Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy
This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emission...
Ausführliche Beschreibung
Autor*in: |
Christian Bipongo Ndeke [verfasserIn] Marco Adonis [verfasserIn] Ali Almaktoof [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 14(2024), 6, p 2659 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2024 ; number:6, p 2659 |
Links: |
---|
DOI / URN: |
10.3390/app14062659 |
---|
Katalog-ID: |
DOAJ100875513 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ100875513 | ||
003 | DE-627 | ||
005 | 20240414131655.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app14062659 |2 doi | |
035 | |a (DE-627)DOAJ100875513 | ||
035 | |a (DE-599)DOAJc2cfff632148444785b88764f2f1cdee | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Christian Bipongo Ndeke |e verfasserin |4 aut | |
245 | 1 | 0 | |a Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emissions. To solve these problems, several countries have adopted actions for widespread renewable energy deployment, which includes wind energy, solar power, biomass power, tidal, and hydropower. These sources are considered as significant in delivering clean energy and reducing greenhouse gas emissions for sustainable improvement. As these sources play an increasingly vital role in the global energy landscape, the efficient management of these intermittent sources is essential for grid stability and sustainability. This paper aimed to develop an energy management strategy for DC microgrids to supply power to a DC microgrid system. The main objective of this paper was to implement an energy management system to ensure the proper operation of DC microgrid systems utilizing Simulink blocks available in MATLAB/Simulink 2020b software. The simulation results demonstrated that the developed energy management algorithm was unconditionally reliable, ensuring the proper operation of the microgrid systems. Additionally, the results demonstrated that the energy management strategy exhibited robust performance across different scenarios, effectively balancing energy generation and consumption while ensuring the reliable operation of the microgrid system. Moreover, the developed algorithm model presents another advantage, as it enables users to access and to change any control parameters within the DC microgrid. By comparing these results with the literature, the developed energy management algorithm provides safety and the automatic control of the microgrid. | ||
650 | 4 | |a energy management system | |
650 | 4 | |a DC microgrid | |
650 | 4 | |a renewable energy | |
650 | 4 | |a distributed generation | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Marco Adonis |e verfasserin |4 aut | |
700 | 0 | |a Ali Almaktoof |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 14(2024), 6, p 2659 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2024 |g number:6, p 2659 |
856 | 4 | 0 | |u https://doi.org/10.3390/app14062659 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c2cfff632148444785b88764f2f1cdee |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/14/6/2659 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2024 |e 6, p 2659 |
author_variant |
c b n cbn m a ma a a aa |
---|---|
matchkey_str |
article:20763417:2024----::nryaaeettaeyodmcordytmihhiprateer |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TA |
publishDate |
2024 |
allfields |
10.3390/app14062659 doi (DE-627)DOAJ100875513 (DE-599)DOAJc2cfff632148444785b88764f2f1cdee DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Christian Bipongo Ndeke verfasserin aut Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emissions. To solve these problems, several countries have adopted actions for widespread renewable energy deployment, which includes wind energy, solar power, biomass power, tidal, and hydropower. These sources are considered as significant in delivering clean energy and reducing greenhouse gas emissions for sustainable improvement. As these sources play an increasingly vital role in the global energy landscape, the efficient management of these intermittent sources is essential for grid stability and sustainability. This paper aimed to develop an energy management strategy for DC microgrids to supply power to a DC microgrid system. The main objective of this paper was to implement an energy management system to ensure the proper operation of DC microgrid systems utilizing Simulink blocks available in MATLAB/Simulink 2020b software. The simulation results demonstrated that the developed energy management algorithm was unconditionally reliable, ensuring the proper operation of the microgrid systems. Additionally, the results demonstrated that the energy management strategy exhibited robust performance across different scenarios, effectively balancing energy generation and consumption while ensuring the reliable operation of the microgrid system. Moreover, the developed algorithm model presents another advantage, as it enables users to access and to change any control parameters within the DC microgrid. By comparing these results with the literature, the developed energy management algorithm provides safety and the automatic control of the microgrid. energy management system DC microgrid renewable energy distributed generation Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Marco Adonis verfasserin aut Ali Almaktoof verfasserin aut In Applied Sciences MDPI AG, 2012 14(2024), 6, p 2659 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2024 number:6, p 2659 https://doi.org/10.3390/app14062659 kostenfrei https://doaj.org/article/c2cfff632148444785b88764f2f1cdee kostenfrei https://www.mdpi.com/2076-3417/14/6/2659 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 6, p 2659 |
spelling |
10.3390/app14062659 doi (DE-627)DOAJ100875513 (DE-599)DOAJc2cfff632148444785b88764f2f1cdee DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Christian Bipongo Ndeke verfasserin aut Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emissions. To solve these problems, several countries have adopted actions for widespread renewable energy deployment, which includes wind energy, solar power, biomass power, tidal, and hydropower. These sources are considered as significant in delivering clean energy and reducing greenhouse gas emissions for sustainable improvement. As these sources play an increasingly vital role in the global energy landscape, the efficient management of these intermittent sources is essential for grid stability and sustainability. This paper aimed to develop an energy management strategy for DC microgrids to supply power to a DC microgrid system. The main objective of this paper was to implement an energy management system to ensure the proper operation of DC microgrid systems utilizing Simulink blocks available in MATLAB/Simulink 2020b software. The simulation results demonstrated that the developed energy management algorithm was unconditionally reliable, ensuring the proper operation of the microgrid systems. Additionally, the results demonstrated that the energy management strategy exhibited robust performance across different scenarios, effectively balancing energy generation and consumption while ensuring the reliable operation of the microgrid system. Moreover, the developed algorithm model presents another advantage, as it enables users to access and to change any control parameters within the DC microgrid. By comparing these results with the literature, the developed energy management algorithm provides safety and the automatic control of the microgrid. energy management system DC microgrid renewable energy distributed generation Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Marco Adonis verfasserin aut Ali Almaktoof verfasserin aut In Applied Sciences MDPI AG, 2012 14(2024), 6, p 2659 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2024 number:6, p 2659 https://doi.org/10.3390/app14062659 kostenfrei https://doaj.org/article/c2cfff632148444785b88764f2f1cdee kostenfrei https://www.mdpi.com/2076-3417/14/6/2659 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 6, p 2659 |
allfields_unstemmed |
10.3390/app14062659 doi (DE-627)DOAJ100875513 (DE-599)DOAJc2cfff632148444785b88764f2f1cdee DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Christian Bipongo Ndeke verfasserin aut Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emissions. To solve these problems, several countries have adopted actions for widespread renewable energy deployment, which includes wind energy, solar power, biomass power, tidal, and hydropower. These sources are considered as significant in delivering clean energy and reducing greenhouse gas emissions for sustainable improvement. As these sources play an increasingly vital role in the global energy landscape, the efficient management of these intermittent sources is essential for grid stability and sustainability. This paper aimed to develop an energy management strategy for DC microgrids to supply power to a DC microgrid system. The main objective of this paper was to implement an energy management system to ensure the proper operation of DC microgrid systems utilizing Simulink blocks available in MATLAB/Simulink 2020b software. The simulation results demonstrated that the developed energy management algorithm was unconditionally reliable, ensuring the proper operation of the microgrid systems. Additionally, the results demonstrated that the energy management strategy exhibited robust performance across different scenarios, effectively balancing energy generation and consumption while ensuring the reliable operation of the microgrid system. Moreover, the developed algorithm model presents another advantage, as it enables users to access and to change any control parameters within the DC microgrid. By comparing these results with the literature, the developed energy management algorithm provides safety and the automatic control of the microgrid. energy management system DC microgrid renewable energy distributed generation Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Marco Adonis verfasserin aut Ali Almaktoof verfasserin aut In Applied Sciences MDPI AG, 2012 14(2024), 6, p 2659 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2024 number:6, p 2659 https://doi.org/10.3390/app14062659 kostenfrei https://doaj.org/article/c2cfff632148444785b88764f2f1cdee kostenfrei https://www.mdpi.com/2076-3417/14/6/2659 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 6, p 2659 |
allfieldsGer |
10.3390/app14062659 doi (DE-627)DOAJ100875513 (DE-599)DOAJc2cfff632148444785b88764f2f1cdee DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Christian Bipongo Ndeke verfasserin aut Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emissions. To solve these problems, several countries have adopted actions for widespread renewable energy deployment, which includes wind energy, solar power, biomass power, tidal, and hydropower. These sources are considered as significant in delivering clean energy and reducing greenhouse gas emissions for sustainable improvement. As these sources play an increasingly vital role in the global energy landscape, the efficient management of these intermittent sources is essential for grid stability and sustainability. This paper aimed to develop an energy management strategy for DC microgrids to supply power to a DC microgrid system. The main objective of this paper was to implement an energy management system to ensure the proper operation of DC microgrid systems utilizing Simulink blocks available in MATLAB/Simulink 2020b software. The simulation results demonstrated that the developed energy management algorithm was unconditionally reliable, ensuring the proper operation of the microgrid systems. Additionally, the results demonstrated that the energy management strategy exhibited robust performance across different scenarios, effectively balancing energy generation and consumption while ensuring the reliable operation of the microgrid system. Moreover, the developed algorithm model presents another advantage, as it enables users to access and to change any control parameters within the DC microgrid. By comparing these results with the literature, the developed energy management algorithm provides safety and the automatic control of the microgrid. energy management system DC microgrid renewable energy distributed generation Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Marco Adonis verfasserin aut Ali Almaktoof verfasserin aut In Applied Sciences MDPI AG, 2012 14(2024), 6, p 2659 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2024 number:6, p 2659 https://doi.org/10.3390/app14062659 kostenfrei https://doaj.org/article/c2cfff632148444785b88764f2f1cdee kostenfrei https://www.mdpi.com/2076-3417/14/6/2659 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 6, p 2659 |
allfieldsSound |
10.3390/app14062659 doi (DE-627)DOAJ100875513 (DE-599)DOAJc2cfff632148444785b88764f2f1cdee DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Christian Bipongo Ndeke verfasserin aut Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emissions. To solve these problems, several countries have adopted actions for widespread renewable energy deployment, which includes wind energy, solar power, biomass power, tidal, and hydropower. These sources are considered as significant in delivering clean energy and reducing greenhouse gas emissions for sustainable improvement. As these sources play an increasingly vital role in the global energy landscape, the efficient management of these intermittent sources is essential for grid stability and sustainability. This paper aimed to develop an energy management strategy for DC microgrids to supply power to a DC microgrid system. The main objective of this paper was to implement an energy management system to ensure the proper operation of DC microgrid systems utilizing Simulink blocks available in MATLAB/Simulink 2020b software. The simulation results demonstrated that the developed energy management algorithm was unconditionally reliable, ensuring the proper operation of the microgrid systems. Additionally, the results demonstrated that the energy management strategy exhibited robust performance across different scenarios, effectively balancing energy generation and consumption while ensuring the reliable operation of the microgrid system. Moreover, the developed algorithm model presents another advantage, as it enables users to access and to change any control parameters within the DC microgrid. By comparing these results with the literature, the developed energy management algorithm provides safety and the automatic control of the microgrid. energy management system DC microgrid renewable energy distributed generation Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Marco Adonis verfasserin aut Ali Almaktoof verfasserin aut In Applied Sciences MDPI AG, 2012 14(2024), 6, p 2659 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2024 number:6, p 2659 https://doi.org/10.3390/app14062659 kostenfrei https://doaj.org/article/c2cfff632148444785b88764f2f1cdee kostenfrei https://www.mdpi.com/2076-3417/14/6/2659 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 6, p 2659 |
language |
English |
source |
In Applied Sciences 14(2024), 6, p 2659 volume:14 year:2024 number:6, p 2659 |
sourceStr |
In Applied Sciences 14(2024), 6, p 2659 volume:14 year:2024 number:6, p 2659 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
energy management system DC microgrid renewable energy distributed generation Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Christian Bipongo Ndeke @@aut@@ Marco Adonis @@aut@@ Ali Almaktoof @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ100875513 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100875513</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414131655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app14062659</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100875513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc2cfff632148444785b88764f2f1cdee</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Christian Bipongo Ndeke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emissions. To solve these problems, several countries have adopted actions for widespread renewable energy deployment, which includes wind energy, solar power, biomass power, tidal, and hydropower. These sources are considered as significant in delivering clean energy and reducing greenhouse gas emissions for sustainable improvement. As these sources play an increasingly vital role in the global energy landscape, the efficient management of these intermittent sources is essential for grid stability and sustainability. This paper aimed to develop an energy management strategy for DC microgrids to supply power to a DC microgrid system. The main objective of this paper was to implement an energy management system to ensure the proper operation of DC microgrid systems utilizing Simulink blocks available in MATLAB/Simulink 2020b software. The simulation results demonstrated that the developed energy management algorithm was unconditionally reliable, ensuring the proper operation of the microgrid systems. Additionally, the results demonstrated that the energy management strategy exhibited robust performance across different scenarios, effectively balancing energy generation and consumption while ensuring the reliable operation of the microgrid system. Moreover, the developed algorithm model presents another advantage, as it enables users to access and to change any control parameters within the DC microgrid. By comparing these results with the literature, the developed energy management algorithm provides safety and the automatic control of the microgrid.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy management system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DC microgrid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">renewable energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed generation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Adonis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Almaktoof</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">14(2024), 6, p 2659</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:6, p 2659</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app14062659</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c2cfff632148444785b88764f2f1cdee</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/14/6/2659</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">6, p 2659</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Christian Bipongo Ndeke |
spellingShingle |
Christian Bipongo Ndeke misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc energy management system misc DC microgrid misc renewable energy misc distributed generation misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy |
authorStr |
Christian Bipongo Ndeke |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy energy management system DC microgrid renewable energy distributed generation |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc energy management system misc DC microgrid misc renewable energy misc distributed generation misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc energy management system misc DC microgrid misc renewable energy misc distributed generation misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc energy management system misc DC microgrid misc renewable energy misc distributed generation misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy |
ctrlnum |
(DE-627)DOAJ100875513 (DE-599)DOAJc2cfff632148444785b88764f2f1cdee |
title_full |
Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy |
author_sort |
Christian Bipongo Ndeke |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Christian Bipongo Ndeke Marco Adonis Ali Almaktoof |
container_volume |
14 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Christian Bipongo Ndeke |
doi_str_mv |
10.3390/app14062659 |
author2-role |
verfasserin |
title_sort |
energy management strategy for dc micro-grid system with the important penetration of renewable energy |
callnumber |
TA1-2040 |
title_auth |
Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy |
abstract |
This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emissions. To solve these problems, several countries have adopted actions for widespread renewable energy deployment, which includes wind energy, solar power, biomass power, tidal, and hydropower. These sources are considered as significant in delivering clean energy and reducing greenhouse gas emissions for sustainable improvement. As these sources play an increasingly vital role in the global energy landscape, the efficient management of these intermittent sources is essential for grid stability and sustainability. This paper aimed to develop an energy management strategy for DC microgrids to supply power to a DC microgrid system. The main objective of this paper was to implement an energy management system to ensure the proper operation of DC microgrid systems utilizing Simulink blocks available in MATLAB/Simulink 2020b software. The simulation results demonstrated that the developed energy management algorithm was unconditionally reliable, ensuring the proper operation of the microgrid systems. Additionally, the results demonstrated that the energy management strategy exhibited robust performance across different scenarios, effectively balancing energy generation and consumption while ensuring the reliable operation of the microgrid system. Moreover, the developed algorithm model presents another advantage, as it enables users to access and to change any control parameters within the DC microgrid. By comparing these results with the literature, the developed energy management algorithm provides safety and the automatic control of the microgrid. |
abstractGer |
This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emissions. To solve these problems, several countries have adopted actions for widespread renewable energy deployment, which includes wind energy, solar power, biomass power, tidal, and hydropower. These sources are considered as significant in delivering clean energy and reducing greenhouse gas emissions for sustainable improvement. As these sources play an increasingly vital role in the global energy landscape, the efficient management of these intermittent sources is essential for grid stability and sustainability. This paper aimed to develop an energy management strategy for DC microgrids to supply power to a DC microgrid system. The main objective of this paper was to implement an energy management system to ensure the proper operation of DC microgrid systems utilizing Simulink blocks available in MATLAB/Simulink 2020b software. The simulation results demonstrated that the developed energy management algorithm was unconditionally reliable, ensuring the proper operation of the microgrid systems. Additionally, the results demonstrated that the energy management strategy exhibited robust performance across different scenarios, effectively balancing energy generation and consumption while ensuring the reliable operation of the microgrid system. Moreover, the developed algorithm model presents another advantage, as it enables users to access and to change any control parameters within the DC microgrid. By comparing these results with the literature, the developed energy management algorithm provides safety and the automatic control of the microgrid. |
abstract_unstemmed |
This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emissions. To solve these problems, several countries have adopted actions for widespread renewable energy deployment, which includes wind energy, solar power, biomass power, tidal, and hydropower. These sources are considered as significant in delivering clean energy and reducing greenhouse gas emissions for sustainable improvement. As these sources play an increasingly vital role in the global energy landscape, the efficient management of these intermittent sources is essential for grid stability and sustainability. This paper aimed to develop an energy management strategy for DC microgrids to supply power to a DC microgrid system. The main objective of this paper was to implement an energy management system to ensure the proper operation of DC microgrid systems utilizing Simulink blocks available in MATLAB/Simulink 2020b software. The simulation results demonstrated that the developed energy management algorithm was unconditionally reliable, ensuring the proper operation of the microgrid systems. Additionally, the results demonstrated that the energy management strategy exhibited robust performance across different scenarios, effectively balancing energy generation and consumption while ensuring the reliable operation of the microgrid system. Moreover, the developed algorithm model presents another advantage, as it enables users to access and to change any control parameters within the DC microgrid. By comparing these results with the literature, the developed energy management algorithm provides safety and the automatic control of the microgrid. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 2659 |
title_short |
Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy |
url |
https://doi.org/10.3390/app14062659 https://doaj.org/article/c2cfff632148444785b88764f2f1cdee https://www.mdpi.com/2076-3417/14/6/2659 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Marco Adonis Ali Almaktoof |
author2Str |
Marco Adonis Ali Almaktoof |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app14062659 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T17:10:45.595Z |
_version_ |
1803578659941908480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100875513</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414131655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app14062659</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100875513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc2cfff632148444785b88764f2f1cdee</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Christian Bipongo Ndeke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emissions. To solve these problems, several countries have adopted actions for widespread renewable energy deployment, which includes wind energy, solar power, biomass power, tidal, and hydropower. These sources are considered as significant in delivering clean energy and reducing greenhouse gas emissions for sustainable improvement. As these sources play an increasingly vital role in the global energy landscape, the efficient management of these intermittent sources is essential for grid stability and sustainability. This paper aimed to develop an energy management strategy for DC microgrids to supply power to a DC microgrid system. The main objective of this paper was to implement an energy management system to ensure the proper operation of DC microgrid systems utilizing Simulink blocks available in MATLAB/Simulink 2020b software. The simulation results demonstrated that the developed energy management algorithm was unconditionally reliable, ensuring the proper operation of the microgrid systems. Additionally, the results demonstrated that the energy management strategy exhibited robust performance across different scenarios, effectively balancing energy generation and consumption while ensuring the reliable operation of the microgrid system. Moreover, the developed algorithm model presents another advantage, as it enables users to access and to change any control parameters within the DC microgrid. By comparing these results with the literature, the developed energy management algorithm provides safety and the automatic control of the microgrid.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy management system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DC microgrid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">renewable energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed generation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Adonis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Almaktoof</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">14(2024), 6, p 2659</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:6, p 2659</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app14062659</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c2cfff632148444785b88764f2f1cdee</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/14/6/2659</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">6, p 2659</subfield></datafield></record></collection>
|
score |
7.4007463 |