A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition
Abstract Human activity recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. The most efficient supervised machine learning (ML)-based approaches for predicting human activity are based on a continuous strea...
Ausführliche Beschreibung
Autor*in: |
S. R. Menaka [verfasserIn] M. Prakash [verfasserIn] S. Neelakandan [verfasserIn] Arun Radhakrishnan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Übergeordnetes Werk: |
In: Scientific Reports - Nature Portfolio, 2011, 13(2023), 1, Seite 20 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:1 ; pages:20 |
Links: |
---|
DOI / URN: |
10.1038/s41598-023-44213-4 |
---|
Katalog-ID: |
DOAJ10111267X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ10111267X | ||
003 | DE-627 | ||
005 | 20240414161039.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41598-023-44213-4 |2 doi | |
035 | |a (DE-627)DOAJ10111267X | ||
035 | |a (DE-599)DOAJc1a656d87ff145c48bf21e47943b4c97 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a S. R. Menaka |e verfasserin |4 aut | |
245 | 1 | 2 | |a A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Human activity recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. The most efficient supervised machine learning (ML)-based approaches for predicting human activity are based on a continuous stream of sensor data. Sensor data analysis for human activity recognition using conventional algorithms and deep learning (DL) models shows promising results, but evaluating their ambiguity in decision-making is still challenging. In order to solve these issues, the paper proposes a novel Wasserstein gradient flow legonet WGF-LN-based human activity recognition system. At first, the input data is pre-processed. From the pre-processed data, the features are extracted using Haar Wavelet mother- Symlet wavelet coefficient scattering feature extraction (HS-WSFE). After that, the interest features are selected from the extracted features using (Binomial Distribution integrated-Golden Eagle Optimization) BD-GEO. The important features are then post-processed using the scatter plot matrix method. Obtained post-processing features are finally given into the WGF-LN for classifying human activities. From these experiments, the results can be obtained and showed the efficacy of the proposed model. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a M. Prakash |e verfasserin |4 aut | |
700 | 0 | |a S. Neelakandan |e verfasserin |4 aut | |
700 | 0 | |a Arun Radhakrishnan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific Reports |d Nature Portfolio, 2011 |g 13(2023), 1, Seite 20 |w (DE-627)663366712 |w (DE-600)2615211-3 |x 20452322 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:1 |g pages:20 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-023-44213-4 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c1a656d87ff145c48bf21e47943b4c97 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-023-44213-4 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2045-2322 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 1 |h 20 |
author_variant |
s r m srm m p mp s n sn a r ar |
---|---|
matchkey_str |
article:20452322:2023----::nvlglbsddervnnelgneowaaldvcsnu |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1038/s41598-023-44213-4 doi (DE-627)DOAJ10111267X (DE-599)DOAJc1a656d87ff145c48bf21e47943b4c97 DE-627 ger DE-627 rakwb eng S. R. Menaka verfasserin aut A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Human activity recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. The most efficient supervised machine learning (ML)-based approaches for predicting human activity are based on a continuous stream of sensor data. Sensor data analysis for human activity recognition using conventional algorithms and deep learning (DL) models shows promising results, but evaluating their ambiguity in decision-making is still challenging. In order to solve these issues, the paper proposes a novel Wasserstein gradient flow legonet WGF-LN-based human activity recognition system. At first, the input data is pre-processed. From the pre-processed data, the features are extracted using Haar Wavelet mother- Symlet wavelet coefficient scattering feature extraction (HS-WSFE). After that, the interest features are selected from the extracted features using (Binomial Distribution integrated-Golden Eagle Optimization) BD-GEO. The important features are then post-processed using the scatter plot matrix method. Obtained post-processing features are finally given into the WGF-LN for classifying human activities. From these experiments, the results can be obtained and showed the efficacy of the proposed model. Medicine R Science Q M. Prakash verfasserin aut S. Neelakandan verfasserin aut Arun Radhakrishnan verfasserin aut In Scientific Reports Nature Portfolio, 2011 13(2023), 1, Seite 20 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:13 year:2023 number:1 pages:20 https://doi.org/10.1038/s41598-023-44213-4 kostenfrei https://doaj.org/article/c1a656d87ff145c48bf21e47943b4c97 kostenfrei https://doi.org/10.1038/s41598-023-44213-4 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1 20 |
spelling |
10.1038/s41598-023-44213-4 doi (DE-627)DOAJ10111267X (DE-599)DOAJc1a656d87ff145c48bf21e47943b4c97 DE-627 ger DE-627 rakwb eng S. R. Menaka verfasserin aut A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Human activity recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. The most efficient supervised machine learning (ML)-based approaches for predicting human activity are based on a continuous stream of sensor data. Sensor data analysis for human activity recognition using conventional algorithms and deep learning (DL) models shows promising results, but evaluating their ambiguity in decision-making is still challenging. In order to solve these issues, the paper proposes a novel Wasserstein gradient flow legonet WGF-LN-based human activity recognition system. At first, the input data is pre-processed. From the pre-processed data, the features are extracted using Haar Wavelet mother- Symlet wavelet coefficient scattering feature extraction (HS-WSFE). After that, the interest features are selected from the extracted features using (Binomial Distribution integrated-Golden Eagle Optimization) BD-GEO. The important features are then post-processed using the scatter plot matrix method. Obtained post-processing features are finally given into the WGF-LN for classifying human activities. From these experiments, the results can be obtained and showed the efficacy of the proposed model. Medicine R Science Q M. Prakash verfasserin aut S. Neelakandan verfasserin aut Arun Radhakrishnan verfasserin aut In Scientific Reports Nature Portfolio, 2011 13(2023), 1, Seite 20 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:13 year:2023 number:1 pages:20 https://doi.org/10.1038/s41598-023-44213-4 kostenfrei https://doaj.org/article/c1a656d87ff145c48bf21e47943b4c97 kostenfrei https://doi.org/10.1038/s41598-023-44213-4 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1 20 |
allfields_unstemmed |
10.1038/s41598-023-44213-4 doi (DE-627)DOAJ10111267X (DE-599)DOAJc1a656d87ff145c48bf21e47943b4c97 DE-627 ger DE-627 rakwb eng S. R. Menaka verfasserin aut A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Human activity recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. The most efficient supervised machine learning (ML)-based approaches for predicting human activity are based on a continuous stream of sensor data. Sensor data analysis for human activity recognition using conventional algorithms and deep learning (DL) models shows promising results, but evaluating their ambiguity in decision-making is still challenging. In order to solve these issues, the paper proposes a novel Wasserstein gradient flow legonet WGF-LN-based human activity recognition system. At first, the input data is pre-processed. From the pre-processed data, the features are extracted using Haar Wavelet mother- Symlet wavelet coefficient scattering feature extraction (HS-WSFE). After that, the interest features are selected from the extracted features using (Binomial Distribution integrated-Golden Eagle Optimization) BD-GEO. The important features are then post-processed using the scatter plot matrix method. Obtained post-processing features are finally given into the WGF-LN for classifying human activities. From these experiments, the results can be obtained and showed the efficacy of the proposed model. Medicine R Science Q M. Prakash verfasserin aut S. Neelakandan verfasserin aut Arun Radhakrishnan verfasserin aut In Scientific Reports Nature Portfolio, 2011 13(2023), 1, Seite 20 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:13 year:2023 number:1 pages:20 https://doi.org/10.1038/s41598-023-44213-4 kostenfrei https://doaj.org/article/c1a656d87ff145c48bf21e47943b4c97 kostenfrei https://doi.org/10.1038/s41598-023-44213-4 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1 20 |
allfieldsGer |
10.1038/s41598-023-44213-4 doi (DE-627)DOAJ10111267X (DE-599)DOAJc1a656d87ff145c48bf21e47943b4c97 DE-627 ger DE-627 rakwb eng S. R. Menaka verfasserin aut A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Human activity recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. The most efficient supervised machine learning (ML)-based approaches for predicting human activity are based on a continuous stream of sensor data. Sensor data analysis for human activity recognition using conventional algorithms and deep learning (DL) models shows promising results, but evaluating their ambiguity in decision-making is still challenging. In order to solve these issues, the paper proposes a novel Wasserstein gradient flow legonet WGF-LN-based human activity recognition system. At first, the input data is pre-processed. From the pre-processed data, the features are extracted using Haar Wavelet mother- Symlet wavelet coefficient scattering feature extraction (HS-WSFE). After that, the interest features are selected from the extracted features using (Binomial Distribution integrated-Golden Eagle Optimization) BD-GEO. The important features are then post-processed using the scatter plot matrix method. Obtained post-processing features are finally given into the WGF-LN for classifying human activities. From these experiments, the results can be obtained and showed the efficacy of the proposed model. Medicine R Science Q M. Prakash verfasserin aut S. Neelakandan verfasserin aut Arun Radhakrishnan verfasserin aut In Scientific Reports Nature Portfolio, 2011 13(2023), 1, Seite 20 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:13 year:2023 number:1 pages:20 https://doi.org/10.1038/s41598-023-44213-4 kostenfrei https://doaj.org/article/c1a656d87ff145c48bf21e47943b4c97 kostenfrei https://doi.org/10.1038/s41598-023-44213-4 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1 20 |
allfieldsSound |
10.1038/s41598-023-44213-4 doi (DE-627)DOAJ10111267X (DE-599)DOAJc1a656d87ff145c48bf21e47943b4c97 DE-627 ger DE-627 rakwb eng S. R. Menaka verfasserin aut A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Human activity recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. The most efficient supervised machine learning (ML)-based approaches for predicting human activity are based on a continuous stream of sensor data. Sensor data analysis for human activity recognition using conventional algorithms and deep learning (DL) models shows promising results, but evaluating their ambiguity in decision-making is still challenging. In order to solve these issues, the paper proposes a novel Wasserstein gradient flow legonet WGF-LN-based human activity recognition system. At first, the input data is pre-processed. From the pre-processed data, the features are extracted using Haar Wavelet mother- Symlet wavelet coefficient scattering feature extraction (HS-WSFE). After that, the interest features are selected from the extracted features using (Binomial Distribution integrated-Golden Eagle Optimization) BD-GEO. The important features are then post-processed using the scatter plot matrix method. Obtained post-processing features are finally given into the WGF-LN for classifying human activities. From these experiments, the results can be obtained and showed the efficacy of the proposed model. Medicine R Science Q M. Prakash verfasserin aut S. Neelakandan verfasserin aut Arun Radhakrishnan verfasserin aut In Scientific Reports Nature Portfolio, 2011 13(2023), 1, Seite 20 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:13 year:2023 number:1 pages:20 https://doi.org/10.1038/s41598-023-44213-4 kostenfrei https://doaj.org/article/c1a656d87ff145c48bf21e47943b4c97 kostenfrei https://doi.org/10.1038/s41598-023-44213-4 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1 20 |
language |
English |
source |
In Scientific Reports 13(2023), 1, Seite 20 volume:13 year:2023 number:1 pages:20 |
sourceStr |
In Scientific Reports 13(2023), 1, Seite 20 volume:13 year:2023 number:1 pages:20 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific Reports |
authorswithroles_txt_mv |
S. R. Menaka @@aut@@ M. Prakash @@aut@@ S. Neelakandan @@aut@@ Arun Radhakrishnan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
663366712 |
id |
DOAJ10111267X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ10111267X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414161039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-023-44213-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ10111267X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc1a656d87ff145c48bf21e47943b4c97</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">S. R. Menaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Human activity recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. The most efficient supervised machine learning (ML)-based approaches for predicting human activity are based on a continuous stream of sensor data. Sensor data analysis for human activity recognition using conventional algorithms and deep learning (DL) models shows promising results, but evaluating their ambiguity in decision-making is still challenging. In order to solve these issues, the paper proposes a novel Wasserstein gradient flow legonet WGF-LN-based human activity recognition system. At first, the input data is pre-processed. From the pre-processed data, the features are extracted using Haar Wavelet mother- Symlet wavelet coefficient scattering feature extraction (HS-WSFE). After that, the interest features are selected from the extracted features using (Binomial Distribution integrated-Golden Eagle Optimization) BD-GEO. The important features are then post-processed using the scatter plot matrix method. Obtained post-processing features are finally given into the WGF-LN for classifying human activities. From these experiments, the results can be obtained and showed the efficacy of the proposed model.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Prakash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Neelakandan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arun Radhakrishnan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">13(2023), 1, Seite 20</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-023-44213-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c1a656d87ff145c48bf21e47943b4c97</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-023-44213-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">20</subfield></datafield></record></collection>
|
author |
S. R. Menaka |
spellingShingle |
S. R. Menaka misc Medicine misc R misc Science misc Q A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition |
authorStr |
S. R. Menaka |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663366712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20452322 |
topic_title |
A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific Reports |
hierarchy_parent_id |
663366712 |
hierarchy_top_title |
Scientific Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663366712 (DE-600)2615211-3 |
title |
A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition |
ctrlnum |
(DE-627)DOAJ10111267X (DE-599)DOAJc1a656d87ff145c48bf21e47943b4c97 |
title_full |
A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition |
author_sort |
S. R. Menaka |
journal |
Scientific Reports |
journalStr |
Scientific Reports |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
20 |
author_browse |
S. R. Menaka M. Prakash S. Neelakandan Arun Radhakrishnan |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
S. R. Menaka |
doi_str_mv |
10.1038/s41598-023-44213-4 |
author2-role |
verfasserin |
title_sort |
novel wgf-ln based edge driven intelligence for wearable devices in human activity recognition |
title_auth |
A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition |
abstract |
Abstract Human activity recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. The most efficient supervised machine learning (ML)-based approaches for predicting human activity are based on a continuous stream of sensor data. Sensor data analysis for human activity recognition using conventional algorithms and deep learning (DL) models shows promising results, but evaluating their ambiguity in decision-making is still challenging. In order to solve these issues, the paper proposes a novel Wasserstein gradient flow legonet WGF-LN-based human activity recognition system. At first, the input data is pre-processed. From the pre-processed data, the features are extracted using Haar Wavelet mother- Symlet wavelet coefficient scattering feature extraction (HS-WSFE). After that, the interest features are selected from the extracted features using (Binomial Distribution integrated-Golden Eagle Optimization) BD-GEO. The important features are then post-processed using the scatter plot matrix method. Obtained post-processing features are finally given into the WGF-LN for classifying human activities. From these experiments, the results can be obtained and showed the efficacy of the proposed model. |
abstractGer |
Abstract Human activity recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. The most efficient supervised machine learning (ML)-based approaches for predicting human activity are based on a continuous stream of sensor data. Sensor data analysis for human activity recognition using conventional algorithms and deep learning (DL) models shows promising results, but evaluating their ambiguity in decision-making is still challenging. In order to solve these issues, the paper proposes a novel Wasserstein gradient flow legonet WGF-LN-based human activity recognition system. At first, the input data is pre-processed. From the pre-processed data, the features are extracted using Haar Wavelet mother- Symlet wavelet coefficient scattering feature extraction (HS-WSFE). After that, the interest features are selected from the extracted features using (Binomial Distribution integrated-Golden Eagle Optimization) BD-GEO. The important features are then post-processed using the scatter plot matrix method. Obtained post-processing features are finally given into the WGF-LN for classifying human activities. From these experiments, the results can be obtained and showed the efficacy of the proposed model. |
abstract_unstemmed |
Abstract Human activity recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. The most efficient supervised machine learning (ML)-based approaches for predicting human activity are based on a continuous stream of sensor data. Sensor data analysis for human activity recognition using conventional algorithms and deep learning (DL) models shows promising results, but evaluating their ambiguity in decision-making is still challenging. In order to solve these issues, the paper proposes a novel Wasserstein gradient flow legonet WGF-LN-based human activity recognition system. At first, the input data is pre-processed. From the pre-processed data, the features are extracted using Haar Wavelet mother- Symlet wavelet coefficient scattering feature extraction (HS-WSFE). After that, the interest features are selected from the extracted features using (Binomial Distribution integrated-Golden Eagle Optimization) BD-GEO. The important features are then post-processed using the scatter plot matrix method. Obtained post-processing features are finally given into the WGF-LN for classifying human activities. From these experiments, the results can be obtained and showed the efficacy of the proposed model. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition |
url |
https://doi.org/10.1038/s41598-023-44213-4 https://doaj.org/article/c1a656d87ff145c48bf21e47943b4c97 https://doaj.org/toc/2045-2322 |
remote_bool |
true |
author2 |
M. Prakash S. Neelakandan Arun Radhakrishnan |
author2Str |
M. Prakash S. Neelakandan Arun Radhakrishnan |
ppnlink |
663366712 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41598-023-44213-4 |
up_date |
2024-07-03T18:38:04.175Z |
_version_ |
1803584152991170560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ10111267X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414161039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-023-44213-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ10111267X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc1a656d87ff145c48bf21e47943b4c97</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">S. R. Menaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Human activity recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. The most efficient supervised machine learning (ML)-based approaches for predicting human activity are based on a continuous stream of sensor data. Sensor data analysis for human activity recognition using conventional algorithms and deep learning (DL) models shows promising results, but evaluating their ambiguity in decision-making is still challenging. In order to solve these issues, the paper proposes a novel Wasserstein gradient flow legonet WGF-LN-based human activity recognition system. At first, the input data is pre-processed. From the pre-processed data, the features are extracted using Haar Wavelet mother- Symlet wavelet coefficient scattering feature extraction (HS-WSFE). After that, the interest features are selected from the extracted features using (Binomial Distribution integrated-Golden Eagle Optimization) BD-GEO. The important features are then post-processed using the scatter plot matrix method. Obtained post-processing features are finally given into the WGF-LN for classifying human activities. From these experiments, the results can be obtained and showed the efficacy of the proposed model.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Prakash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Neelakandan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arun Radhakrishnan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">13(2023), 1, Seite 20</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-023-44213-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c1a656d87ff145c48bf21e47943b4c97</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-023-44213-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">20</subfield></datafield></record></collection>
|
score |
7.4004107 |