Wasserstein and weighted metrics for multidimensional Gaussian distributions
We present a number of low and upper bounds for Levy – Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and l...
Ausführliche Beschreibung
Autor*in: |
Kelbert, Mark Yakovlevich [verfasserIn] Suhov, Yurii M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Russisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика - Saratov State University, 2019, 23(2023), 4, Seite 422-434 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:4 ; pages:422-434 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.18500/1816-9791-2023-23-4-422-434 |
---|
Katalog-ID: |
DOAJ100949460 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ100949460 | ||
003 | DE-627 | ||
005 | 20240414141143.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.18500/1816-9791-2023-23-4-422-434 |2 doi | |
035 | |a (DE-627)DOAJ100949460 | ||
035 | |a (DE-599)DOAJ9ac7c1a6adf54ab28103a50ee05d7912 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a rus | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Kelbert, Mark Yakovlevich |e verfasserin |4 aut | |
245 | 1 | 0 | |a Wasserstein and weighted metrics for multidimensional Gaussian distributions |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We present a number of low and upper bounds for Levy – Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved. | ||
650 | 4 | |a levy – prokhorov distance | |
650 | 4 | |a wasserstein distance | |
650 | 4 | |a weighted total variance distance | |
650 | 4 | |a dobrushin’s inequality | |
650 | 4 | |a weighted pinsker’s inequality | |
650 | 4 | |a weighted le cam’s inequality | |
650 | 4 | |a weighted fano’s inequality | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Suhov, Yurii M. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |d Saratov State University, 2019 |g 23(2023), 4, Seite 422-434 |w (DE-627)1760618233 |x 25419005 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:4 |g pages:422-434 |
856 | 4 | 0 | |u https://doi.org/10.18500/1816-9791-2023-23-4-422-434 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9ac7c1a6adf54ab28103a50ee05d7912 |z kostenfrei |
856 | 4 | 0 | |u https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2023/11/422-434-kelbert-suhov.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1816-9791 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2541-9005 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 4 |h 422-434 |
author_variant |
m y k my myk y m s ym yms |
---|---|
matchkey_str |
article:25419005:2023----::asrtiadegtdercfrutdmninla |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.18500/1816-9791-2023-23-4-422-434 doi (DE-627)DOAJ100949460 (DE-599)DOAJ9ac7c1a6adf54ab28103a50ee05d7912 DE-627 ger DE-627 rakwb eng rus QA1-939 Kelbert, Mark Yakovlevich verfasserin aut Wasserstein and weighted metrics for multidimensional Gaussian distributions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a number of low and upper bounds for Levy – Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved. levy – prokhorov distance wasserstein distance weighted total variance distance dobrushin’s inequality weighted pinsker’s inequality weighted le cam’s inequality weighted fano’s inequality Mathematics Suhov, Yurii M. verfasserin aut In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика Saratov State University, 2019 23(2023), 4, Seite 422-434 (DE-627)1760618233 25419005 nnns volume:23 year:2023 number:4 pages:422-434 https://doi.org/10.18500/1816-9791-2023-23-4-422-434 kostenfrei https://doaj.org/article/9ac7c1a6adf54ab28103a50ee05d7912 kostenfrei https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2023/11/422-434-kelbert-suhov.pdf kostenfrei https://doaj.org/toc/1816-9791 Journal toc kostenfrei https://doaj.org/toc/2541-9005 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 23 2023 4 422-434 |
spelling |
10.18500/1816-9791-2023-23-4-422-434 doi (DE-627)DOAJ100949460 (DE-599)DOAJ9ac7c1a6adf54ab28103a50ee05d7912 DE-627 ger DE-627 rakwb eng rus QA1-939 Kelbert, Mark Yakovlevich verfasserin aut Wasserstein and weighted metrics for multidimensional Gaussian distributions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a number of low and upper bounds for Levy – Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved. levy – prokhorov distance wasserstein distance weighted total variance distance dobrushin’s inequality weighted pinsker’s inequality weighted le cam’s inequality weighted fano’s inequality Mathematics Suhov, Yurii M. verfasserin aut In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика Saratov State University, 2019 23(2023), 4, Seite 422-434 (DE-627)1760618233 25419005 nnns volume:23 year:2023 number:4 pages:422-434 https://doi.org/10.18500/1816-9791-2023-23-4-422-434 kostenfrei https://doaj.org/article/9ac7c1a6adf54ab28103a50ee05d7912 kostenfrei https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2023/11/422-434-kelbert-suhov.pdf kostenfrei https://doaj.org/toc/1816-9791 Journal toc kostenfrei https://doaj.org/toc/2541-9005 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 23 2023 4 422-434 |
allfields_unstemmed |
10.18500/1816-9791-2023-23-4-422-434 doi (DE-627)DOAJ100949460 (DE-599)DOAJ9ac7c1a6adf54ab28103a50ee05d7912 DE-627 ger DE-627 rakwb eng rus QA1-939 Kelbert, Mark Yakovlevich verfasserin aut Wasserstein and weighted metrics for multidimensional Gaussian distributions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a number of low and upper bounds for Levy – Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved. levy – prokhorov distance wasserstein distance weighted total variance distance dobrushin’s inequality weighted pinsker’s inequality weighted le cam’s inequality weighted fano’s inequality Mathematics Suhov, Yurii M. verfasserin aut In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика Saratov State University, 2019 23(2023), 4, Seite 422-434 (DE-627)1760618233 25419005 nnns volume:23 year:2023 number:4 pages:422-434 https://doi.org/10.18500/1816-9791-2023-23-4-422-434 kostenfrei https://doaj.org/article/9ac7c1a6adf54ab28103a50ee05d7912 kostenfrei https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2023/11/422-434-kelbert-suhov.pdf kostenfrei https://doaj.org/toc/1816-9791 Journal toc kostenfrei https://doaj.org/toc/2541-9005 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 23 2023 4 422-434 |
allfieldsGer |
10.18500/1816-9791-2023-23-4-422-434 doi (DE-627)DOAJ100949460 (DE-599)DOAJ9ac7c1a6adf54ab28103a50ee05d7912 DE-627 ger DE-627 rakwb eng rus QA1-939 Kelbert, Mark Yakovlevich verfasserin aut Wasserstein and weighted metrics for multidimensional Gaussian distributions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a number of low and upper bounds for Levy – Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved. levy – prokhorov distance wasserstein distance weighted total variance distance dobrushin’s inequality weighted pinsker’s inequality weighted le cam’s inequality weighted fano’s inequality Mathematics Suhov, Yurii M. verfasserin aut In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика Saratov State University, 2019 23(2023), 4, Seite 422-434 (DE-627)1760618233 25419005 nnns volume:23 year:2023 number:4 pages:422-434 https://doi.org/10.18500/1816-9791-2023-23-4-422-434 kostenfrei https://doaj.org/article/9ac7c1a6adf54ab28103a50ee05d7912 kostenfrei https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2023/11/422-434-kelbert-suhov.pdf kostenfrei https://doaj.org/toc/1816-9791 Journal toc kostenfrei https://doaj.org/toc/2541-9005 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 23 2023 4 422-434 |
allfieldsSound |
10.18500/1816-9791-2023-23-4-422-434 doi (DE-627)DOAJ100949460 (DE-599)DOAJ9ac7c1a6adf54ab28103a50ee05d7912 DE-627 ger DE-627 rakwb eng rus QA1-939 Kelbert, Mark Yakovlevich verfasserin aut Wasserstein and weighted metrics for multidimensional Gaussian distributions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a number of low and upper bounds for Levy – Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved. levy – prokhorov distance wasserstein distance weighted total variance distance dobrushin’s inequality weighted pinsker’s inequality weighted le cam’s inequality weighted fano’s inequality Mathematics Suhov, Yurii M. verfasserin aut In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика Saratov State University, 2019 23(2023), 4, Seite 422-434 (DE-627)1760618233 25419005 nnns volume:23 year:2023 number:4 pages:422-434 https://doi.org/10.18500/1816-9791-2023-23-4-422-434 kostenfrei https://doaj.org/article/9ac7c1a6adf54ab28103a50ee05d7912 kostenfrei https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2023/11/422-434-kelbert-suhov.pdf kostenfrei https://doaj.org/toc/1816-9791 Journal toc kostenfrei https://doaj.org/toc/2541-9005 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 23 2023 4 422-434 |
language |
English Russian |
source |
In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика 23(2023), 4, Seite 422-434 volume:23 year:2023 number:4 pages:422-434 |
sourceStr |
In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика 23(2023), 4, Seite 422-434 volume:23 year:2023 number:4 pages:422-434 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
levy – prokhorov distance wasserstein distance weighted total variance distance dobrushin’s inequality weighted pinsker’s inequality weighted le cam’s inequality weighted fano’s inequality Mathematics |
isfreeaccess_bool |
true |
container_title |
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
authorswithroles_txt_mv |
Kelbert, Mark Yakovlevich @@aut@@ Suhov, Yurii M. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1760618233 |
id |
DOAJ100949460 |
language_de |
englisch russisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100949460</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414141143.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.18500/1816-9791-2023-23-4-422-434</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100949460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9ac7c1a6adf54ab28103a50ee05d7912</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kelbert, Mark Yakovlevich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wasserstein and weighted metrics for multidimensional Gaussian distributions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a number of low and upper bounds for Levy &ndash; Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">levy – prokhorov distance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wasserstein distance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted total variance distance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dobrushin’s inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted pinsker’s inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted le cam’s inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted fano’s inequality</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suhov, Yurii M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика</subfield><subfield code="d">Saratov State University, 2019</subfield><subfield code="g">23(2023), 4, Seite 422-434</subfield><subfield code="w">(DE-627)1760618233</subfield><subfield code="x">25419005</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:422-434</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.18500/1816-9791-2023-23-4-422-434</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9ac7c1a6adf54ab28103a50ee05d7912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2023/11/422-434-kelbert-suhov.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1816-9791</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2541-9005</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">4</subfield><subfield code="h">422-434</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Kelbert, Mark Yakovlevich |
spellingShingle |
Kelbert, Mark Yakovlevich misc QA1-939 misc levy – prokhorov distance misc wasserstein distance misc weighted total variance distance misc dobrushin’s inequality misc weighted pinsker’s inequality misc weighted le cam’s inequality misc weighted fano’s inequality misc Mathematics Wasserstein and weighted metrics for multidimensional Gaussian distributions |
authorStr |
Kelbert, Mark Yakovlevich |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1760618233 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
25419005 |
topic_title |
QA1-939 Wasserstein and weighted metrics for multidimensional Gaussian distributions levy – prokhorov distance wasserstein distance weighted total variance distance dobrushin’s inequality weighted pinsker’s inequality weighted le cam’s inequality weighted fano’s inequality |
topic |
misc QA1-939 misc levy – prokhorov distance misc wasserstein distance misc weighted total variance distance misc dobrushin’s inequality misc weighted pinsker’s inequality misc weighted le cam’s inequality misc weighted fano’s inequality misc Mathematics |
topic_unstemmed |
misc QA1-939 misc levy – prokhorov distance misc wasserstein distance misc weighted total variance distance misc dobrushin’s inequality misc weighted pinsker’s inequality misc weighted le cam’s inequality misc weighted fano’s inequality misc Mathematics |
topic_browse |
misc QA1-939 misc levy – prokhorov distance misc wasserstein distance misc weighted total variance distance misc dobrushin’s inequality misc weighted pinsker’s inequality misc weighted le cam’s inequality misc weighted fano’s inequality misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
hierarchy_parent_id |
1760618233 |
hierarchy_top_title |
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1760618233 |
title |
Wasserstein and weighted metrics for multidimensional Gaussian distributions |
ctrlnum |
(DE-627)DOAJ100949460 (DE-599)DOAJ9ac7c1a6adf54ab28103a50ee05d7912 |
title_full |
Wasserstein and weighted metrics for multidimensional Gaussian distributions |
author_sort |
Kelbert, Mark Yakovlevich |
journal |
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
journalStr |
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
callnumber-first-code |
Q |
lang_code |
eng rus |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
422 |
author_browse |
Kelbert, Mark Yakovlevich Suhov, Yurii M. |
container_volume |
23 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Kelbert, Mark Yakovlevich |
doi_str_mv |
10.18500/1816-9791-2023-23-4-422-434 |
author2-role |
verfasserin |
title_sort |
wasserstein and weighted metrics for multidimensional gaussian distributions |
callnumber |
QA1-939 |
title_auth |
Wasserstein and weighted metrics for multidimensional Gaussian distributions |
abstract |
We present a number of low and upper bounds for Levy – Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved. |
abstractGer |
We present a number of low and upper bounds for Levy – Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved. |
abstract_unstemmed |
We present a number of low and upper bounds for Levy – Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
4 |
title_short |
Wasserstein and weighted metrics for multidimensional Gaussian distributions |
url |
https://doi.org/10.18500/1816-9791-2023-23-4-422-434 https://doaj.org/article/9ac7c1a6adf54ab28103a50ee05d7912 https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2023/11/422-434-kelbert-suhov.pdf https://doaj.org/toc/1816-9791 https://doaj.org/toc/2541-9005 |
remote_bool |
true |
author2 |
Suhov, Yurii M. |
author2Str |
Suhov, Yurii M. |
ppnlink |
1760618233 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.18500/1816-9791-2023-23-4-422-434 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T17:38:31.209Z |
_version_ |
1803580406457434112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ100949460</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414141143.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.18500/1816-9791-2023-23-4-422-434</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ100949460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9ac7c1a6adf54ab28103a50ee05d7912</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kelbert, Mark Yakovlevich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wasserstein and weighted metrics for multidimensional Gaussian distributions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a number of low and upper bounds for Levy &ndash; Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">levy – prokhorov distance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wasserstein distance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted total variance distance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dobrushin’s inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted pinsker’s inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted le cam’s inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted fano’s inequality</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suhov, Yurii M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика</subfield><subfield code="d">Saratov State University, 2019</subfield><subfield code="g">23(2023), 4, Seite 422-434</subfield><subfield code="w">(DE-627)1760618233</subfield><subfield code="x">25419005</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:422-434</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.18500/1816-9791-2023-23-4-422-434</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9ac7c1a6adf54ab28103a50ee05d7912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2023/11/422-434-kelbert-suhov.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1816-9791</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2541-9005</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">4</subfield><subfield code="h">422-434</subfield></datafield></record></collection>
|
score |
7.402231 |