https://doi.org/10.3390/buildings14030586 kostenfrei https://doaj.org/article/e3d89263085a4340834b2bf7b2994a5a kostenfrei https://www.mdpi.com/2075-5309/14/3/586 kostenfrei https://doaj.org/toc/2075-5309 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2024 3, p 586 |
allfieldsGer |
10.3390/buildings14030586 doi (DE-627)DOAJ100540848 (DE-599)DOAJe3d89263085a4340834b2bf7b2994a5a DE-627 ger DE-627 rakwb eng TH1-9745 Mo Zhang verfasserin aut Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Shrinkage during hardening and curing is one of the largest challenges for the widespread application of metakaolin-based geopolymers (MKGs). To solve this problem, a silane coupling agent (SCA) and waterborne epoxy resin (WER) were used to synthesize MKG composites. The individual and synergistic effects of the SCA and WER on chemical, autogenous, and drying shrinkage were assessed, the modification mechanisms were investigated by microstructural characterization, and shrinkage resistance was evaluated by the chloride ion permeability of MKG composite coatings. The results showed that the SCA and WER significantly decreased the chemical shrinkage, autogenous shrinkage, and drying shrinkage of the MKG, with the highest reductions of 46.4%, 131.2%, and 25.2% obtained by the combination of 20 wt% WER and 1 wt% SCA. The incorporation of the organic modifiers densified the microstructure. Compared with the MKG, the total volume of mesopores and macropores in MKG-WER, MKG-SCA, and MKG-WER-SCA decreased by 11.5%, 8.7%, and 3.8%, respectively. In particular, the silanol hydrolyzed from the SCA can react with the opened epoxy ring of the WER and the aluminosilicate oligomers simultaneously to form a compact network and resist shrinkage during the hardening and continuous reaction of the geopolymer. Furthermore, the apparently lowered chloride ion diffusion coefficient of concrete (i.e., reduction of 51.4% to 59.5%) by the WER- and SCA-modified MKG coatings verified their improved shrinkage resistance. The findings in this study provide promising methods to essentially solve the shrinkage problem of MKGs at the microscale and shed light on the modification mechanism by WERs and SCAs, and they also suggest the applicability of MKG composites in protective coatings for marine concrete. metakaolin-based geopolymer chemical shrinkage autogenous shrinkage drying shrinkage organic modification Building construction Yongquan Zang verfasserin aut Lingyan Shan verfasserin aut In Buildings MDPI AG, 2012 14(2024), 3, p 586 (DE-627)718622251 (DE-600)2661539-3 20755309 nnns volume:14 year:2024 number:3, p 586 https://doi.org/10.3390/buildings14030586 kostenfrei https://doaj.org/article/e3d89263085a4340834b2bf7b2994a5a kostenfrei https://www.mdpi.com/2075-5309/14/3/586 kostenfrei https://doaj.org/toc/2075-5309 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2024 3, p 586 |
allfieldsSound |
10.3390/buildings14030586 doi (DE-627)DOAJ100540848 (DE-599)DOAJe3d89263085a4340834b2bf7b2994a5a DE-627 ger DE-627 rakwb eng TH1-9745 Mo Zhang verfasserin aut Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Shrinkage during hardening and curing is one of the largest challenges for the widespread application of metakaolin-based geopolymers (MKGs). To solve this problem, a silane coupling agent (SCA) and waterborne epoxy resin (WER) were used to synthesize MKG composites. The individual and synergistic effects of the SCA and WER on chemical, autogenous, and drying shrinkage were assessed, the modification mechanisms were investigated by microstructural characterization, and shrinkage resistance was evaluated by the chloride ion permeability of MKG composite coatings. The results showed that the SCA and WER significantly decreased the chemical shrinkage, autogenous shrinkage, and drying shrinkage of the MKG, with the highest reductions of 46.4%, 131.2%, and 25.2% obtained by the combination of 20 wt% WER and 1 wt% SCA. The incorporation of the organic modifiers densified the microstructure. Compared with the MKG, the total volume of mesopores and macropores in MKG-WER, MKG-SCA, and MKG-WER-SCA decreased by 11.5%, 8.7%, and 3.8%, respectively. In particular, the silanol hydrolyzed from the SCA can react with the opened epoxy ring of the WER and the aluminosilicate oligomers simultaneously to form a compact network and resist shrinkage during the hardening and continuous reaction of the geopolymer. Furthermore, the apparently lowered chloride ion diffusion coefficient of concrete (i.e., reduction of 51.4% to 59.5%) by the WER- and SCA-modified MKG coatings verified their improved shrinkage resistance. The findings in this study provide promising methods to essentially solve the shrinkage problem of MKGs at the microscale and shed light on the modification mechanism by WERs and SCAs, and they also suggest the applicability of MKG composites in protective coatings for marine concrete. metakaolin-based geopolymer chemical shrinkage autogenous shrinkage drying shrinkage organic modification Building construction Yongquan Zang verfasserin aut Lingyan Shan verfasserin aut In Buildings MDPI AG, 2012 14(2024), 3, p 586 (DE-627)718622251 (DE-600)2661539-3 20755309 nnns volume:14 year:2024 number:3, p 586 https://doi.org/10.3390/buildings14030586 kostenfrei https://doaj.org/article/e3d89263085a4340834b2bf7b2994a5a kostenfrei https://www.mdpi.com/2075-5309/14/3/586 kostenfrei https://doaj.org/toc/2075-5309 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2024 3, p 586 |
language |
English |
source |
In Buildings 14(2024), 3, p 586 volume:14 year:2024 number:3, p 586 |
sourceStr |
In Buildings 14(2024), 3, p 586 volume:14 year:2024 number:3, p 586 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
metakaolin-based geopolymer chemical shrinkage autogenous shrinkage drying shrinkage organic modification Building construction |
isfreeaccess_bool |
true |
container_title |
Buildings |
authorswithroles_txt_mv |
Mo Zhang @@aut@@ Yongquan Zang @@aut@@ Lingyan Shan @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
718622251 |
id |
DOAJ100540848 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100540848</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414100555.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/buildings14030586</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100540848</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe3d89263085a4340834b2bf7b2994a5a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TH1-9745</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mo Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Shrinkage during hardening and curing is one of the largest challenges for the widespread application of metakaolin-based geopolymers (MKGs). To solve this problem, a silane coupling agent (SCA) and waterborne epoxy resin (WER) were used to synthesize MKG composites. The individual and synergistic effects of the SCA and WER on chemical, autogenous, and drying shrinkage were assessed, the modification mechanisms were investigated by microstructural characterization, and shrinkage resistance was evaluated by the chloride ion permeability of MKG composite coatings. The results showed that the SCA and WER significantly decreased the chemical shrinkage, autogenous shrinkage, and drying shrinkage of the MKG, with the highest reductions of 46.4%, 131.2%, and 25.2% obtained by the combination of 20 wt% WER and 1 wt% SCA. The incorporation of the organic modifiers densified the microstructure. Compared with the MKG, the total volume of mesopores and macropores in MKG-WER, MKG-SCA, and MKG-WER-SCA decreased by 11.5%, 8.7%, and 3.8%, respectively. In particular, the silanol hydrolyzed from the SCA can react with the opened epoxy ring of the WER and the aluminosilicate oligomers simultaneously to form a compact network and resist shrinkage during the hardening and continuous reaction of the geopolymer. Furthermore, the apparently lowered chloride ion diffusion coefficient of concrete (i.e., reduction of 51.4% to 59.5%) by the WER- and SCA-modified MKG coatings verified their improved shrinkage resistance. The findings in this study provide promising methods to essentially solve the shrinkage problem of MKGs at the microscale and shed light on the modification mechanism by WERs and SCAs, and they also suggest the applicability of MKG composites in protective coatings for marine concrete.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metakaolin-based geopolymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical shrinkage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autogenous shrinkage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drying shrinkage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">organic modification</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Building construction</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongquan Zang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lingyan Shan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Buildings</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">14(2024), 3, p 586</subfield><subfield code="w">(DE-627)718622251</subfield><subfield code="w">(DE-600)2661539-3</subfield><subfield code="x">20755309</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 586</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/buildings14030586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e3d89263085a4340834b2bf7b2994a5a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-5309/14/3/586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-5309</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 586</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mo Zhang |
spellingShingle |
Mo Zhang misc TH1-9745 misc metakaolin-based geopolymer misc chemical shrinkage misc autogenous shrinkage misc drying shrinkage misc organic modification misc Building construction Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA |
authorStr |
Mo Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718622251 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TH1-9745 |
illustrated |
Not Illustrated |
issn |
20755309 |
topic_title |
TH1-9745 Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA metakaolin-based geopolymer chemical shrinkage autogenous shrinkage drying shrinkage organic modification |
topic |
misc TH1-9745 misc metakaolin-based geopolymer misc chemical shrinkage misc autogenous shrinkage misc drying shrinkage misc organic modification misc Building construction |
topic_unstemmed |
misc TH1-9745 misc metakaolin-based geopolymer misc chemical shrinkage misc autogenous shrinkage misc drying shrinkage misc organic modification misc Building construction |
topic_browse |
misc TH1-9745 misc metakaolin-based geopolymer misc chemical shrinkage misc autogenous shrinkage misc drying shrinkage misc organic modification misc Building construction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Buildings |
hierarchy_parent_id |
718622251 |
hierarchy_top_title |
Buildings |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718622251 (DE-600)2661539-3 |
title |
Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA |
ctrlnum |
(DE-627)DOAJ100540848 (DE-599)DOAJe3d89263085a4340834b2bf7b2994a5a |
title_full |
Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA |
author_sort |
Mo Zhang |
journal |
Buildings |
journalStr |
Buildings |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Mo Zhang Yongquan Zang Lingyan Shan |
container_volume |
14 |
class |
TH1-9745 |
format_se |
Elektronische Aufsätze |
author-letter |
Mo Zhang |
doi_str_mv |
10.3390/buildings14030586 |
author2-role |
verfasserin |
title_sort |
enhancing volumetric stability of metakaolin-based geopolymer composites with organic modifiers wer and sca |
callnumber |
TH1-9745 |
title_auth |
Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA |
abstract |
Shrinkage during hardening and curing is one of the largest challenges for the widespread application of metakaolin-based geopolymers (MKGs). To solve this problem, a silane coupling agent (SCA) and waterborne epoxy resin (WER) were used to synthesize MKG composites. The individual and synergistic effects of the SCA and WER on chemical, autogenous, and drying shrinkage were assessed, the modification mechanisms were investigated by microstructural characterization, and shrinkage resistance was evaluated by the chloride ion permeability of MKG composite coatings. The results showed that the SCA and WER significantly decreased the chemical shrinkage, autogenous shrinkage, and drying shrinkage of the MKG, with the highest reductions of 46.4%, 131.2%, and 25.2% obtained by the combination of 20 wt% WER and 1 wt% SCA. The incorporation of the organic modifiers densified the microstructure. Compared with the MKG, the total volume of mesopores and macropores in MKG-WER, MKG-SCA, and MKG-WER-SCA decreased by 11.5%, 8.7%, and 3.8%, respectively. In particular, the silanol hydrolyzed from the SCA can react with the opened epoxy ring of the WER and the aluminosilicate oligomers simultaneously to form a compact network and resist shrinkage during the hardening and continuous reaction of the geopolymer. Furthermore, the apparently lowered chloride ion diffusion coefficient of concrete (i.e., reduction of 51.4% to 59.5%) by the WER- and SCA-modified MKG coatings verified their improved shrinkage resistance. The findings in this study provide promising methods to essentially solve the shrinkage problem of MKGs at the microscale and shed light on the modification mechanism by WERs and SCAs, and they also suggest the applicability of MKG composites in protective coatings for marine concrete. |
abstractGer |
Shrinkage during hardening and curing is one of the largest challenges for the widespread application of metakaolin-based geopolymers (MKGs). To solve this problem, a silane coupling agent (SCA) and waterborne epoxy resin (WER) were used to synthesize MKG composites. The individual and synergistic effects of the SCA and WER on chemical, autogenous, and drying shrinkage were assessed, the modification mechanisms were investigated by microstructural characterization, and shrinkage resistance was evaluated by the chloride ion permeability of MKG composite coatings. The results showed that the SCA and WER significantly decreased the chemical shrinkage, autogenous shrinkage, and drying shrinkage of the MKG, with the highest reductions of 46.4%, 131.2%, and 25.2% obtained by the combination of 20 wt% WER and 1 wt% SCA. The incorporation of the organic modifiers densified the microstructure. Compared with the MKG, the total volume of mesopores and macropores in MKG-WER, MKG-SCA, and MKG-WER-SCA decreased by 11.5%, 8.7%, and 3.8%, respectively. In particular, the silanol hydrolyzed from the SCA can react with the opened epoxy ring of the WER and the aluminosilicate oligomers simultaneously to form a compact network and resist shrinkage during the hardening and continuous reaction of the geopolymer. Furthermore, the apparently lowered chloride ion diffusion coefficient of concrete (i.e., reduction of 51.4% to 59.5%) by the WER- and SCA-modified MKG coatings verified their improved shrinkage resistance. The findings in this study provide promising methods to essentially solve the shrinkage problem of MKGs at the microscale and shed light on the modification mechanism by WERs and SCAs, and they also suggest the applicability of MKG composites in protective coatings for marine concrete. |
abstract_unstemmed |
Shrinkage during hardening and curing is one of the largest challenges for the widespread application of metakaolin-based geopolymers (MKGs). To solve this problem, a silane coupling agent (SCA) and waterborne epoxy resin (WER) were used to synthesize MKG composites. The individual and synergistic effects of the SCA and WER on chemical, autogenous, and drying shrinkage were assessed, the modification mechanisms were investigated by microstructural characterization, and shrinkage resistance was evaluated by the chloride ion permeability of MKG composite coatings. The results showed that the SCA and WER significantly decreased the chemical shrinkage, autogenous shrinkage, and drying shrinkage of the MKG, with the highest reductions of 46.4%, 131.2%, and 25.2% obtained by the combination of 20 wt% WER and 1 wt% SCA. The incorporation of the organic modifiers densified the microstructure. Compared with the MKG, the total volume of mesopores and macropores in MKG-WER, MKG-SCA, and MKG-WER-SCA decreased by 11.5%, 8.7%, and 3.8%, respectively. In particular, the silanol hydrolyzed from the SCA can react with the opened epoxy ring of the WER and the aluminosilicate oligomers simultaneously to form a compact network and resist shrinkage during the hardening and continuous reaction of the geopolymer. Furthermore, the apparently lowered chloride ion diffusion coefficient of concrete (i.e., reduction of 51.4% to 59.5%) by the WER- and SCA-modified MKG coatings verified their improved shrinkage resistance. The findings in this study provide promising methods to essentially solve the shrinkage problem of MKGs at the microscale and shed light on the modification mechanism by WERs and SCAs, and they also suggest the applicability of MKG composites in protective coatings for marine concrete. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
3, p 586 |
title_short |
Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA |
url |
https://doi.org/10.3390/buildings14030586 https://doaj.org/article/e3d89263085a4340834b2bf7b2994a5a https://www.mdpi.com/2075-5309/14/3/586 https://doaj.org/toc/2075-5309 |
remote_bool |
true |
author2 |
Yongquan Zang Lingyan Shan |
author2Str |
Yongquan Zang Lingyan Shan |
ppnlink |
718622251 |
callnumber-subject |
TH - Building Construction |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/buildings14030586 |
callnumber-a |
TH1-9745 |
up_date |
2024-07-03T15:18:14.842Z |
_version_ |
1803571581263282176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100540848</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414100555.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/buildings14030586</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100540848</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe3d89263085a4340834b2bf7b2994a5a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TH1-9745</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mo Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Shrinkage during hardening and curing is one of the largest challenges for the widespread application of metakaolin-based geopolymers (MKGs). To solve this problem, a silane coupling agent (SCA) and waterborne epoxy resin (WER) were used to synthesize MKG composites. The individual and synergistic effects of the SCA and WER on chemical, autogenous, and drying shrinkage were assessed, the modification mechanisms were investigated by microstructural characterization, and shrinkage resistance was evaluated by the chloride ion permeability of MKG composite coatings. The results showed that the SCA and WER significantly decreased the chemical shrinkage, autogenous shrinkage, and drying shrinkage of the MKG, with the highest reductions of 46.4%, 131.2%, and 25.2% obtained by the combination of 20 wt% WER and 1 wt% SCA. The incorporation of the organic modifiers densified the microstructure. Compared with the MKG, the total volume of mesopores and macropores in MKG-WER, MKG-SCA, and MKG-WER-SCA decreased by 11.5%, 8.7%, and 3.8%, respectively. In particular, the silanol hydrolyzed from the SCA can react with the opened epoxy ring of the WER and the aluminosilicate oligomers simultaneously to form a compact network and resist shrinkage during the hardening and continuous reaction of the geopolymer. Furthermore, the apparently lowered chloride ion diffusion coefficient of concrete (i.e., reduction of 51.4% to 59.5%) by the WER- and SCA-modified MKG coatings verified their improved shrinkage resistance. The findings in this study provide promising methods to essentially solve the shrinkage problem of MKGs at the microscale and shed light on the modification mechanism by WERs and SCAs, and they also suggest the applicability of MKG composites in protective coatings for marine concrete.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metakaolin-based geopolymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical shrinkage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autogenous shrinkage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drying shrinkage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">organic modification</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Building construction</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongquan Zang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lingyan Shan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Buildings</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">14(2024), 3, p 586</subfield><subfield code="w">(DE-627)718622251</subfield><subfield code="w">(DE-600)2661539-3</subfield><subfield code="x">20755309</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 586</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/buildings14030586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e3d89263085a4340834b2bf7b2994a5a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-5309/14/3/586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-5309</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 586</subfield></datafield></record></collection>
|
score |
7.401066 |