Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells
Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the me...
Ausführliche Beschreibung
Autor*in: |
Robert G. E. Krause [verfasserIn] Thandeka Moyo-Gwete [verfasserIn] Simone I. Richardson [verfasserIn] Zanele Makhado [verfasserIn] Nelia P. Manamela [verfasserIn] Tandile Hermanus [verfasserIn] Nonhlanhla N. Mkhize [verfasserIn] Roanne Keeton [verfasserIn] Ntombi Benede [verfasserIn] Mathilda Mennen [verfasserIn] Sango Skelem [verfasserIn] Farina Karim [verfasserIn] Khadija Khan [verfasserIn] Catherine Riou [verfasserIn] Ntobeko A. B. Ntusi [verfasserIn] Ameena Goga [verfasserIn] Glenda Gray [verfasserIn] Willem Hanekom [verfasserIn] Nigel Garrett [verfasserIn] Linda-Gail Bekker [verfasserIn] Andreas Groll [verfasserIn] Alex Sigal [verfasserIn] Penny L. Moore [verfasserIn] Wendy A. Burgers [verfasserIn] Alasdair Leslie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Übergeordnetes Werk: |
In: npj Vaccines - Nature Portfolio, 2017, 8(2023), 1, Seite 15 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2023 ; number:1 ; pages:15 |
Links: |
---|
DOI / URN: |
10.1038/s41541-023-00724-9 |
---|
Katalog-ID: |
DOAJ101147023 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101147023 | ||
003 | DE-627 | ||
005 | 20240414144843.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41541-023-00724-9 |2 doi | |
035 | |a (DE-627)DOAJ101147023 | ||
035 | |a (DE-599)DOAJ03b1ff7327134610b895e90b51a563cb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC581-607 | |
050 | 0 | |a RC254-282 | |
100 | 0 | |a Robert G. E. Krause |e verfasserin |4 aut | |
245 | 1 | 0 | |a Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities. | ||
653 | 0 | |a Immunologic diseases. Allergy | |
653 | 0 | |a Neoplasms. Tumors. Oncology. Including cancer and carcinogens | |
700 | 0 | |a Thandeka Moyo-Gwete |e verfasserin |4 aut | |
700 | 0 | |a Simone I. Richardson |e verfasserin |4 aut | |
700 | 0 | |a Zanele Makhado |e verfasserin |4 aut | |
700 | 0 | |a Nelia P. Manamela |e verfasserin |4 aut | |
700 | 0 | |a Tandile Hermanus |e verfasserin |4 aut | |
700 | 0 | |a Nonhlanhla N. Mkhize |e verfasserin |4 aut | |
700 | 0 | |a Roanne Keeton |e verfasserin |4 aut | |
700 | 0 | |a Ntombi Benede |e verfasserin |4 aut | |
700 | 0 | |a Mathilda Mennen |e verfasserin |4 aut | |
700 | 0 | |a Sango Skelem |e verfasserin |4 aut | |
700 | 0 | |a Farina Karim |e verfasserin |4 aut | |
700 | 0 | |a Khadija Khan |e verfasserin |4 aut | |
700 | 0 | |a Catherine Riou |e verfasserin |4 aut | |
700 | 0 | |a Ntobeko A. B. Ntusi |e verfasserin |4 aut | |
700 | 0 | |a Ameena Goga |e verfasserin |4 aut | |
700 | 0 | |a Glenda Gray |e verfasserin |4 aut | |
700 | 0 | |a Willem Hanekom |e verfasserin |4 aut | |
700 | 0 | |a Nigel Garrett |e verfasserin |4 aut | |
700 | 0 | |a Linda-Gail Bekker |e verfasserin |4 aut | |
700 | 0 | |a Andreas Groll |e verfasserin |4 aut | |
700 | 0 | |a Alex Sigal |e verfasserin |4 aut | |
700 | 0 | |a Penny L. Moore |e verfasserin |4 aut | |
700 | 0 | |a Wendy A. Burgers |e verfasserin |4 aut | |
700 | 0 | |a Alasdair Leslie |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t npj Vaccines |d Nature Portfolio, 2017 |g 8(2023), 1, Seite 15 |w (DE-627)87811839X |w (DE-600)2882262-6 |x 20590105 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2023 |g number:1 |g pages:15 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41541-023-00724-9 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/03b1ff7327134610b895e90b51a563cb |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41541-023-00724-9 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2059-0105 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2023 |e 1 |h 15 |
author_variant |
r g e k rgek t m g tmg s i r sir z m zm n p m npm t h th n n m nnm r k rk n b nb m m mm s s ss f k fk k k kk c r cr n a b n nabn a g ag g g gg w h wh n g ng l g b lgb a g ag a s as p l m plm w a b wab a l al |
---|---|
matchkey_str |
article:20590105:2023----::netoped6o2vciainrmsraecaswthnadeuecc5xrsin |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
RC |
publishDate |
2023 |
allfields |
10.1038/s41541-023-00724-9 doi (DE-627)DOAJ101147023 (DE-599)DOAJ03b1ff7327134610b895e90b51a563cb DE-627 ger DE-627 rakwb eng RC581-607 RC254-282 Robert G. E. Krause verfasserin aut Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities. Immunologic diseases. Allergy Neoplasms. Tumors. Oncology. Including cancer and carcinogens Thandeka Moyo-Gwete verfasserin aut Simone I. Richardson verfasserin aut Zanele Makhado verfasserin aut Nelia P. Manamela verfasserin aut Tandile Hermanus verfasserin aut Nonhlanhla N. Mkhize verfasserin aut Roanne Keeton verfasserin aut Ntombi Benede verfasserin aut Mathilda Mennen verfasserin aut Sango Skelem verfasserin aut Farina Karim verfasserin aut Khadija Khan verfasserin aut Catherine Riou verfasserin aut Ntobeko A. B. Ntusi verfasserin aut Ameena Goga verfasserin aut Glenda Gray verfasserin aut Willem Hanekom verfasserin aut Nigel Garrett verfasserin aut Linda-Gail Bekker verfasserin aut Andreas Groll verfasserin aut Alex Sigal verfasserin aut Penny L. Moore verfasserin aut Wendy A. Burgers verfasserin aut Alasdair Leslie verfasserin aut In npj Vaccines Nature Portfolio, 2017 8(2023), 1, Seite 15 (DE-627)87811839X (DE-600)2882262-6 20590105 nnns volume:8 year:2023 number:1 pages:15 https://doi.org/10.1038/s41541-023-00724-9 kostenfrei https://doaj.org/article/03b1ff7327134610b895e90b51a563cb kostenfrei https://doi.org/10.1038/s41541-023-00724-9 kostenfrei https://doaj.org/toc/2059-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 1 15 |
spelling |
10.1038/s41541-023-00724-9 doi (DE-627)DOAJ101147023 (DE-599)DOAJ03b1ff7327134610b895e90b51a563cb DE-627 ger DE-627 rakwb eng RC581-607 RC254-282 Robert G. E. Krause verfasserin aut Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities. Immunologic diseases. Allergy Neoplasms. Tumors. Oncology. Including cancer and carcinogens Thandeka Moyo-Gwete verfasserin aut Simone I. Richardson verfasserin aut Zanele Makhado verfasserin aut Nelia P. Manamela verfasserin aut Tandile Hermanus verfasserin aut Nonhlanhla N. Mkhize verfasserin aut Roanne Keeton verfasserin aut Ntombi Benede verfasserin aut Mathilda Mennen verfasserin aut Sango Skelem verfasserin aut Farina Karim verfasserin aut Khadija Khan verfasserin aut Catherine Riou verfasserin aut Ntobeko A. B. Ntusi verfasserin aut Ameena Goga verfasserin aut Glenda Gray verfasserin aut Willem Hanekom verfasserin aut Nigel Garrett verfasserin aut Linda-Gail Bekker verfasserin aut Andreas Groll verfasserin aut Alex Sigal verfasserin aut Penny L. Moore verfasserin aut Wendy A. Burgers verfasserin aut Alasdair Leslie verfasserin aut In npj Vaccines Nature Portfolio, 2017 8(2023), 1, Seite 15 (DE-627)87811839X (DE-600)2882262-6 20590105 nnns volume:8 year:2023 number:1 pages:15 https://doi.org/10.1038/s41541-023-00724-9 kostenfrei https://doaj.org/article/03b1ff7327134610b895e90b51a563cb kostenfrei https://doi.org/10.1038/s41541-023-00724-9 kostenfrei https://doaj.org/toc/2059-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 1 15 |
allfields_unstemmed |
10.1038/s41541-023-00724-9 doi (DE-627)DOAJ101147023 (DE-599)DOAJ03b1ff7327134610b895e90b51a563cb DE-627 ger DE-627 rakwb eng RC581-607 RC254-282 Robert G. E. Krause verfasserin aut Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities. Immunologic diseases. Allergy Neoplasms. Tumors. Oncology. Including cancer and carcinogens Thandeka Moyo-Gwete verfasserin aut Simone I. Richardson verfasserin aut Zanele Makhado verfasserin aut Nelia P. Manamela verfasserin aut Tandile Hermanus verfasserin aut Nonhlanhla N. Mkhize verfasserin aut Roanne Keeton verfasserin aut Ntombi Benede verfasserin aut Mathilda Mennen verfasserin aut Sango Skelem verfasserin aut Farina Karim verfasserin aut Khadija Khan verfasserin aut Catherine Riou verfasserin aut Ntobeko A. B. Ntusi verfasserin aut Ameena Goga verfasserin aut Glenda Gray verfasserin aut Willem Hanekom verfasserin aut Nigel Garrett verfasserin aut Linda-Gail Bekker verfasserin aut Andreas Groll verfasserin aut Alex Sigal verfasserin aut Penny L. Moore verfasserin aut Wendy A. Burgers verfasserin aut Alasdair Leslie verfasserin aut In npj Vaccines Nature Portfolio, 2017 8(2023), 1, Seite 15 (DE-627)87811839X (DE-600)2882262-6 20590105 nnns volume:8 year:2023 number:1 pages:15 https://doi.org/10.1038/s41541-023-00724-9 kostenfrei https://doaj.org/article/03b1ff7327134610b895e90b51a563cb kostenfrei https://doi.org/10.1038/s41541-023-00724-9 kostenfrei https://doaj.org/toc/2059-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 1 15 |
allfieldsGer |
10.1038/s41541-023-00724-9 doi (DE-627)DOAJ101147023 (DE-599)DOAJ03b1ff7327134610b895e90b51a563cb DE-627 ger DE-627 rakwb eng RC581-607 RC254-282 Robert G. E. Krause verfasserin aut Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities. Immunologic diseases. Allergy Neoplasms. Tumors. Oncology. Including cancer and carcinogens Thandeka Moyo-Gwete verfasserin aut Simone I. Richardson verfasserin aut Zanele Makhado verfasserin aut Nelia P. Manamela verfasserin aut Tandile Hermanus verfasserin aut Nonhlanhla N. Mkhize verfasserin aut Roanne Keeton verfasserin aut Ntombi Benede verfasserin aut Mathilda Mennen verfasserin aut Sango Skelem verfasserin aut Farina Karim verfasserin aut Khadija Khan verfasserin aut Catherine Riou verfasserin aut Ntobeko A. B. Ntusi verfasserin aut Ameena Goga verfasserin aut Glenda Gray verfasserin aut Willem Hanekom verfasserin aut Nigel Garrett verfasserin aut Linda-Gail Bekker verfasserin aut Andreas Groll verfasserin aut Alex Sigal verfasserin aut Penny L. Moore verfasserin aut Wendy A. Burgers verfasserin aut Alasdair Leslie verfasserin aut In npj Vaccines Nature Portfolio, 2017 8(2023), 1, Seite 15 (DE-627)87811839X (DE-600)2882262-6 20590105 nnns volume:8 year:2023 number:1 pages:15 https://doi.org/10.1038/s41541-023-00724-9 kostenfrei https://doaj.org/article/03b1ff7327134610b895e90b51a563cb kostenfrei https://doi.org/10.1038/s41541-023-00724-9 kostenfrei https://doaj.org/toc/2059-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 1 15 |
allfieldsSound |
10.1038/s41541-023-00724-9 doi (DE-627)DOAJ101147023 (DE-599)DOAJ03b1ff7327134610b895e90b51a563cb DE-627 ger DE-627 rakwb eng RC581-607 RC254-282 Robert G. E. Krause verfasserin aut Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities. Immunologic diseases. Allergy Neoplasms. Tumors. Oncology. Including cancer and carcinogens Thandeka Moyo-Gwete verfasserin aut Simone I. Richardson verfasserin aut Zanele Makhado verfasserin aut Nelia P. Manamela verfasserin aut Tandile Hermanus verfasserin aut Nonhlanhla N. Mkhize verfasserin aut Roanne Keeton verfasserin aut Ntombi Benede verfasserin aut Mathilda Mennen verfasserin aut Sango Skelem verfasserin aut Farina Karim verfasserin aut Khadija Khan verfasserin aut Catherine Riou verfasserin aut Ntobeko A. B. Ntusi verfasserin aut Ameena Goga verfasserin aut Glenda Gray verfasserin aut Willem Hanekom verfasserin aut Nigel Garrett verfasserin aut Linda-Gail Bekker verfasserin aut Andreas Groll verfasserin aut Alex Sigal verfasserin aut Penny L. Moore verfasserin aut Wendy A. Burgers verfasserin aut Alasdair Leslie verfasserin aut In npj Vaccines Nature Portfolio, 2017 8(2023), 1, Seite 15 (DE-627)87811839X (DE-600)2882262-6 20590105 nnns volume:8 year:2023 number:1 pages:15 https://doi.org/10.1038/s41541-023-00724-9 kostenfrei https://doaj.org/article/03b1ff7327134610b895e90b51a563cb kostenfrei https://doi.org/10.1038/s41541-023-00724-9 kostenfrei https://doaj.org/toc/2059-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 1 15 |
language |
English |
source |
In npj Vaccines 8(2023), 1, Seite 15 volume:8 year:2023 number:1 pages:15 |
sourceStr |
In npj Vaccines 8(2023), 1, Seite 15 volume:8 year:2023 number:1 pages:15 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Immunologic diseases. Allergy Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
isfreeaccess_bool |
true |
container_title |
npj Vaccines |
authorswithroles_txt_mv |
Robert G. E. Krause @@aut@@ Thandeka Moyo-Gwete @@aut@@ Simone I. Richardson @@aut@@ Zanele Makhado @@aut@@ Nelia P. Manamela @@aut@@ Tandile Hermanus @@aut@@ Nonhlanhla N. Mkhize @@aut@@ Roanne Keeton @@aut@@ Ntombi Benede @@aut@@ Mathilda Mennen @@aut@@ Sango Skelem @@aut@@ Farina Karim @@aut@@ Khadija Khan @@aut@@ Catherine Riou @@aut@@ Ntobeko A. B. Ntusi @@aut@@ Ameena Goga @@aut@@ Glenda Gray @@aut@@ Willem Hanekom @@aut@@ Nigel Garrett @@aut@@ Linda-Gail Bekker @@aut@@ Andreas Groll @@aut@@ Alex Sigal @@aut@@ Penny L. Moore @@aut@@ Wendy A. Burgers @@aut@@ Alasdair Leslie @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
87811839X |
id |
DOAJ101147023 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101147023</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414144843.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41541-023-00724-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101147023</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ03b1ff7327134610b895e90b51a563cb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC581-607</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Robert G. E. Krause</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Immunologic diseases. Allergy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thandeka Moyo-Gwete</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simone I. Richardson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zanele Makhado</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nelia P. Manamela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tandile Hermanus</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nonhlanhla N. Mkhize</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roanne Keeton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ntombi Benede</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mathilda Mennen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sango Skelem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Farina Karim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Khadija Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Catherine Riou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ntobeko A. B. Ntusi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ameena Goga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Glenda Gray</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Willem Hanekom</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nigel Garrett</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linda-Gail Bekker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andreas Groll</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alex Sigal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Penny L. Moore</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wendy A. Burgers</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alasdair Leslie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">npj Vaccines</subfield><subfield code="d">Nature Portfolio, 2017</subfield><subfield code="g">8(2023), 1, Seite 15</subfield><subfield code="w">(DE-627)87811839X</subfield><subfield code="w">(DE-600)2882262-6</subfield><subfield code="x">20590105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41541-023-00724-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/03b1ff7327134610b895e90b51a563cb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41541-023-00724-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2059-0105</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">15</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Robert G. E. Krause |
spellingShingle |
Robert G. E. Krause misc RC581-607 misc RC254-282 misc Immunologic diseases. Allergy misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells |
authorStr |
Robert G. E. Krause |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)87811839X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC581-607 |
illustrated |
Not Illustrated |
issn |
20590105 |
topic_title |
RC581-607 RC254-282 Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells |
topic |
misc RC581-607 misc RC254-282 misc Immunologic diseases. Allergy misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_unstemmed |
misc RC581-607 misc RC254-282 misc Immunologic diseases. Allergy misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_browse |
misc RC581-607 misc RC254-282 misc Immunologic diseases. Allergy misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
npj Vaccines |
hierarchy_parent_id |
87811839X |
hierarchy_top_title |
npj Vaccines |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)87811839X (DE-600)2882262-6 |
title |
Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells |
ctrlnum |
(DE-627)DOAJ101147023 (DE-599)DOAJ03b1ff7327134610b895e90b51a563cb |
title_full |
Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells |
author_sort |
Robert G. E. Krause |
journal |
npj Vaccines |
journalStr |
npj Vaccines |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
15 |
author_browse |
Robert G. E. Krause Thandeka Moyo-Gwete Simone I. Richardson Zanele Makhado Nelia P. Manamela Tandile Hermanus Nonhlanhla N. Mkhize Roanne Keeton Ntombi Benede Mathilda Mennen Sango Skelem Farina Karim Khadija Khan Catherine Riou Ntobeko A. B. Ntusi Ameena Goga Glenda Gray Willem Hanekom Nigel Garrett Linda-Gail Bekker Andreas Groll Alex Sigal Penny L. Moore Wendy A. Burgers Alasdair Leslie |
container_volume |
8 |
class |
RC581-607 RC254-282 |
format_se |
Elektronische Aufsätze |
author-letter |
Robert G. E. Krause |
doi_str_mv |
10.1038/s41541-023-00724-9 |
author2-role |
verfasserin |
title_sort |
infection pre-ad26.cov2.s-vaccination primes greater class switching and reduced cxcr5 expression by sars-cov-2-specific memory b cells |
callnumber |
RC581-607 |
title_auth |
Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells |
abstract |
Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities. |
abstractGer |
Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities. |
abstract_unstemmed |
Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells |
url |
https://doi.org/10.1038/s41541-023-00724-9 https://doaj.org/article/03b1ff7327134610b895e90b51a563cb https://doaj.org/toc/2059-0105 |
remote_bool |
true |
author2 |
Thandeka Moyo-Gwete Simone I. Richardson Zanele Makhado Nelia P. Manamela Tandile Hermanus Nonhlanhla N. Mkhize Roanne Keeton Ntombi Benede Mathilda Mennen Sango Skelem Farina Karim Khadija Khan Catherine Riou Ntobeko A. B. Ntusi Ameena Goga Glenda Gray Willem Hanekom Nigel Garrett Linda-Gail Bekker Andreas Groll Alex Sigal Penny L. Moore Wendy A. Burgers Alasdair Leslie |
author2Str |
Thandeka Moyo-Gwete Simone I. Richardson Zanele Makhado Nelia P. Manamela Tandile Hermanus Nonhlanhla N. Mkhize Roanne Keeton Ntombi Benede Mathilda Mennen Sango Skelem Farina Karim Khadija Khan Catherine Riou Ntobeko A. B. Ntusi Ameena Goga Glenda Gray Willem Hanekom Nigel Garrett Linda-Gail Bekker Andreas Groll Alex Sigal Penny L. Moore Wendy A. Burgers Alasdair Leslie |
ppnlink |
87811839X |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41541-023-00724-9 |
callnumber-a |
RC581-607 |
up_date |
2024-07-03T18:52:32.163Z |
_version_ |
1803585063132069888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101147023</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414144843.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41541-023-00724-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101147023</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ03b1ff7327134610b895e90b51a563cb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC581-607</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Robert G. E. Krause</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Immunologic diseases. Allergy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thandeka Moyo-Gwete</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simone I. Richardson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zanele Makhado</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nelia P. Manamela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tandile Hermanus</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nonhlanhla N. Mkhize</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roanne Keeton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ntombi Benede</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mathilda Mennen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sango Skelem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Farina Karim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Khadija Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Catherine Riou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ntobeko A. B. Ntusi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ameena Goga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Glenda Gray</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Willem Hanekom</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nigel Garrett</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linda-Gail Bekker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andreas Groll</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alex Sigal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Penny L. Moore</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wendy A. Burgers</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alasdair Leslie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">npj Vaccines</subfield><subfield code="d">Nature Portfolio, 2017</subfield><subfield code="g">8(2023), 1, Seite 15</subfield><subfield code="w">(DE-627)87811839X</subfield><subfield code="w">(DE-600)2882262-6</subfield><subfield code="x">20590105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41541-023-00724-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/03b1ff7327134610b895e90b51a563cb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41541-023-00724-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2059-0105</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">15</subfield></datafield></record></collection>
|
score |
7.403063 |